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Abstract

The global market size of conversational assis-
tants (chatbots) is expected to grow to USD
9.4 billion by 2024, according to Marketsand-
Markets. Despite the wide use of chatbots,
leakage of personal information through chat-
bots poses serious privacy concerns for their
users. In this work, we propose to protect
personal information by warning users of de-
tected suspicious sentences generated by con-
versational assistants. The detection task is for-
mulated as an alignment optimization problem
and a new dataset PERSONA-LEAKAGE is
collected for evaluation. In this paper, we pro-
pose two novel constrained alignment models,
which consistently outperform baseline meth-
ods on PERSONA-LEAKAGE1. Moreover, we
conduct analysis on the behavior of recently
proposed personalized chit-chat dialogue sys-
tems. The empirical results show that those
systems suffer more from personal informa-
tion disclosure than the widely used Seq2Seq
model and the language model. In those cases,
a significant number of information leaking ut-
terances can be detected by our models with
high precision.

1 Introduction

According to Opus Research2, 4.5 billion dollars
will be invested in conversational assistants (chat-
bots) by 2021. Among diverse types of chatbots,
Google Duplex, first introduced at Google I/O
2018, represents the kind of AI personal assistants
(PAs) that act on behalf of people to perform sim-
ple tasks, such as making reservations at restaurants
and hair salons. In order to successfully complete
those tasks, PAs are granted the access to personal
information (PI) of their owners, such as number of

∗*Corresponding author
1The dataset and our model implementation is available at

https://github.com/xuqiongkai/PILD.
2https://www.opus.global/media/44137/

opus-q3-2018-report-eng.pdf

Figure 1: Given utterances (U) and personal informa-
tion descriptions (P) from a conversational assistant
(a), PILD module (b) detects risky utterances with cor-
responding personal information and sends a warning
(red arrow) to an authorized user (c). The authorized
user manually approve or reject the utterances. Then,
only the approved utterances (green arrow) are sent to
interlocutors (d) who could be authorized or malicious.

children, working hours, home address, and vaca-
tion plans. Thus, these PAs pose privacy concerns
when they communicate with real-life people, or
other bots in natural language.

Another major source of personal information
leakage is online social networks, which store a
huge amount of possibly sensitive information on
users and their interactions (Zhang et al., 2010).
However, a recent study shows that none of the pop-
ular social network platforms (Facebook, Wechat,
Google+, etc) have developed a perfectly non-leaky
privacy protection mechanism (Yu et al., 2018). In
addition, internet users (including a vast number of
children and teenagers) often show a phenomenon
called privacy paradox, which states that even users
with high level of privacy concerns do not always
take appropriate actions although those measures
are fairly easy to perform (Norberg et al., 2007).
As an unfortunate example, children’s privacy is
often unconsciously compromised by their parents’
online behaviour, such as online posting and mes-

https://github.com/xuqiongkai/PILD
https://www.opus.global/media/44137/opus-q3-2018-report-eng.pdf
https://www.opus.global/media/44137/opus-q3-2018-report-eng.pdf
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saging (Minkus et al., 2015).

An ideal privacy protection solution is not to stop
using PAs or discourage online socialization, but
to have the ability to control the dissemination of
personal information (Yu et al., 2018). Personal in-
formation can be dispersed through various types of
media. In this work, we focus on natural language
utterances in conversations articulated by PAs or
humans. The ways of controlling such textual infor-
mation vary significantly w.r.t. platforms, PAs, user
preferences, and social circles. Since there is no
universally applicable control strategy, we take the
first step towards privacy protection by designing
a Personal Information Leakage Detection module
(PILD) that warns users or alerts PAs whenever an
utterance is associated with personal information,
as illustrated in Figure 1. The warning module
gives authorized users the capability to control in-
formation leakage from the start. Then, it is up to
users and the design of PAs to decide how they deal
with utterances leaking personal information. PAs
will communicate with other interlocutors using
secure or approved utterances.

We formulate detection of utterances causing
personal information leakage as a text alignment
problem, which aims to link information leaking
utterances to the corresponding textual descriptions
of personal information. We consider personal in-
formation provided in text, because i) user profiles
on popular social network platforms include a sig-
nificant proportion of textual descriptions, and ii) it
is natural for users to share their information with
PAs in natural language. Figure 2 demonstrates an
example of aligning utterances in a dialogue with a
set of personal information descriptions. Those red
lines depict the ground-truth alignments between
utterances and personal information descriptions.
The true alignments are sparse as not all utterances
leak personal information, e.g., U1, U3 and U6.
Meanwhile, an utterance may be associated with
more than one descriptions of personal information,
e.g., U2 and U4, and vice versa.

In the absence of direct supervision signals, we
explore low annotation-cost solutions to this text
alignment problem by considering a weakly super-
vised setting. In this setting, we only know who
speaks what and what are the PI descriptions of
each interlocutor during training, without knowing
true alignments. The additional challenges are im-
posed by the complex relationships between utter-
ances and descriptions of PI, which could be sparse

Figure 2: The alignment (b) of an utterance set (a)
and a personal information description set (c) by a user.
The matched sentence-level utterance-PI pairs are high-
lighted using red lines.

alignment, and one-to-one, one-to-many, many-to-
one, or many-to-many mapping.

