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Abstract

Despite the significant progress on entity coref-
erence resolution observed in recent years,
there is a general lack of understanding of
what has been improved. We present an empir-
ical analysis of state-of-the-art resolvers with
the goal of providing the general NLP audi-
ence with a better understanding of the state
of the art and coreference researchers with di-
rections for future research.

1 Introduction

The advent of the neural NLP era has revolution-
ized virtually all areas of NLP research. For entity
coreference, many issues that were once thought to
be important no longer appear to be particularly rel-
evant to the current research agenda. Specifically,
while a decade ago coreference researchers have
focused on developing computational models that
are complex (e.g., structured models (Fernandes
et al., 2012; Björkelund and Kuhn, 2014; Martschat
and Strube, 2015)) and knowledge-rich (e.g., those
that encode world knowledge (Ponzetto and Strube,
2007; Rahman and Ng, 2011a; Hajishirzi et al.,
2013)), nowadays virtually all state-of-the-art re-
solvers employ a simple model (i.e., the mention-
ranking model, which was developed more than
a decade ago (Denis and Baldridge, 2008))1 and
a fairly simple input representation (i.e., contex-
tualized word embeddings) in conjunction with a
mechanism for learning representations of entity
mention spans such that coreferent mentions have
similar representations (Lee et al., 2017, 2018; Kan-
tor and Globerson, 2019; Joshi et al., 2019).

Despite significant progress in the past few years
in terms of performance numbers, what seems to
be missing is an understanding of what has been

1The first learning-based resolver is a pairwise ranker (Con-
nolly et al., 1994), which was extended by Denis and Baldridge
(2008) to rank more than two candidate antecedents at a time.

improved. The lack of understanding has long been
a concern shared by coreference researchers, even
before the neural revolution in NLP. This has led to
several attempts to analyze coreference resolvers
over the years (Stoyanov et al., 2009; Kummerfeld
and Klein, 2013). With the development of neural
resolvers, however, this concern has become more
serious than ever: the fact that significant progress
can be made via learning mention representations
with a simple neural mention-ranking model that
employs a fairly simple input representation for a
task as challenging as coreference resolution (CR)
is somewhat contrary to common wisdom.

In light of this apparent conundrum, we present
an empirical analysis of state-of-the-art entity coref-
erence resolvers through four major sets of exper-
iments in this paper, with the goal of gaining in-
sights into their behaviors. We believe that our
analysis will not only provide the general NLP au-
dience with a better understanding of the state of
the art, but also provide coreference researchers
with directions for future research.

2 Evaluation Setup

In this section, we describe the datasets, the evalua-
tion metrics, the state-of-the-art resolvers and the
hyperparameters used in our experiments.

Datasets. We report results on three coreference
datasets. The NIST-sponsored ACE evaluations
resulted in several datasets. We use ACE 2005
(Walker et al., 2006), the last one in the series. The
ACE 2005 organizers have only made the official
training set (but not the official test set) publicly
available, so previous work defined different train-
test splits over the official training set. We employ
the same train-test split as Bansal and Klein (2012).

KBP is another series of NIST-sponsored eval-
uations in the mid 2010s. KBP does not have any
evaluations on entity CR, but to support high-level
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ACE OntoNotes KBP
Train Dev Test Train Dev Test Train Dev Test

#docs 365 117 117 2802 343 348 360 97 168
#mentions 34481 11126 9261 155558 19155 19764 40628 10983 13860
#chains 11963 3798 3050 35142 4545 4532 14332 3942 5482

Table 1: Dataset statistics in terms of the number of documents, mentions, and coreference chains.

information extraction tasks (e.g., event extraction,
event CR), the organizers have made available sev-
eral corpora that include entity coreference anno-
tations. For training, we use three such corpora
(LDC2015E29, LDC2015E68, and LDC2016E64).
For evaluation, the KBP 2017 organizers have
made available the official test set for the event
CR task (LDC2017E51), which also include entity
coreference annotations. We use it as our test set.

OntoNotes (Hovy et al., 2006), which was devel-
oped circa 2006, is the most widely-used dataset
for entity coreference evaluations. It has a stan-
dard train-dev-test split. Unlike in ACE and KBP,
singleton clusters are not annotated in OntoNotes.

The key difference between these three cor-
pora is that OntoNotes supports “unrestricted” CR,
meaning that coreference links are annotated be-
tween entity mentions without regard to their entity
types. In contrast, coreference links are only an-
notated between mentions belonging to one of the
seven entity types in ACE and one of the five entity
types in KBP. Statistics on these corpora are shown
in Table 1.

Evaluation metrics. Following the convention
established in the CoNLL 2011 and 2012 shared
tasks (Pradhan et al., 2011, 2012), we use as our pri-
mary coreference evaluation measure the CoNLL
score, which is the unweighted average of the
F-scores provided by three popular metrics, the
link-based MUC metric (Vilain et al., 1995), the
mention-based B3 metric (Bagga and Baldwin,
1998), and the entity-based CEAFe metric (Luo,
2005). We obtain these scores using the official
CoNLL scorer (Pradhan et al., 2014).2

Mention detection (MD) is the task of extracting
the mentions in a text needed for entity CR. A
key observation made in the CoNLL shared tasks
was that the performance of resolvers was limited
by MD, so it is important to examine the extent
to which MD performance has improved over the

2LEA (Moosavi and Strube, 2016) is a coreference eval-
uation metric recently designed to address the shortcomings
associated with B3 and CEAFe, but we found no difference
in the performance trends in our experiments according to
CoNLL and LEA. See the Appendix for the LEA results.

years. We report performance in terms of recall,
precision, and F-score, considering that a system
mention is correctly detected if and only if it has
an exact match in boundary with a gold mention.

