
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 684–695,
November 16–20, 2020. c©2020 Association for Computational Linguistics

684

Connecting the Dots: Event Graph Schema Induction
with Path Language Modeling

Manling Li1, Qi Zeng1, Ying Lin1, Kyunghyun Cho2, Heng Ji1,
Jonathan May3, Nathanael Chambers4, Clare Voss5

1University of Illinois at Urbana-Champaign
2New York University 3University of Southern California

4US Naval Academy 5US Army Research Laboratory
{manling2,qizeng2,yinglin8,hengji}@illinois.edu,

kyunghyun.cho@nyu.edu, jonmay@isi.edu,
nchamber@usna.edu, clare.r.voss.civ@mail.mil

Abstract

Event schemas can guide our understanding
and ability to make predictions with respect
to what might happen next. We propose a
new Event Graph Schema, where two event
types are connected through multiple paths
involving entities that fill important roles in
a coherent story. We then introduce Path
Language Model, an auto-regressive language
model trained on event-event paths, and se-
lect salient and coherent paths to probabilisti-
cally construct these graph schemas. We de-
sign two evaluation metrics, instance cover-
age and instance coherence, to evaluate the
quality of graph schema induction, by check-
ing when coherent event instances are covered
by the schema graph. Intrinsic evaluations
show that our approach is highly effective at
inducing salient and coherent schemas. Ex-
trinsic evaluations show the induced schema
repository provides significant improvement
to downstream end-to-end Information Extrac-
tion over a state-of-the-art joint neural extrac-
tion model, when used as additional global fea-
tures to unfold instance graphs.1

1 Introduction

Existing approaches to automated event extraction
retain the overly simplistic assumption that events
are atomic occurrences. Understanding events re-
quires knowledge in the form of a repository of ab-
stracted event schemas (complex event templates).
Scripts (Schank and Abelson, 1977) encode fre-
quently recurring event sequences, where events
are ordered by temporal relation (Chambers and Ju-
rafsky, 2009), causal relation (Mostafazadeh et al.,
2016b), or narrative order (Jans et al., 2012). Event
schemas have become increasingly important for
natural language understanding tasks such as story

1Our code and data are publicly available for research pur-
pose at http://blender.cs.illinois.edu/software/
pathlm.

ending prediction (Mostafazadeh et al., 2016a) and
reading comprehension (Kočiský et al., 2018; Os-
termann et al., 2019).

Previous schema induction methods mostly ig-
nore uncertainty, re-occurring events and multiple
hypotheses, with limited attention to capture com-
plex relations among events, other than temporal or
causal relations. Temporal relations exist between
almost all events, even those that are not semanti-
cally related; while research in identifying causal
relations has been hobbled by low inter-annotator
agreement (Hong et al., 2016).

In this paper, we hypothesize that two events
are connected when their entity arguments are co-
referential or semantically related. For example, in
Figure 1, (a) and (b) refer to very different event
instances, but they both illustrate a typical scenario
where a group of people moved from one place to
another and then attacked the destination. From
many such event instance pairs, we can induce
multiple paths connecting a movement event to
a related attack event: the person being moved
became the attacker, and the weapon or vehicle
being moved became the instrument of the attack.
Low-level primitive components of event schemas
are abundant, and can be part of multiple, sparsely
occurring, higher-level graph schemas. We thus
propose a new schema representation, Event Graph
Schema, where two event types are connected by
such paths containing entity-entity relations. Each
node represents an entity type or event type, and
each edge represents an entity-entity relation type
or the argument role of an entity played in an event.

However, between two event types, there may
also be noisy paths that should be excluded from
graph schemas. We define the following criteria to
select good paths in a graph schema: (1). Salience:
A good path should appear frequently between two
event types; (2). Coherence: Multiple paths be-
tween the same pair of event types should tell a

http://blender.cs.illinois.edu/software/pathlm
http://blender.cs.illinois.edu/software/pathlm


685

Event Instance Graphs Path Language Model

PERTransport Attackartifact attackerTransport GPE PERagent affliation Attackattacker

Transport GPE
origin WEAartifact instrument

Attack Transport WEA
artifact instrument

Attack

Transport FAC AttackGPE
placepart-

whole
destination . . .