To address the aforementioned challenges, we
propose two models SHARP-MAX and SPARSE-
MAX by formulating the text alignment problem
as constrained optimization problems. The train-
ing procedure takes the form of contrastive learn-
ing (Mnih and Kavukcuoglu, 2013; Dai and Lin,
2017). Herein, we encourage aligning an utterance
with the descriptions of its interlocutor subject to
sparsity constraints, while penalizing its alignments
with those of other speakers. Thus, sentence-level
alignments are not employed during training.

The main contributions are the following:

• We propose to protect privacy in conversa-
tion using PILD. Due to the lack of datasets
for the new task, we construct a testing
dataset PERSONA-LEAKAGE by extending
the test set of the personalized dialogue cor-
pus PERSONA (Zhang et al., 2018) with align-
ment annotations through crowdsourcing.

• Under weakly supervised setting, we pro-
pose two novel alignment models SHARP-
MAX and SPARSE-MAX, which leverage
coarse grained alignment signals to de-
liver sparse solutions. Our experiments on
PERSONA-LEAKAGE show that our models
achieve superior performance than competi-
tive baselines.

• We empirically evaluated four repre-
sentative dialogue models as PAs on
PERSONA-LEAKAGE by letting them act
as one of the interlocutors in a dialogue.
We found that more advanced dialogue
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models are prone to leak higher proportion of
personal information of the interlocutors they
represent. Our PILD module works well on
recently proposed dialogue agents.

2 Alignment Models

In this section, we formally define the problem of
PI leakage detection as text alignment between ut-
terances and descriptions of PI in the weakly super-
vised setting, followed by presenting the architec-
ture shared by the two proposed alignment models
SPARSE-MAX and SHARP-MAX. The two models
differ in the sparsity regularization for alignments
during training. We then detail the training algo-
rithms as well as how to derive the regularizers.

2.1 Problem Statement

A dialogue between two interlocutors A and B is
composed of two sets of utterances UA and UB .
The corresponding persona profiles PA and PB

are two sets of PI descriptions. A personalized
dialogue dataset D = {〈Ui, Pi〉|i = 1, 2, · · · , N}
consists of 〈Ui, Pi〉 associated with the same inter-
locutor i in a conversation, where Ui = {ui,j |j =
1, 2, · · · , ni} and Pi = {pi,k|k = 1, 2, · · · ,mi}.
In the weakly supervised setting, a 〈Ui, Pi〉 from
the ‘same interlocutor’ provides a set-level training
signal for learning an alignment between the utter-
ance set and the PI description set. An alignment
is a set of links between an utterances set and an
description set. This can also be viewed as iden-
tifying the edges of a bipartite graph between the
two sets of vertices Ui and Pi. In the absence of
alignment annotation during training, we relax the
problem by learning alignment strength between
ui,j and pi,k as an association score ai,j,k, which
constitute an association matrix Ai ∈ Rni×mi for
each 〈Ui, Pi〉. Then, it is up to the system design of
a PA or the preference of an interlocutor to decide
if an association score indicates that pi,k is leaked
through ui,j . For example, one can check if ai,j,k
is above a pre-specified threshold.

2.2 Model Architecture

Recent advances in pre-trained language models,
such as BERT (Devlin et al., 2019), demonstrate
their strengths of encoding semantic information
into the produced text representations. Thus we
apply a pre-trained language model f(·) (BERT
in this work) to convert each utterance and each
PI description into its representation vectors. As a

widely accepted practice, we take the representa-
tion of the [CLS] token to represent an input text.
Then, we apply a projection matrix M to map those
vectors into a semantic space shared by utterances
and PI descriptions,

r
(u)
i,j = M · f(ui,j)

r
(p)
i,k = M · f(pi,k) (1)

The association score between an utterance ui,j and
a PI description pi,k is calculated by the cosine sim-
ilarity between their representations, where 〈·, ·〉
denotes the inner product of two vectors,

ai,j,k =
〈r(u)i,j , r

(p)
i,k 〉

‖r(u)i,j ‖‖r
(p)
i,k ‖

(2)

As we freeze the parameters of BERT in both train-
ing and testing, the only tunable parameters of this
model is the matrix M.

2.3 Model Training

Learning an association matrix between an utter-
ance set and a PI description set in the weakly
supervised setting imposes two challenges. First,
there is no ground-truth label to guide the align-
ment training. Second, an utterance may indicate
zero, one, or multiple PI descriptions, while a PI
description may also be associated with varying
number of utterances.

Loss. To address the first challenge, we observe
that i) a linked utterance-PI pair has high seman-
tic relatedness; ii) the utterances in a dialogue
are much more likely to correlate with the PI of
its interlocutors than that of other interlocutors.
The latter observation provides set-level alignment
signals for contrastive learning. In light of this,
we maximize the set-level aggregated associated
scores for utterance-PI pairs from the same inter-
locutors 〈Ui, Pi〉, while minimizing those scores
for the pairs from different interlocutors 〈Ui, P̂ 〉
and 〈Û , Pi〉.