Systems. We evaluate five variants of three state-
of-the-art neural resolvers, all of which employ a
ranking model where all candidate antecedents are
ranked against each other for a given anaphor.

The first resolver, the Stanford neural resolver
(Clark and Manning, 2016)3, takes as input a set of
entity mentions identified for a given document by
a rule-based MD system and trains using reinforce-
ment learning a simple mention ranker consisting
of three hidden layers of ReLU units and a final
layer that is fully-connected.

The other two resolvers are developed by Lee
et al. (2018)4 and Joshi et al. (2019)5. Both are
span-based models, which have two key character-
istics. First, mention spans are identified as part of
CR, so this mitigates the propagation of errors from
MD to CR. Second, representations of entity men-
tion spans are learned so that coreferent mentions
have similar representations. The key differences
between these resolvers are: (1) in Lee et al. the
input instances correspond to the sentences in the
given document, whereas in Joshi et al. the input in-
stances correspond to fixed-length non-overlapping
segments of the input document6; (2) Lee et al. use
a LSTM, whereas Joshi et al. use a transformer;
and (3) the pretrained embeddings are different.

For each of these resolvers, we derive two
variants. Specifically, Lee et al. (2018) employ
GloVe+ELMo embeddings, but to better under-
stand the effect of the contextual information pro-
vided by ELMo embeddings (Peters et al., 2018)
on CR performance, we evaluate a version of
Lee et al. using only GloVe embeddings (Pen-
nington et al., 2014). We will henceforth refer
to these two versions of Lee et al. as ELMo (i.e.,
ELMo+GloVe) and GloVe, respectively. Joshi

3https://github.com/clarkkev/deep-coref
4https://github.com/kentonl/e2e-coref
5https://github.com/mandarjoshi90/coref
6This is the independent version in Joshi et al. (2019).

https://github.com/clarkkev/deep-coref
https://github.com/kentonl/e2e-coref
https://github.com/mandarjoshi90/coref
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ACE OntoNotes KBP
Hyperparameter GloVe/ELMo SpanB-b SpanB-l GloVe/ELMo SpanB-b SpanB-l GloVe/ELMo SpanB-b SpanB-l
Max span width 30 30 30 30 30 30 20 20 10
Max top antecedents 50 50 50 50 50 50 50 50 35
Max training segs/sents 50 sents 3 segs 3 segs 50 sents 3 segs 3 segs 50 sents 3 segs 3 segs
Top span ratio 0.4 0.35 0.4 0.4 0.4 0.4 0.35 0.35 0.35
Max segment length − 384 512 − 384 512 − 384 512
SpanBERT learning rate − 2e-5 1e-5 − 2e-5 1e-5 − 2e-5 2e-5
Task learning rate 0.001 1e-4 3e-4 0.001 1e-4 3e-4 0.001 1e-4 2e-4

Table 2: Best hyperparameters obtained on the development sets for each span-based resolver.

et al. (2019) employ embeddings pretrained using a
new method called SpanBERT (Joshi et al., 2020),
which is designed to better represent text spans than
BERT. The two variants of Joshi et al. differ in the
transformer. Specifically, SpanBERT-base (hence-
forth SpanBERT-b) employs a simple transformer
while SpanBERT-large (henceforth SpanBERT-l)
employs a more complex transformer.

We use the publicly-available implementation of
each of these resolvers. There is one caveat, how-
ever. Recall that the span-based resolvers were all
evaluated on OntoNotes. Since singleton clusters
are not annotated in OntoNotes, all singleton clus-
ters predicted by a resolver are removed from its
output before it is sent to the scoring program. In
contrast, singleton clusters that contain mentions
belonging to one of the ACE/KBP entity types are
annotated in ACE/KBP, so these mentions should
not be removed from a resolver’s output. However,
span-based resolvers cannot distinguish between
spans that correspond to entity mentions and those
that do not. To address this problem, we extend the
span-based models so that they are jointly trained to
predict entity mention spans and coreference links.
Specifically, the feedforward neural network that
is responsible for scoring a span in these models
currently do not receive direct feedback on whether
a span corresponds to an entity mention. We first
turn it into a mention detector by training it in a
supervised manner using the negative cross entropy
loss, so that it predicts a positive mention score for
a span if and only if the span corresponds to an
entity mention. Then, to jointly learn MD and CR
in the span-based resolvers, we employ a loss func-
tion that is the unweighted sum of the coreference
loss and the MD loss.
Hyperparameter tuning. To ensure a fair com-
parison of the resolvers, we tune their hyperparame-
ters to maximize the CoNLL score on development
data. Note, however, that the authors of Stanford,
ELMo, SpanBERT-b, and SpanBERT-l reported
the best hyperparameter settings on OntoNotes in

the original papers (Lee et al., 2018; Joshi et al.,
2019), so we simply use them in our experiments
and focus on tuning the hyperparameters for the
remaining cases. We adopt the set of hyperparame-
ters to be tuned from the original papers.

For Stanford, there are three hyperparameters to
tune: αWL, αFA, and αFN . These are the weights
associated with three different types of mistakes
made by the coreference model. Following Clark
and Manning (2016), we fix αWL = 1.0 and search
for αFA and αFN out of {0.1, 0.2, . . ., 1.5} using
a variant of grid search. For ACE, (αWL, αFA,
αFN ) = (1.0, 0.5, 1.0) is the best configuration, and
for KBP, the best configuration is (1.0, 0.5, 0.8).
For OntoNotes, we use the configuration found by
Clark and Manning, which is (1.0, 0.5, 0.8).

