@inproceedings{ma-etal-2020-multi,
title = "Multi-resolution Annotations for Emoji Prediction",
author = "Ma, Weicheng and
Liu, Ruibo and
Wang, Lili and
Vosoughi, Soroush",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2020.emnlp-main.542/",
doi = "10.18653/v1/2020.emnlp-main.542",
pages = "6684--6694",
abstract = "Emojis are able to express various linguistic components, including emotions, sentiments, events, etc. Predicting the proper emojis associated with text provides a way to summarize the text accurately, and it has been proven to be a good auxiliary task to many Natural Language Understanding (NLU) tasks. Labels in existing emoji prediction datasets are all passage-based and are usually under the multi-class classification setting. However, in many cases, one single emoji cannot fully cover the theme of a piece of text. It is thus useful to infer the part of text related to each emoji. The lack of multi-label and aspect-level emoji prediction datasets is one of the bottlenecks for this task. This paper annotates an emoji prediction dataset with passage-level multi-class/multi-label, and aspect-level multi-class annotations. We also present a novel annotation method with which we generate the aspect-level annotations. The annotations are generated heuristically, taking advantage of the self-attention mechanism in Transformer networks. We validate the annotations both automatically and manually to ensure their quality. We also benchmark the dataset with a pre-trained BERT model."
}
Markdown (Informal)
[Multi-resolution Annotations for Emoji Prediction](https://preview.aclanthology.org/jlcl-multiple-ingestion/2020.emnlp-main.542/) (Ma et al., EMNLP 2020)
ACL
- Weicheng Ma, Ruibo Liu, Lili Wang, and Soroush Vosoughi. 2020. Multi-resolution Annotations for Emoji Prediction. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6684–6694, Online. Association for Computational Linguistics.