The second challenge imposes sparsity over the
links in alignments. As it is difficult to enforce
representation based cosine similarity values to ap-
proach zero, we introduce an alignment weight
wi,j,k for each utterance-PI pair during training.
The weight matrix Wi = {wi,j,k}ni×mi puts a
focus on the more reliable utterance-PI pairs and
reduces the influence from irrelevant links. Then,
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the similarity between Ui and Pi is the weighted
sum of all elements in Ai.

sim(Ui, Pi) = Wi �Ai =
∑
j

∑
k

wi,j,kai,j,k

(3)
where � denotes hadamard product. High weights
in Wi will enhance the corresponding association
scores during training, while low weights or zeros
in Wi discourage participation of those correspond-
ing scores.

By putting two ideas together, the loss for the
ith training sample is defined as:

L(Ui, Pi) =

max{0, α− sim(Ui, Pi) + sim(Ui, P̂ )}+

max{0, α− sim(Ui, Pi) + sim(Û , Pi)}
(4)

where Û and P̂ are randomly sampled from D, α
is a hyper-parameter controlling the margin of the
loss. Then the loss on training set is the sum of all
example losses L(D) =

∑N
i=1 L(Ui, Pi).

Sparsity. The two models SHARP-MAX and
SPARSE-MAX differ in the regularizers used in
sim(Ui, Pi) for learning sparse weight matrices
Wi. The matrices Wi are expected to assign zeros
or low weights to irrelevant pairs, while assigning
high weights to the aligned pairs. They are formu-
lated as a constrained optimization problem of the
following form,

sim(Si, Pi) = max
Wi

{Wi �Ai + γH(Wi)}

s.t.
∑
j

∑
k

wi,j,k = 1,∀j, k;wi,j,k ∈ [0, 1]

(5)
where H(·) is a regularization term that determines
the sparsity of Wi, and γ ∈ R+ adjusts the degree
of regularization. If γ → 0, the solution of the
above problem is to assign the weight 1 to the max-
imal value in Ai. As we expect more than one links
in an alignment, the regularizer should encourage
more non-zero entries in Wi. If γ → +∞, the
solution is weights with equal values, which aggre-
gates Ai by averaging all association scores.

SHARP-MAX utilizes entropy as the regularizer
because uniform distribution achieves the maxi-
mum of entropy. In another words, this term en-
courages similar entries in Wi.
Proposition 1. Let γ ∈ R+

H(Wi) = −
∑
j,k

wi,j,k logwi,j,k

in Eq. (5), the solution of Wi is the following soft-
max function with temperature γ,

wi,j,k =
exp(ai,j,k/γ)∑

j

∑
k exp(ai,j,k/γ)

(6)

Proof Idea: The solution is derived by solving the
Lagrangian of Eq. (5):

L(Wi, λ) =
∑
j

∑
k

wi,j,kai,j,k

− γ
∑
j

∑
k

wi,j,k logwi,j,k

+ λ(1−
∑
j

∑
k

wi,j,k)

(7)

Note that, when the temperature with γ < 1 is
sufficiently small, the optimal Wi enlarges the dif-
ferences of the values in Ai (SHARP-MAX). If
γ = 1, we got the conventional softmax, which is
also referred to as SOFT-MAX in our experiments.

SPARSE-MAX considers the squared loss on
Wi as the regularizer, as it controls the sparsity
of the matrix by encouraging equal contributions.
Proposition 2. Let γ = 1,

H(Wi) = −
1

2

∑
j,k

w2
i,j,k

in Eq. (5), the solution of Wi is the sparsemax of
Ai (SPARSE-MAX) (Martins and Astudillo, 2016).

wi,j,k = [ai,j,k − τ(Ai)]+ (8)

where τ(·) is a dynamic threshold function and
[t]+ = max{0, t}.

3 Experimental Setup

3.1 PERSONA-LEAKAGE Dataset

In order to evaluate models under the weakly
supervised setting, we constructed a dataset
PERSONA-LEAKAGE as the test set by annotat-
ing the test set of the personalized dialogue cor-
pus PERSONA (Zhang et al., 2018). In that corpus,
each dialogue is conversed between two human
interlocutors, where each interlocutor is character-
ized by three to five descriptions of PI. A descrip-
tion of PI describes one aspect of that person, e.g.,
‘I am a handyman’. For each dialogue, we collected
link candidates by pairing each utterance of a in-
terlocutor to each description of his PI. As a result,
we constructed a set of link candidates for each
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interlocutor in a dialogue. For each link candidate,
we asked three annotators to judge if the utterance
indicates the corresponding PI description. A can-
didate was considered as aligned if at least two
annotators agreed on that decision. In total, we
annotated alignments for 968 dialogues, in which
there are 6,894 aligned utterance-PI pairs out of
67,601 candidate pairs.

Moreover, in order to understand the user per-
ception on sensitivity of PI, we collected a set of
all possible PI descriptions in test and dev set of
PERSONA, and asked five annotators to judge if
the descriptions were sensitive or not. A PI de-
scription is considered as sensitive if annotators
would suggest not to share it with strangers, given
that it describes their friends. We collected 306
descriptions (31.48% among all 972 descriptions)
with more than 2 sensitive annotations3.