For GloVe and ELMo, we have five hyperparam-
eters to tune. Specifically, we search for: (1) max
span width (i.e., maximum number of words in a
candidate span) out of {10, 20, 30}; (2) max top
antecedents (i.e., maximum number of candidate
antecedents) out of {35, 40, 45, 50}; (3) max train-
ing sentences out of {25, 50, 75, 100}; (4) task
learning rate out of {5e-4, 1e-3, 2e-3}; and (5) top
span ratio (i.e., the fraction of top spans that sur-
vive the filtering) out of {0.3, 0.35, 0.4, 0.45, 0.5}.
For the two SpanBERT resolvers, we have seven
hyperparameters to tune. For three of the hyper-
parameters (max span width, max top antecedents,
and top span ratio), the ranges are the same as those
used in GloVE and ELMo. For the remaining four,
we search for: (1) max training segments out of
{3, 4, 5}; (2) max segment length out of {128, 256,
384, 512}; (3) SpanBERT learning rate out of {1e-
5, 2e-5}; and (4) task learning rate out of {1e-4,
2e-4, 3e-4}. Table 2 shows the best hyperparameter
setting of each span-based model on each dataset.

3 Performance across Datasets

We first provide the reader with a high-level under-
standing of the state of the art by analyzing the five
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ACE OntoNotes KBP
System CoNLL MUC Sing. MD CoNLL MUC Sing. MD CoNLL MUC Sing. MD

1 Stanford 38.6 57.9 56.8 50.6 65.5 74.3 − 80.1 26.2 48.8 42.8 26.4
2 GloVe 68.0 76.6 67.0 87.4 68.1 76.7 − 82.0 65.9 71.3 63.2 82.4
3 ELMo 71.8 79.5 70.1 90.4 73.0 80.5 − 85.1 69.7 73.8 67.5 85.3
4 SpanBERT-b 75.7 83.1 71.5 91.6 77.4 83.7 − 87.1 71.3 75.6 67.5 86.3
5 SpanBERT-l 78.9 85.4 75.1 92.3 79.6 85.3 − 88.2 75.8 80.1 71.1 88.5

Table 3: Results of the resolvers on the three coreference datasets.

resolvers’ performance on the three datasets.

Performance across datasets. Results on the
three datasets, which are reported in terms of the
CoNLL score, are shown in the CoNLL column
in Table 3.7 Although the five resolvers have
been evaluated solely on OntoNotes, their relative
performances are consistent across the datasets.
In particular, the use of ELMo embeddings en-
ables ELMo to outperform GloVe by 3.8–4.9%
points. SpanBERT-b outperforms ELMo by 1.6–
4.4% points, and SpanBERT-l further outperforms
SpanBERT-b by 2.2–4.5% points.

Source of performance improvements. Do the
above improvements stem from improved recog-
nition of coreference links, or improved recogni-
tion of singleton clusters, or both? To understand
whether these resolvers have improved in terms of
link prediction, we examine the MUC F-scores (see
the MUC column), which are computed solely on
coreference links. As we can see, the MUC scores
are consistently increasing down the table across
all datasets, meaning that later systems are indeed
doing better at identifying coreference links. To
understand whether later resolvers are also better
at identifying singleton clusters, we show in the
Singleton column the percentage of singleton clus-
ters that are correctly recalled. Again, the scores
are increasing down the table, and the degree of
improvement is particularly large from GloVe to
ELMo and from SpanBERT-b to SpanBERT-l.

Mention detection performance. First, MD per-
formance has improved significantly over the years.
SpanBERT-l achieves an F-score of 88.2 in MD
on OntoNotes, which is significantly higher than
the best MD F-score achieved in the CoNLL-2012
shared task (77.7). Note that Stanford’s mention
detector performs substantially worse than those
of the other resolvers, especially on ACE and KBP.
The reason is that Stanford employs a rule-based
MD system that was initially developed when the

7Owing to space limitations, we show only the most im-
portant scores in Table 3. The detailed results (e.g., B3 and
CEAFe results) can be found in the Appendix.

Stanford NLP Group participated in the CoNLL-
2011 shared task, whereas in the other resolvers
MD is jointly trained with CR. Overall, MD per-
formance appears to have a significant impact on
CR performance. In particular, joint MD and CR
in the span-based resolvers seems to be a driving
force behind the rapid coreference performance
improvements we have seen in recent years.

4 Using Oracles

Can the performance of coreference resolvers be
further improved if we improve MD? Being able
to answer this kind of questions is important: if
further improvements in MD can result in signifi-
cant gains in coreference performance, then future
research efforts should perhaps be focused on MD.

To answer this kind of questions, we perform
oracle experiments. Specifically, we provide a re-
solver with a particular type of perfect information
(e.g., using gold mentions as input) and see how
much performance improvement can be obtained.

4.1 Gold Mention Boundaries

Our first oracle experiment concerns training and
testing our resolvers on gold mention boundaries.
While this experiment has been conducted over the
years by numerous researchers (e.g., Peng et al.
(2015), Zhang et al. (2018)), we are primarily inter-
ested in understanding whether further improving
an MD component that already has an F-score of
more than 85% can improve coreference perfor-
mance. For the four span-based models, we disable
the component in the span representation layer that
is responsible for proposing spans (i.e, mention
boundaries) and instruct them to use gold mention
spans instead. Note, however, that the representa-
tion of a span will be learned during training. In
other words, although all resolvers are given gold
mention spans, the span representations that will
be used during resolution will still be different for
different span-based resolvers.

Results, expressed in terms of the CoNLL score,
are shown in the Gold Mention Boundaries col-
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Gold Mention Boundaries Perfect Anaphoricity Gold Entity Types
System ACE Onto. KBP ACE Onto. KBP ACE Onto. KBP

1 Stanford 76.3 83.7 80.0 40.3 73.4 29.2 39.5 71.8 27.7
2 GloVe 79.3 86.1 81.6 71.5 76.2 69.8 69.6 71.4 67.9
3 ELMo 81.8 87.2 83.5 76.1 82.0 73.8 73.3 76.7 71.6
4 SpanBERT-b 84.9 90.5 85.7 79.3 84.4 76.3 77.4 79.3 73.8
5 SpanBERT-l 87.3 91.9 88.0 82.8 86.9 80.1 80.4 81.4 77.6

Table 4: CoNLL scores of the resolvers using gold mention boundaries, perfect anaphoricity, and gold entity types.

umn in Table 4. First, despite recent significant im-
provement in MD, these results suggest that coref-
erence performance can still be significantly im-
proved just by improving MD: for the best resolver
(SpanBERT-l), the CoNLL score can be improved
by 8.4–12.3% points. Second, the relative perfor-
mances of the resolvers are consistent across the
three datasets: the CoNLL scores increase as we go
down the table. Since the four span-based resolvers
use essentially the same (mention-ranking) model
for resolution and the same algorithm for weight
updates, their performance differences can be at-
tributed largely to differences in the pretrained em-
beddings and the encoder. In addition, these results
suggest that the coreference performance improve-
ments we observed in recent years can be attributed
to not only improved mention (boundary) detection
but also improved resolution accuracy presumably
as a result of better span representations.

4.2 Perfect Anaphoricity

Anaphoricity determination, a.k.a. discourse-new
detection (Poesio et al., 2004), is the task of de-
termining whether a mention is coreferent with
another mention that appears earlier in the text. Be-
ing able to identify non-anaphoric mentions could
improve the precision of coreference resolvers, as
any antecedent chosen for them is erroneous.

In this oracle experiment, we provide a resolver
with perfect anaphoricity information, meaning that
we know for every entity mention whether it is
anaphoric or not. We use this perfect anaphoricity
information during resolution: we will resolve all
and only those mentions that are anaphoric.

Results are shown in the Perfect Anaphoricity
column of Table 4. A few points deserve men-
tion. First, all resolvers improved on all datasets
when provided with perfect anaphoricity informa-
tion. These results imply that anaphoricity determi-
nation remains an important issue in CR research,
and further improvements in anaphoricity can im-
prove CR. However, the gains that state-of-the-art
resolvers can achieve by improving anaphoricity

determination are generally smaller than those by
improving MD: the CoNLL scores of the span-
based resolvers increase by 3.5–4.3% points on
ACE, 4.4–9% points on OntoNotes, and 3.9–5%
points on KBP. This is understandable, as MD is
likely to improve both coreference precision and re-
call, whereas anaphoricity determination can only
improve precision. Note that Stanford’s poor per-
formance on ACE and KBP is due to poor MD.

4.3 Gold Entity Types

In this experiment, we assume that a resolver is
given gold entity types (i.e., semantic classes)
such as PERSON, ORGANIZATION, and LOCATION.
The set of entity types to be provided is corpus-
dependent. As mentioned before, ACE and KBP
only have seven and five entity types respectively.
In OntoNotes, however, only named entities are an-
notated with (one of 18) entity types. Consequently,
we automatically derive entity types for pronouns
and nominals using gold coreference chains: if
a pronoun or a nominal appears in a coreference
cluster that contains a name, we derive its entity
type from that of the name. This method allows
us to derive the entity type of 36.4% of the nom-
inals and 70% of the pronouns. Any pronoun or
nominal whose entity type cannot be derived using
this method will be assigned the entity type UN-
KNOWN. While this method does not provide full
coverage, we will still be able to examine whether
having access to perfect entity types on a subset of
the mentions will enable us to improve the perfor-
mance of a resolver on OntoNotes.

We use entity types during resolution. We dis-
allow a candidate antecedent to be selected as the
antecedent for a given anaphor if they have differ-
ent entity types. Results are shown in the Gold
Entity Types column in Table 4. As we can see,
all resolvers improved on all datasets when pro-
vided with gold entity types. Compared with the
gains achieved using gold mention spans or perfect
anaphoricity, the gains that come with the use of
gold entity types are smaller: for the span-based
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resolvers, the CoNLL scores increase by 1.5–1.7%
points on ACE, 1.8–3.7% points on OntoNotes, and
1.9–2.5% points on KBP. In other words, state-of-
the-art resolvers can be improved by improving the
determination of entity types.

These results are particularly interesting in light
of a conundrum in entity CR: while some re-
searchers have reported successes with improving
entity CR using automatically computed semantic
information (Ng, 2007), there have also been nu-
merous failed attempts (Kehler et al., 2004; Durrett
and Klein, 2013; Sapena et al., 2013). Although
the semantic information we use in this paper is
restricted to gold entity types, our results suggest
that hand-annotated semantic information is indeed
useful, and the (non-)utility of semantics for CR
reported in earlier work could be attributed to the
noise inherent in computing semantic information.