3.2 Baselines
We apply the scoring function of two widely
used information retrieval (IR) methods TF-IDF
and BM25 (Manning et al., 2008; Robertson and
Zaragoza, 2009), and the most recent BERT-based
IR (Dai and Callan, 2019) to measure the associa-
tion between a PI description and an utterance.

We also consider the following competitive
alignment models proposed in recent works.

• MEAN averages the contribution of associa-
tion matrix, namely uniform weights ( 1

ni·mi
).

We consider MEAN as the solution of a spe-
cial case of our optimization problem with
γ → +∞.

• Avg-Max (Lee et al., 2018) uses the average
of the maximum similarity scores for all PI
descriptions (Avg-Max-P) or utterances (Avg-
Max-U).

• LSAP (Linear sum assignment problem)
(Hessel et al., 2019) optimizes hard align-
ments, where each row and column has less
or equal than one link, i.e. ∀j,

∑
k wi,j,k ≤

1;∀k,
∑

j wi,j,k ≤ 1;∀j, k, wi,j,k ∈ {0, 1}.

• OPT (Optimal Transport) (Kusner et al.,
2015) optimizes soft alignments, where
weights are in [0, 1] and sums of the weights
on each column and row are less or equal to
one, i.e. ∀j,

∑
k wi,j,k ≤ 1;∀k,

∑
j wi,j,k ≤

1;∀j, k, wi,j,k ∈ [0, 1].
3Appendix B describes more details about data collection.

The weights of all alignment models are normal-
ized to the sum of one.

3.3 Model Setting

In order to have a fair comparison, all alignment
models share the same deep learning architecture
which is composed of i) a pre-trained text rep-
resentation model (BERT), ii) a learnable linear
transformation layer, and iii) a weight computa-
tion module without back-propagation. The dimen-
sions of pre-trained and final text representations
are 768 and 256, respectively. We use Adam as
optimizer for all experiments that require training.
According to our preliminary experiments, we set
learning rate to 0.01, batch size to 128 and train
200 epochs for all experiments.4 We consider the
hyper-parameters α ∈ {0.0, 0.1, 0.2, 0.4, 0.8} for
all models and γ ∈ {1/4, 1/5, 1/6, 1/7, 1/8} for
Sharp-Max.

We evaluate the models by testing whether the
alignment links between sets are correctly retrieved
from all candidates links, following (Hessel et al.,
2019). Given the ground-truth alignment between
two sets, we evaluate the association matrix Ai, by
using precision at K (P@K)5, R-Precision (Rprec),
normalized discounted cumulative gain (NDCG)
and mean average precision (MAP)6. In addition,
we use Hellinger Distance (H-Dist) (Oosterhoff and
van Zwet, 2012) 1

N

∑
i
1
2

∑
j,k(
√
wi,j,k−

√
gi,j,k)

2

to quantify the matching rate of alignment weights
Wi with ground-truth alignment weights Gi =
{gi,j,k}ni×mi , where gi,j,k is normalized over j, k
to sum to one.

3.4 Collection of Human-Bot Dialogue

To evaluate the performance of our model on chat-
bots, we collect human-bot dialogues using SOTA
personalized chatbots and their competitors:

• P2 Bot (Liu et al., 2020) achieved SOTA per-
formance on automatic metrics by incorporat-
ing mutual persona perception. P2 Bot (w/
Persona) andP2 Bot (w/o Persona) are mod-
els with and without personal information as
input when generating responses.

• Lost-In-Conversation (Dinan et al., 2019)
4We have explored learning rate in R =

{0.1, 0.01, 0.001} and number of training epochs in
E = {25, 50, 100, 200, 400}.

5As the average and maximum number of alignment links
are 3.56 and 9 in our corpus, we choose K ∈ {1, 3, 5}.

6https://trec.nist.gov/trec_eval/

https://trec.nist.gov/trec_eval/
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Model P@1 P@3 P@5 Rprec NDCG MAP H-Dist

RANDOM 0.1124 0.1050 0.1099 0.1107 0.4349 0.1919 N/A
TF-IDF 0.6716 0.5434 0.4294 0.5088 0.7548 0.5832 N/A
BM25 0.6824 0.5364 0.4207 0.4988 0.7535 0.5785 N/A
BERT 0.5923 0.4149 0.3257 0.3762 0.6789 0.4677 N/A

MEAN (α = 0.1) 0.7573 0.6361 0.5230 0.6178 0.8331 0.7097 0.6801
Avg-Max-P (α = 0.4) 0.7856 0.6748 0.5545 0.6566 0.8561 0.7486 0.3797
Avg-Max-U (α = 0.2) 0.7785 0.6647 0.5452 0.6467 0.8493 0.7369 0.4680
OPT (α = 0.2) 0.7725 0.6605 0.5448 0.6434 0.8470 0.7340 0.4822
LSAP (α = 0.4) 0.7780 0.6670 0.5495 0.6522 0.8529 0.7434 0.4084

SOFT-MAX (α = 0.1) 0.7676 0.6554 0.5341 0.6350 0.8421 0.7247 0.6042
SHARP-MAX (α = 0.4, γ = 1/6) 0.7942 0.6763 0.5517 0.6618 0.8577 0.7499 0.3208
SPARSE-MAX (α = 0.4) 0.7970 0.6839 0.5597 0.6695 0.8612 0.7562 0.3032

Table 1: Experimental results of random guess (RANDOM), unsupervised IR models (TF-IDF, BM25, and BERT),
baseline alignment models (MEAN, Avg-Max-U, Avg-Max-P, OPT and LSAP), and our proposed models (Soft-
Max, Sparse-Max and Sharp-Max).

topped the human evaluations in ConvAI2 by
fine-tuning a pre-trained language model GPT.