5 Results on Resolution Classes

To gain additional insights into the state-of-the-
art resolvers, we analyze their performance on
different types of entity mentions. More specif-
ically, motivated by Stoyanov et al. (2009), we
partition the gold mentions into different resolution
classes. While previous work has focused mainly
on three coarse-grained resolution classes (namely,
pronouns, names, and nominal mentions), we em-
ploy the 13 fine-grained resolution classes defined
by Rahman and Ng (2011b), as discussed below.
Names. Four classes are defined for gold names.
(1) e: a name is assigned to this exact string match
class if there is a preceding mention such that the
two are coreferent and are the same string; (2) p: a
name is assigned to this partial string match class
if there is a preceding mention such that the two are
coreferent and have some content words in com-
mon; (3) n: a name is assigned to this no string
match class if there is no preceding mention such
that the two are coreferent and have some content
words in common; and (4) na: a name is assigned
to this non-anaphor class if it is not coreferent with
any preceding mention.
Nominal mentions. Four analogous resolution
classes are defined for gold mentions whose head
is a nominal: (5) e; (6) p; (7) n; and (8) na.
Pronouns. We have three pronoun classes. (9)
1/2: 1st and 2nd person pronouns; (10) G3: gen-
dered 3rd person pronouns (e.g., she); (11) U3:
ungendered 3rd person pronouns; (12) oa: any
anaphoric pronouns that do not belong to (9), (10),

and (11) (e.g., relative pronouns); and (13) na: non-
anaphoric pronouns (e.g., pleonastic pronouns).

Table 5 shows the performance of each resolver
on each resolution class. To avoid overwhelm-
ing the reader, we only show the results of ELMo
and SpanBERT-l, which will allow us to gain in-
sights into what made SpanBERT-l better. Specif-
ically, for each resolution class C, we show each
resolver’s MD recall (percentage of gold mentions
in C that are correctly recalled) under MD and its
resolution accuracy (percentage of correctly iden-
tified anaphors in C that are correctly resolved)8

under RA. Under Size we show the percentage of
gold mentions belonging to each resolution class.

First, if we consider only the three coarse-
grained resolution classes, the results are perhaps
not surprising: name resolution is the easiest and
nominal resolution is the hardest.

Second, consider the 13 fine-grained resolution
classes. By design, the names and the nominals in
the ‘e’ class should be easier to resolve than those
in ‘p’, which in turn should be easier to resolve
than those in ‘n’. The results are consistent with
this intuition. Results on the anaphoric pronoun
classes are also consistent with our intuition: 3rd
person gendered pronouns are the easiest to resolve,
followed by 1st/2nd person gendered pronouns and
then ungendered 3rd person pronouns.

Third, these results reveal that the difficulty of
anaphoricity determination stems primarily from
pronouns: while resolution accuracies on non-
anaphoric names and nominal mentions are above
89%, those on non-anaphoric pronouns are only
between 65.9% and 77.6%. Note that we consider
a non-anaphoric mention correctly “resolved” if it
is resolved to the dummy antecedent.

Finally, SpanBERT-l has better resolution accu-
racies than ELMo for all resolution classes on all
datasets. Encouragingly, the harder a resolution
class is, the bigger the improvement is. These re-
sults clearly show that we are making progress on
resolving anaphors that are traditionally considered
difficult to resolve. Note that part of this improve-
ment can be attributed to improved MD, which
increases the likelihood that the correct antecedent
of an anaphor is present in its list of candidate an-
tecedents. Additional experiments are needed to
determine the impact of improved MD on improve-
ment in resolution accuracies, however.

8In other words, the resolution accuracy does not depend
on anaphor recall and precision.
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ACE OntoNotes KBP
Size ELMo SpanB-l Size ELMo SpanB-l Size ELMo SpanB-l

Class % RA MD RA MD % RA MD RA MD % RA MD RA MD
1 NAM-e 16.8 94.6 96.0 97.4 96.6 14.0 95.3 93.2 95.2 91.8 16.5 94.0 95.0 95.3 96.5
2 NAM-p 4.2 71.5 86.6 81.5 88.2 7.3 82.7 83.2 88.5 83.7 2.0 66.1 90.8 74.6 93.8
3 NAM-n 2.0 52.5 87.6 69.8 91.4 1.9 56.6 60.6 73.6 68.1 2.9 56.8 88.4 64.2 92.0
4 NAM-na 10.8 93.3 88.4 94.8 91.0 11.5 93.5 74.8 94.4 79.0 16.8 95.8 91.6 96.1 92.8
5 NOM-e 3.4 77.0 91.0 84.3 92.3 3.7 92.9 89.6 95.7 90.0 3.4 86.2 85.7 88.1 86.7
6 NOM-p 4.3 51.1 82.8 61.5 89.4 5.3 78.1 78.6 84.3 83.1 4.2 43.7 83.3 52.5 80.3
7 NOM-n 4.2 48.5 84.0 66.3 89.4 3.3 58.6 61.9 78.4 71.6 5.8 42.1 77.0 50.6 76.5
8 NOM-na 16.8 92.0 83.1 93.1 86.1 8.4 89.2 66.7 92.5 77.1 19.9 92.8 78.2 93.4 78.3
9 PRO-1/2 16.4 81.8 99.8 88.6 99.8 16.1 90.1 93.2 93.6 96.1 13.5 82.1 100 88.2 99.9

10 PRO-G3 5.7 88.5 99.8 94.1 100 10.7 91.6 99.6 95.9 99.3 6.5 88.3 100 94.7 99.7
11 PRO-U3 6.2 68.8 91.5 85.2 96.8 13.8 84.1 93.4 91.2 96.0 4.6 70.5 93.4 79.5 97.8
12 PRO-oa 3.9 52.9 80.3 70.3 86.1 2.2 57.0 57.3 69.1 70.0 1.2 68.3 69.8 72.0 72.7
13 PRO-na 5.3 73.9 87.3 77.6 90.6 1.8 65.9 80.5 69.6 84.3 2.8 66.5 93.5 72.6 92.7

Table 5: Results on resolution classes.

6 Sensitivity to Perturbed Inputs

Next, we conduct a series of experiments that in-
volve perturbing the input. In each experiment, we
(1) replace a certain kind of words/phrases in each
training document with other words/phrases, (2)
train a coreference model on these perturbed train-
ing documents, and (3) evaluate the output. Our
goal is to gain insights into the behavior of state-of-
the-art resolvers by examining how sensitive their
performance is to perturbations in the input. Specif-
ically, if performance drops significantly when a
particular kind of words/phrases is replaced, that
means the replaced words/phrases are important
in the model learning process. Note that perturba-
tions are only applied to the training documents;
no changes are made to the test documents.

We divide the different kinds of perturbations
into two broad categories, mention-internal pertur-
bations and mention-external perturbations.

6.1 Mention-internal Perturbations

Mention-internal perturbations involve making
changes to the words within an entity mention.

6.1.1 Perturbations to Names
We consider two kinds of perturbations to names.

Unseen names. We replace each name in a train-
ing document with a name that will highly unlikely
appear in any test set. With this replacement, all
the names in the test set will be unseen w.r.t. the
training set. When trained on this perturbed train-
ing set, we can determine the extent to which the
algorithms for learning coreference resolvers rely
on memorizing seen names (as opposed to gener-
alizing from their contexts) when performing MD
and CR. Specifically, if a learner memorizes a lot,

Perturbation Type Example
Unseen names Mr. Smith→Mr. Htims
Names of a different type John Smith→ New York
Unseen nominals activist→ tsivitca
Nominals of a different type actor→ plane
Nominals of the same type wife→ grandmother
Unseen verbs support→ troppus
Seen verbs acquire→ believe
Unseen adj/adv directly→ yltcerid
Seen adj/adv organic→ shredded

Table 6: Perturbation examples.

it will likely perform poorly on MD (i.e., its recall
will suffer) and subsequently CR.

We perform name replacement in a determinis-
tic manner: we replace each word in a name with
another word in which the order of its characters is
reversed. Note that person prefixes (e.g., “Mr.”), or-
ganization words and suffixes (“Airlines”, “Inc.”),
and location nouns (e,g, “River”) will not be re-
placed, as the goal is to introduce unseen names
rather than change the type of a name.9 In addition,
any word in a name that appears in a nominal men-
tion in the training set will not be replaced. For
instance, the word “Church” in “Baptist Church”
appears in a nominal in the training set and there-
fore will not be replaced. This is done to ensure that
only the “name” part of a mention will be changed
to something that is not previously seen.10

Names of a different type. In this experiment,
we replace each name, ne1, in a training document
with another name, ne2, that satisfies two condi-
tions. First, ne2, like ne1, should appear in the
training set. This ensures that the number of names
in the test set that will be unseen w.r.t. the train-

9These lists are available in the Appendix.
10Examples of this and other kinds of perturbations are

shown in Table 6.
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ing set will not change. Second, the two names
should have different entity types. Importantly, the
replacement is deterministic, meaning that (1) all
occurrences of ne1 will be replaced with the same
name (i.e., ne2), and (2) any name coreferent with
ne1 (but are not lexically identical to ne1, such as
“Trump” and “President Trump”) will be replaced
with a name coreferent with ne2. These conditions
together ensure that only the names and their types
will change, but their coreference relationships will
not. Note that the choice of ne2 is random sub-
ject to these conditions. Due to the randomness
involved in the selection of ne2, we repeat the ex-
periment three times and report the average result.

With this replacement, the resulting training doc-
uments may no longer make sense to a human
reader, as a PERSON name may appear in a con-
text for an ORGANIZATION name. In particular,
the contexts in which a certain type of names (e.g.,
PERSON) appear in the training set will be different
from those in which these names appear in the test
set. This experiment will allow us to determine the
extent to which a resolver makes use of contextual
information when identifying coreference links in-
volving names: if it makes heavy use of contextual
information, we should see a considerable drop in
resolver performance.

6.1.2 Perturbations to Nominal Mentions
We consider three kinds of perturbations to nominal
mentions to determine the roles they play.

Unseen nominals. This experiment has the same
setup as the “Unseen names” experiment above,
except that we replace each nominal mention in
the training set with another mention in which we
reverse the order of the characters of each of its
words. Note that this is a mention-internal pertur-
bation, meaning that we replace all and only those
nominals that are annotated as entity mentions, not
all nominals in the training set.

Nominals of a different type. This experiment
has the same setup as the “Names of a different
type” experiment above, except that we replace
nominal mentions rather than names. As in the
previous experiment, we replace each nominal that
is annotated as an entity mention in the training set.

Nominals of the same type. This experiment
has the same setup as the “Nominals of a different
type” experiment above, except that the nominal
mention being replaced must have the same entity
type as its replacement. This kind of perturbation

is “milder” than the previous kind of perturbation,
as a PERSON mention will continue to appear in
a PERSON context after the replacement. In other
words, if a machine learner does not pay attention
to the semantic compatibility between a nominal
mention and its context, then we should see little
performance difference when a resolver is trained
on this training set vs. the previous training set (i.e.,
the one from “Nominals of a different type”).

6.2 Mention-external Perturbations
Mention-external perturbations involve making
changes to the words outside a mention.

6.2.1 Perturbations to Verbs
We consider two kinds of perturbations to verbs to
determine the role they play in resolution.
Unseen verbs. This experiment has the same
setup as the two “Unseen” experiments above, ex-
cept that we replace each verb in the training set
that is not part of an entity mention.
Seen verbs. This experiment has the same setup
as the “Names of a different type” experiment
above, except that we replace verbs outside of en-
tity mentions rather than names. In particular, the
new verb is not constrained to have the same type
as the verb being replaced: it can be any verb taken
from the training set. Nevertheless, the replace-
ment is deterministic: all occurrences of a given
verb will be replaced with the same verb.