• Seq2Seq-Attn (Zhang et al., 2018) is an
LSTM-based sequence-to-sequence model in-
corporateing persona via an attention module.

• Language Model (Zhang et al., 2018) is an
LSTM-based language module for dialogue.

For each chatbot, we provided interlocutor A’s
dialogue history as input and bot responded as in-
terlocutor B. We performed 60 dialogues and col-
lected 770 utterances for each chatbot. The re-
sponses by those chatbots are analyzed in three
dimensions.

• Personal Information Engagement (PIE) is
the proportion of the utterances leaking PI,

|Utterances have PI Leakage|/|All Utterances|

• Disclosed PI Sensitivity (DPS) is the ratio of
sensitive PI descriptions to the leaked ones,

|Sensitive Disclosed PI descriptions|
|Disclosed PI descriptions|

.

• Hits-at-K (Hits@K) is the percentile of the
leaked PI that can be retrieved from top K =
5/10 results using alignment models.

Perplexity (PPL) and uni-gram F1 are supple-
mentary metrics that reflect the performance of
bots (Liu et al., 2020).

4 Empirical Results and Analysis

In this section, we analyze our experimental re-
sults. Our experiments are designed to answer the
following research questions (RQs),

• RQ1: How well do our alignment models
perform, in comparison with the competitive
baselines?

• RQ2: Why do our alignment models outper-
form the baselines?

• RQ3: Do the SOTA chatbots disclose PI in
dialogues, and are they sensitive? Can we use
our alignment models to capture the leakage?

4.1 Model Comparison on
PERSONA-LEAKAGE

We compare our alignment models, SHARP-MAX

and SPARSE-MAX, with IR baselines and align-
ment baselines, in Table 17. The proposed model
consistently outperform baseline methods, indicat-
ing the effectiveness of our methods. H-dist is
strongly correlated to other metrics, because bet-
ter alignments lead to better H-dist. IR models
significantly outperform random guess, showing
that semantic information provided in utterances
and descriptions provides strong guidance on infer-
ence. Although the naive MEAN does not enforce
sparsity during training, it outperforms the unsu-
pervised IR models with a large margin, more than

7Appendix C provides more details about hyper-parameter
selection.
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(a) A case with sparse alignment.

(b) A case with dense alignment.

Figure 3: Comparison of weights assigned to candidates between utterances (U1-U8) and personal information
descriptions (P1-P5). (a) case 12 and (b) case 85 are test cases with sparse and dense alignments, respectively. The
alignment weights of Ground Truth and LSAP are all normalized to the sum of one for each case.

10% for all scores, showing that coarse grain signal
is effective for learning semantic relevant for the
PI leakage. Avg-Max, OPT and LSAP further out-
perform MEAN with a margin more than 2% for
most of the metrics, as they apply the sparsity con-
straints in order to focus on aligned utterances and
PI descriptions during training. Although these ap-
proaches set up competitive baselines on our task,
SHARP-MAX and SPARSE-MAX achieve consis-
tent improvement on all evaluation metrics. As
SPARSE-MAX cuts off the weights of irrelevant
pairs, it performs the best.

4.2 Analysis on Alignment Model

We visualize the association scores of each align-
ment model in Figure 3, in order to qualitatively
demonstrate the strengths of our models. LSAP at-
tempts to assign a fixed number of aligned pairs, i.e.
min{ni,mi}, which will lead to unavoidable false
positive alignment for sparse cases (U8-P5, U5-P3
and U4-P4, in Figure 3a LSAP) and false nega-
tive alignment for dense cases (U4-P1 and U4-P2,
in Figure 3b LSAP). Avg-Max-P and Avg-Max-
U also hold the similar drawback as the number
of aligned pairs is exact the number of columns
or rows, while does not depend on the cases. In

contrast, SPARSE-MAX and SHARP-MAX manage
to adapt the number of ‘aligned pairs’ (deep col-
ored), therefore achieve alignments closer to the
ground truth. For SHARP-MAX, we can adjust
the sharpness of the weight matrix using sharp-
ness parameter γ. Using sharper model with lower
γ manages to alleviate the influence of the pairs
with relatively low similarity scores. For SPARSE-
MAX, more deterministic alignments are achieved
by cutting off pairs with low association scores.
Although SHARP-MAX and SPARSE-MAX do not
differ much in terms of empirical performance, they
are driven by different theories of regularization.
The comparison between these two solutions pro-
posed by us helps draw a conclusion that the simi-
larity function should be designed to find a proper
degree of sparsity, which does not depend much on
a particular choice of regularizer.

4.3 Analysis on Personalized Chatbots

In this section, we analyze the engagement and
sensitivity of chatbots in human-bot conversations.
The experiments are designed to show the risk of
privacy leakage when using current chatbot models.
For all generated utterances, we retrieved top 10
relevant PI using SPARSE-MAX. Then we asked an-
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Model PIE DPS Hits@5/10 PPL ↓ F1 ↑

Language Model 02.13 06.45 29.03 / 32.26 51.61 13.59
Seq2Seq-Attn 04.39 06.54 18.64 / 22.03 39.54 15.52
P2 Bot (w/o Persona) 08.94 10.77 51.54 / 56.15 - 17.77
Lost-In-Conversation 14.68 09.39 79.34 / 82.63 - 16.83
P2 Bot (w/ Persona) 37.19 16.86 73.62 / 77.04 18.89 19.08

Human 43.83 27.75 55.07 / 66.52 - -

Table 2: Analysis on the responses of personalized chatbots and human interlocutors.

notators to select the leaked ones from the retrieved
PI descriptions. Three annotators are asked to in-
dicate if the utterances leak those PI descriptions.
The results are summarized in Table 2. Compared
with bots without PI as inputs, such as Language
Model and P2 Bot (w/o Persona), the bots with
PI as input, namely Lost-In-Conversation and P2

Bot (w/ Persona), tend to acquire higher PIE with
significantly higher magnitude. PIE ofP2 Bot even
approaches that score of human interlocutors. DPS
is correlated to PIE showing that bots with higher
PIE generally disclose higher portions of sensitive
PI. Although higher PIE and DPS for the chatbots
with PI as input is expected, there is also a signifi-
cant proportion of leakage for the bots without PI
as input, e.g., P2 Bot (w/o Persona). This raises
serious privacy concerns in future research on PAs.

Furthermore, Hit@K measures the ability of our
system for detecting PI leakage. As a warning
module, our model SPARSE-MAX manages to de-
tect most of the utterances leaking PI8. Our system
achieves around 80% of Hit@10 on the responses
generated by the two most recent and advanced
chatbots, Lost-In-Conversation and P2 Bot (w/
Persona).

5 Related Work

Recently, privacy and fairness started to attract
more and more attention from NLP community.
Sensitive information was removed from latent rep-
resentations via adversarial training (Li et al., 2018;
Elazar and Goldberg, 2018) and differential pri-
vacy (Fernandes et al., 2019), achieving fair deci-
sions. Privacy-aware text rewriting methods sug-
gested to generate new sentences with less sensitive
information (Xu et al., 2019a; Emmery et al., 2018;
Xu et al., 2019b; Strengers et al., 2020). Our work

8According to our preliminary experiments in Appendix D,
SPARSE-MAX achieves the best Hits on the whole test set of
PERSONA-LEAKAGE.

serves as a component that detects the sentences
requires rewriting. Another line of research aims
to identify mentions of pre-defined semantic cate-
gories indicating sensitive information in text (Mi-
crosoft; Bevendorff et al., 2019), such as bank ac-
count and phone number. In our setting, sensi-
tive information can be expressed in any syntactic
structures, including events conveyed in whole sen-
tences, such as “I have got less than 5 hours of
sleep each night for years” is associated with the
persona “I have sleep disorders for many years.”.
The setting of our work is more general, as we fo-
cus on open-domain personal information written
in natural language, which is not limited to men-
tions of fixed semantic categories in sentences or
sensitivity labels of sentences.

Our work places an emphasis on privacy con-
cerns in conversations (Huang et al., 2020; Ischen
et al., 2019; Gao et al., 2018; Tur et al., 2018;
Muthukrishnan et al., 2017). In recent research,
several works have attempted to improve the en-
gagement and diversity of chit-chat dialogue sys-
tem (Liu et al., 2020; Tigunova et al., 2019; Wolf
et al., 2019; Zhang et al., 2018) and goal-oriented
dialogue system (Luo et al., 2019; Zhang et al.,
2019). With the rapid development of personal-
ized dialogue systems, PILD module is expected to
address the privacy concerns (Ischen et al., 2019).
Welleck et al. (2019) improved the coherence and
consistency of a dialogue using Natural Language
Inference (NLI) (Bowman et al., 2015). Dialogue-
NLI dataset could be utilized to train retrieval mod-
els, however, it does not directly address the privacy
concerns. In contrast, our dataset i) considers all
possible leakage pairs, and ii) includes sensitivity
annotations of all PI descriptions.

Our problem setting was inspired by an image-
sentence alignment problem, given pairs of image
sets and documents (Hessel et al., 2019). Similar
problems were also explored in the context of align-
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ing image fragments with words (Lee et al., 2018;
Jiang et al., 2015). In this paper, we considered
utterances and PI descriptions from the same inter-
locutor as coarse-grained alignment signals, which
are in the same modality.