6.2.2 Perturbations to Adjectives & Adverbs
We consider two kinds of perturbations to adjec-
tives and adverbs to determine the roles they play.
Unseen adjectives and adverbs. This experi-
ment has the same setup as the three “Unseen”
experiments above, except that we replace each
adjective and adverb in the training set that is not
part of an entity mention.
Seen adjectives and adverbs. This experiment
has the same setup as the “Seen verbs” experiment
above, except that we replace adjectives and ad-
verbs outside of entity mentions rather than verbs.

6.3 Perturbation Results
Results of these experiments on the three datasets
are shown in Table 7. As in Table 5, we only show
the results of ELMo and SpanBERT-l. For each
resolver, we show its CR CoNLL score and its MD
F-score. To facilitate comparison, we show in row 1
the performance of the resolvers when the input is
not perturbed.
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ACE OntoNotes KBP
ELMo SpanB-l ELMo SpanB-l ELMo SpanB-l

Perturbation Type CR MD CR MD CR MD CR MD CR MD CR MD
1 No Perturbation 71.8 90.4 78.9 92.3 73.0 85.1 79.6 88.2 69.7 85.3 75.8 88.5
2 NAM-Unseen 68.4 88.6 74.9 90.8 46.2 63.3 65.7 77.2 62.1 79.7 65.7 79.7
3 NAM-DiffType 69.5 89.5 75.7 91.1 58.8 75.2 72.7 83.5 64.3 82.5 67.2 81.4
4 NOM-Unseen 67.6 86.5 73.8 88.7 57.4 73.6 70.7 81.9 60.6 76.4 67.8 81.7
5 NOM-DiffType 69.7 88.6 74.7 89.6 59.0 75.4 71.2 82.1 66.0 82.5 70.7 83.6
6 NOM-SameType 69.9 89.2 75.3 90.1 62.5 79.2 72.8 83.4 66.8 83.4 72.1 84.9
7 Verb-Unseen 70.6 89.4 76.6 91.1 64.7 79.7 75.3 86.2 68.2 84.2 74.0 86.9
8 Verb-Seen 71.6 90.1 77.1 91.1 67.2 81.1 77.0 87.0 68.8 84.7 74.4 87.1
9 Adj/Adv-Unseen 71.7 89.9 76.8 91.0 68.9 82.3 77.4 87.4 69.3 85.3 73.5 86.4

10 Adj/Adv-Seen 69.8 88.8 76.9 91.3 70.1 83.0 76.3 86.7 68.5 84.8 74.0 86.6

Table 7: Perturbation results.

A few points deserve mention. First, mention-
internal perturbations (rows 2–6) triggered larger
deterioration in CR performance than mention-
external perturbations. These results suggest that
the resolvers rely more on the mentions themselves
than their contexts for resolution, which should not
be surprising. Among the mention-internal pertur-
bations, the biggest CR performance drops occur
with the Unseen perturbations (rows 2 and 4), par-
ticularly those involving unseen names, followed
by perturbations involving the replacement of a
seen name or nominal with a different type. A
closer inspection of the results reveals that there is
a strong correlation between CR performance and
MD performance: larger drops in CR performance
are always accompanied by larger drops in MD
performance. This sheds light on why the Unseen
perturbations triggered the largest drop in CR per-
formance: when all the names or nominal mentions
in the test set are not seen in the training set, the
mention detector is likely to perform poorly on the
test set. In contrast, when they are replaced by men-
tions of a different entity type, the percentage of
unseen mentions in the test set doesn’t change, thus
posing fewer problems for the mention detector.

As for the mention-external perturbations, no
clear patterns emerged: while verb replacement
(rows 7–8) has a greater impact than adjective and
adverb replacement (rows 9–10) for OntoNotes,
the same observation cannot be made for the other
datasets. Moreover, while replacing a word with
another seen word is generally expected to cause
less harm to MD (and thus CR) performance than
replacing a word with an unseen word, these ex-
periments show that this is not necessarily the case.
These results seem to suggest that the mention span
learner is not particularly sensitive to the verbs, ad-
jectives and adverbs that appear in the context.

Third, it is not easy to conclude which resolver

is more robust to perturbations. While the drops in
CR performance on ACE are fairly mild for both
resolvers, we see bigger CR performance drops on
the other two datasets. In particular, ELMo suffers
from a bigger drop in performance than SpanBERT-
l on OntoNotes, whereas the reverse is true on KBP.

Finally, while the two resolvers’ MD perfor-
mances are similar, SpanBERT-l’s CR performance
is always superior to ELMo’s. These results reveal
once again that the mention representations learned
by SpanBERT-l are indeed better than those by
ELMo as far as resolution is concerned.