6 Conclusions and Future Work

We formulate protection of personal information
in conversations as a weakly supervised align-
ment between personal information and dialogue
utterances. To tackle this task, we proposed
two new alignment models and created a dataset
PERSONA-LEAKAGE for evaluation. Our experi-
mental results demonstrate the effectiveness of our
methods in comparison with the competitive base-
lines on that dataset. Further analysis on human-bot
dialogue performance demonstrated the potential
privacy risks with advanced personalized dialogue
techniques. This work is the first step towards fully
preventing leakage of privacy in text, which still
requires PAs or users to select and hide sensitive in-
formation. We hope this work and the dataset will
pave the way for the research on privacy leakage in
conversations. In the future, we will explore full-
fledged solutions to address the privacy concerns
of both humans and dialogue systems.
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A Malicious Attack on Siri

We conducted an experiment using Siri installed in
iPad pro, with iPadOS version 13.3.1 released in
January 28 2020. An unauthorized user manage to
acquire the owner’s personal information by asking
Siri questions. The responses by Siri are demon-
strated in Figure 4. User name and home address of
the facility devide owner is disclosed to the attacker,
when asked ‘Where do I live?’. Name, partner and
home address of the owner’s parents are unveiled,
when asked ‘Who is my father?’. Although Siri
represented the answer in form of contact cards,
we argue that such risky reactions by personal as-
sistants could appear in natural language responses
as well.

B Details for Data Collection

Starting from test set of PERSONA, our dataset ba-
sically tops up two annotations on test sets, align-
ment annotations on utterance-persona pairs and
sensitivity annotations on all personal information
statements. For both parts, we use Amazon Me-
chanical Turk (MTurk)9 for crowdsourcing. We
only accept results from the qualified annotators
that i) have more than 90% HIT acceptance rate,
ii) have finished more than 100 HITs, iii) locate
in America. For further quality control, we reject
2.1% and 2.0% unreliable HITs for alignment an-
notation and sensitivity annotation respectively by
automatically rejecting HITs that are i) not com-
pleted or ii) inconsistent in answers.

For alignment annotations, annotators were in-
structed to “find the personal descriptions leaked
in a conversation” by “select if the sentence indi-
cates any of the provided personal descriptions or
none of them”, see task screenshot in Figure 5.

For sensitivity annotations, annotators were in-
structed to “give advice to a friend who belongs
to a vulnerable group”, see task screenshot in Fig-
ure 6. Sensitive information is defined as the one
that “your friend rather not let strangers know”.

• Sensitive: In most cases, your friend would
rather not to tell a stranger such information.
Otherwise it will do more harm than good if
the information is utilized by malicious peo-
ple.

• Non-sensitive: In most cases, it is safe for
your friend to share such information with
strangers.

9https://requester.mturk.com/

(a) Malicious Attack 1: ‘Where do I live?’.

(b) Malicious Attack 2: ‘Who is my father?’.

Figure 4: Screenshots of Siri’s responses to an unautho-
rized user, when it is inquired ‘Where do I live?’ and

‘Who is my father?’. The sensitive personal information
is blurred by mosaics.
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Figure 5: Task screenshot for utterance-persona alignment annotation.

Figure 6: Task screenshot for personal information sensitivity annotation.

C Hyper-parameter Selection

We provide details about the hyper-parameter se-
lection for baseline alignment models and our mod-
els in Table 3. More details about Sharp-Max is
demonstrated in Table 4.

D Hits on human-human dialogue

We compare alignment models on Dialogue60, a
subset used in our paper, and DialogueTest, the
whole test set of PERSONA-LEAKAGE. Overall,
Sparse-Max achieves the best performance.
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Model P@1 P@3 P@5 Rprec NDCG MAP

MEAN (α = 0.0) 0.7329 0.5984 0.4780 0.5632 0.8014 0.6554
MEAN (α = 0.1)‡ 0.7573 0.6361 0.5230 0.6178 0.8331 0.7097
MEAN (α = 0.2) 0.7096 0.5963 0.4898 0.5653 0.8029 0.6618
MEAN (α = 0.4) 0.6080 0.5009 0.4125 0.4670 0.7395 0.5643
MEAN (α = 0.8) 0.4973 0.4106 0.3501 0.3858 0.6797 0.4817

Avg-Max-P (α = 0.1) 0.7769 0.6620 0.5370 0.6440 0.8470 0.7323
Avg-Max-P (α = 0.2) 0.7823 0.6672 0.5483 0.6550 0.8526 0.7426
Avg-Max-P (α = 0.4)‡ 0.7856 0.6748 0.5545 0.6566 0.8561 0.7486
Avg-Max-P (α = 0.8) 0.7758 0.6661 0.5505 0.6498 0.8528 0.7435

Avg-Max-U (α = 0.1) 0.7883 0.6632 0.5356 0.6411 0.8471 0.7314
Avg-Max-U (α = 0.2)‡ 0.7785 0.6647 0.5452 0.6467 0.8493 0.7369
Avg-Max-U (α = 0.4) 0.7617 0.6513 0.5383 0.6341 0.8425 0.7262
Avg-Max-U (α = 0.8) 0.7416 0.6377 0.5295 0.6204 0.8342 0.7141

OPT (α = 0.1) 0.7714 0.6632 0.5369 0.6400 0.8433 0.7272
OPT (α = 0.2)‡ 0.7725 0.6605 0.5448 0.6434 0.8470 0.7340
OPT (α = 0.4) 0.7649 0.6495 0.5387 0.6334 0.8420 0.7256
OPT (α = 0.8) 0.7541 0.6412 0.5315 0.6261 0.8377 0.7188

LSAP (α = 0.1) 0.7720 0.6650 0.5392 0.6403 0.8446 0.7294
LSAP (α = 0.2) 0.7823 0.6667 0.5456 0.6515 0.8512 0.7400
LSAP (α = 0.4)‡ 0.7780 0.6670 0.5495 0.6522 0.8529 0.7434
LSAP (α = 0.8) 0.7709 0.6612 0.5468 0.6487 0.8506 0.7401

Soft-Max (α = 0.0) 0.7394 0.5921 0.4818 0.5661 0.8034 0.6581
Soft-Max (α = 0.1)‡ 0.7676 0.6554 0.5341 0.6350 0.8421 0.7247
Soft-Max (α = 0.2) 0.7421 0.6279 0.5148 0.6032 0.8256 0.6977

Sharp-Max (α = 0.2, γ = 1/6) 0.7758 0.6683 0.5407 0.6489 0.8490 0.7361
Sharp-Max (α = 0.4, γ = 1/6)‡ 0.7942 0.6763 0.5517 0.6618 0.8577 0.7499
Sharp-Max (α = 0.8, γ = 1/6) 0.7725 0.6554 0.5398 0.6384 0.8448 0.7291

Sparse-Max (α = 0.2) 0.7763 0.6735 0.5456 0.6559 0.8512 0.7402
Sparse-Max (α = 0.4)‡ 0.7970 0.6839 0.5597 0.6695 0.8612 0.7562
Sparse-Max (α = 0.8) 0.7828 0.6690 0.5497 0.6592 0.8537 0.7450

Table 3: Hyper-parameter Selection for MEAN, Avg-Max-P, Avg-Max-U, OPT, LSAP, Soft-Max, Sparse-Max and
Sharp-Max, with various α. Best models denoted by ‡ are reported in our paper.

Model P@1 P@3 P@5 Rprec NDCG MAP

Sharp-Max (α = 0.2, γ = 1/4) 0.7785 0.6627 0.5410 0.6438 0.8487 0.7351
Sharp-Max (α = 0.2, γ = 1/5) 0.7736 0.6636 0.5408 0.6460 0.8482 0.7345
Sharp-Max (α = 0.2, γ = 1/6) 0.7758 0.6683 0.5407 0.6489 0.8490 0.7361
Sharp-Max (α = 0.2, γ = 1/7) 0.7731 0.6672 0.5406 0.6482 0.8474 0.7338
Sharp-Max (α = 0.2, γ = 1/8) 0.7687 0.6678 0.5379 0.6469 0.8460 0.7318

Sharp-Max (α = 0.4, γ = 1/4) 0.7839 0.6672 0.5450 0.6518 0.8521 0.7409
Sharp-Max (α = 0.4, γ = 1/5) 0.7883 0.6755 0.5504 0.6623 0.8563 0.7477
Sharp-Max (α = 0.4, γ = 1/6) 0.7942 0.6763 0.5517 0.6618 0.8577 0.7499
Sharp-Max (α = 0.4, γ = 1/7) 0.7926 0.6786 0.5510 0.6614 0.8569 0.7487
Sharp-Max (α = 0.4, γ = 1/8) 0.7872 0.6793 0.5515 0.6644 0.8561 0.7482

Sharp-Max (α = 0.8, γ = 1/4) 0.7470 0.6431 0.5263 0.6190 0.8327 0.7106
Sharp-Max (α = 0.8, γ = 1/5) 0.7666 0.6498 0.5331 0.6282 0.8407 0.7224
Sharp-Max (α = 0.8, γ = 1/6) 0.7725 0.6554 0.5398 0.6384 0.8448 0.7291
Sharp-Max (α = 0.8, γ = 1/7) 0.7812 0.6596 0.5416 0.6473 0.8481 0.7338
Sharp-Max (α = 0.8, γ = 1/8) 0.7818 0.6661 0.5423 0.6497 0.8489 0.7355

Table 4: Hyper-parameter Selection for Sharp-Max, with α ∈ {0.2, 0.4, 0.8} and γ ∈ {4, 5, 6, 7, 8}.
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Model Dialogue60 DialoguesTest
Hits@5 Hits@10 Hits@5 Hits@10

MEAN (α = 0.1) 46.70 57.71 48.25 57.47
Avg-Max-P (α = 0.4) 56.39 65.64 56.39 65.09
Avg-Max-U (α = 0.2) 55.51 66.08 55.87 64.75
OPT (α = 0.2) 52.86 61.67 54.95 63.55
LSAP (α = 0.4) 53.74 63.44 55.33 64.03
Sharp-Max (α = 0.4, γ = 1/6) 51.54 59.91 56.39 65.26
Sparse-Max (α = 0.4) 55.07 66.52 59.91 68.24

Table 5: Comparison of our alignment models with baselines on human-human conversations using Hits@5/10. Di-
alogue60 is the subset used in our paper. DialoguesTest contains all dialogues in test set of PERSONA-LEAKAGE.
Sparse-Max results on Dialogue60 is reported in our paper.