7 Conclusions

While space limitations preclude a reiteration of
all the observations we have made, we believe the
key conclusions are: (1) the relative performances
of the resolvers are consistent across datasets; (2)
for each resolver, higher mention detection per-
formance always yields better coreference perfor-
mance; (3) the newest resolvers perform better
because of not only improved mention detection,
but also improved mention span representations,
and they improved the resolution of both easy-
and difficult-to-resolve anaphors; (4) all resolvers
can be improved by improving mention detection,
anaphoricity determination, and entity type detec-
tion; and (5) our perturbation results suggest that
coreference performance is most sensitive to those
words/phrases in the input that have the greatest
impact on mention detection performance.
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Location Person Organization
Mount Acting Czar lt. Commander Reverend laboratories a.g.
Mt. Adm Democrat Lt. Commissioner Reverends laboratory ag
River Adm. Deputy maj Commissioner Revs co. a.b.
Bay administrator dr Maj commissioner Revs co ab
Beach admiral Dr maj. Commodore Revs. cie aktiebolag
Canal Admiral dr. Maj. congressman Revs. cie. aktiengesellschaft
Cape ambassador Dr. Major Congressman Sargent cos. n.v.
City Ambassador Drs Marquis Congressmen secretary corp nv
County Ambassadors Drs. Major Congressperson Secretary corp. bv
Desert Archbishop Ensign mayor Congresswoman Secretary inc. b.v.
Gulf Archbishops Father messrs Congresswomen sen inc p.c.
Harbor Assistant Fathers messrs. Ladies in waiting Sen ltd. de c.v.
Inlet Attorney First Lady Minister Ladies-in-waiting sen. ltd de cv
Island Bishop gen mr Lady in waiting Sen. ltda. b.d.d.p.
Islands Bishops Gen Mr Lady-in-waiting senator ltda bddp
Islet Brig gen. mr. Leader Senator l.p. Airlines
Islets Brig. Gen. Mr. Leaders Senators lp Airways
Mountain brigadier gov mrs lieutenant sens Associates Brothers
Mountains Brigadier Gov Mrs Lieutenant Sens Assoc. Developments
Ocean Capt gov. mrs. Mission Specialist sens. group Partners
Park Capt. Gov. Mrs. Prime Minister sergeant groupe Properties
Peninsula Captain Governor ms Prime minister sgt grupo Stores
Plains CEO Governors ms. Princess Sgt bros
Pond CFO Govs Mssrs prof Sgt. bros.
Province chairman Holiness Mssrs. prof. Sir bancorp
Road Chancellor Hon Officer Queen stg. bancorp.
Roads Chancellors Hon. officer Queens Undersecretaries sdn
Sea Chief Honorable officers rep Undersecretary sdn.
Shore Cmdr Honorable Petty Rep Vicar bhd
Straits col Inspector Premier rep. Vicars bnd.
Town col. Jr Premiers Rep. representative plc
Valley colonel Jr. Pres Repr Representative plc.s.a.

Comdr Judge Pres. Repr. Representatives sa
Comdr. Judges Prime president reps M.e.T.A.
Consul Junior Rev President Reps g.m.b.h.
COO King Rev. president reps. gmbh
Corporal Kings Lord Presidents Republican s.p.a.
Crpl Crpl. Crprl lt Lt c.a.

Table 8: Lists of prefixes and suffixes.

Coreference MD
MUC B3 CEAFe CoNLL LEA

R P F R P F R P F F R P F R P F
ACE

Stanford 45.0 81.2 57.9 36.6 34.8 35.7 57.0 13.9 22.4 38.6 29.5 25.1 27.1 69.3 39.9 50.6
GloVe 71.8 82.1 76.6 63.4 71.7 67.3 69.1 53.3 60.2 68.0 55.8 60.1 57.9 88.2 86.6 87.4
ELMo 76.1 83.3 79.5 67.2 74.2 70.5 71.9 60.1 65.5 71.8 59.8 63.7 61.7 90.9 89.9 90.4

SpanBERT-b 81.9 84.2 83.1 74.1 74.7 74.4 73.5 66.3 69.7 75.7 67.7 66.7 67.2 92.6 90.6 91.6
SpanBERT-l 84.0 86.9 85.4 77.5 79.6 78.5 76.6 69.2 72.7 78.9 71.9 72.3 72.1 93.1 91.5 92.3

OntoNotes
Stanford 70.2 79.0 74.3 57.7 69.8 63.2 55.1 63.6 59.1 65.5 54.0 66.0 59.4 75.4 85.4 80.1

GloVe 72.7 81.3 76.7 60.3 72.8 66.0 57.9 65.8 61.6 68.1 57.1 69.5 62.7 77.5 87.0 82.0
ELMo 79.5 81.4 80.5 69.4 72.2 70.8 67.2 68.2 67.7 73.0 66.4 69.1 67.7 84.2 86.0 85.1

SpanBERT-b 83.1 84.3 83.7 75.3 76.2 75.8 71.2 74.6 72.9 77.4 72.8 73.8 73.3 86.2 88.1 87.1
SpanBERT-l 84.8 85.8 85.3 77.9 78.3 78.1 74.2 76.4 75.3 79.6 75.7 76.2 75.9 87.6 88.9 88.2

KBP
Stanford 43.3 56.0 48.8 38.8 13.2 19.7 48.7 5.7 10.2 26.2 29.6 9.4 14.3 64.1 16.6 26.4

GloVe 70.5 72.1 71.3 66.1 66.2 66.1 69.4 53.2 60.3 65.9 57.2 54.6 55.9 86.9 78.3 82.4
ELMo 74.7 72.9 73.8 70.6 68.5 69.5 73.1 60.0 65.9 69.7 62.0 58.3 60.1 89.7 81.2 85.3

SpanBERT-b 78.1 73.3 75.6 74.5 67.7 70.9 73.4 62.4 67.5 71.3 66.0 57.9 61.6 91.1 81.9 86.3
SpanBERT-l 79.5 80.7 80.1 75.9 76.3 76.1 75.8 67.4 71.3 75.8 68.8 67.1 67.9 90.5 86.7 88.5

Table 9: Results of the resolvers according to different evaluation metrics on the three coreference datasets.