Transport FAC GPE
destination part-

whole

AttackPER
located_in target

Graph Schema Induction

AttackTransport

FAC

art
ifa
ct

attacker

instrumentWEA
LOC

origindestination

destination part-

whole

lo
ca
te
d_
in

GPE place

PER

ORG

targetgeneralaffiliation
attacker

part-
whole

targ
etpart-whole

artifact

FAC

PER
troops

Attack
attackdeploy

Transport

destination

Sevastopol
Ukraine
GPE

GPE
Russia

agent

origin

part-whole
instrument

artifact

affiliation

attacker
artif

act

target

(a)

Attack
hit

PER
protesters

PER
police

GPE
Kyiv

FAC

Square
Maidan

part-
whole

located_in target

place

WEA
stone

GPE
Ukraine

Transport
carry

destination

attacker

loc
ate
d_
in

artifact instrument
part-
whole

af
fil
ia
tio
n

(b) 

part-
whole

WEA
tank

Figure 1: The framework of event graph schema induction. Given a news article, we construct an instance graph
for every two event instances from information extraction (IE) results. In this example, instance graph (a) tells
the story about Russia deploying troops to attack Ukraine using tanks from Russia; instance graph (b) is about
Ukrainian protesters hit police using stones that are being carried to Maidan Square. We learn a path language
model to select salient and coherent paths between two event types and merge them into a graph schema. The
graph schema between ATTACK and TRANSPORT is an example output containing the top 20% ranked paths.

coherent story, namely they should co-occur fre-
quently in the same discourse (e.g., the same docu-
ment). Table 1 shows some examples of good paths
and bad paths.

As the first attempt to extract such schemas, we
propose a path language model to select paths
which clearly indicate how two events are con-
nected through their shared entity arguments or
the entity-entity relations between their arguments.
For example, in Figure 1 (b), Maidan Square and
Ukraine connect events TRANSPORT and ATTACK

through the path TRANSPORT
DESTINATION−−−−−−−−→ FAC

PART-WHOLE−−−−−−−→ GPE PLACE−1

−−−−−→ ATTACK. We train the
path language model on two tasks: learning an
auto-regressive language model (Ponte and Croft,
1998; Dai and Le, 2015; Peters et al., 2018; Rad-
ford et al.; Yang et al., 2019) to predict an edge or
a node, given previous edges and nodes in a path,
and a neighboring path classification task to predict
how likely two paths co-occur. The path language
model is trained from all the paths between two
event instances from the same document, based on
the assumption that events from the same document
(especially news document) tell a coherent story.

We propose two intrinsic evaluation metrics, in-
stance coverage and instance coherence, to assess
when event instance graphs are covered by each

graph schema, and when different schemas appear
in the same document. Intrinsic evaluation on held-
out documents demonstrates that our approach can
produce highly salient and coherent schemas.

Such event graph schemas can also be exploited
to enhance the performance of Information Extrac-
tion (IE) tasks, such as entity extraction, relation
extraction, event extraction and argument role label-
ing, because most of the existing methods ignore
such inter-event dependencies. For example, from
the following sentence “Following the trail of Mo-
hammed A. Salameh, the first suspect arrested in
the bombing, investigators discovered a jumble of
chemicals, chemistry implements and detonating
materials...”, the state-of-the-art IE system (Lin
et al., 2020) successfully extracts the ARRESTJAIL

event but fails to extract the INVESTIGATECRIME

triggered by “discovered” and its DEFENDANT ar-
gument “Mohammed A. Salameh”. Event graph
scehmas can inform the model that a person who
is arrested was usually investigated, our IE system
can fix this missing error. Therefore we also con-
duct extrinsic evaluations and show the effective-
ness of the induced schema repository in enhancing
downstream end-to-end IE tasks.

In summary, we make the following novel con-
tributions:



686

• A novel semantic schema induction frame-
work for the new event schema representation,
Event Graph Schema, that encodes rich event
structures and event-event connections, and
two new evaluation metrics to assess graph
schemas for coverage and coherence.

• A Path Language Model to select salient and
coherent event-event paths and construct an
event graph schema repository that is proba-
bilistic and semantically coherent.

• The first work to show how to apply event
schema to enhance end-to-end IE.

2 Problem Formulation

Given an input document, we extract instances of
entities, relations, and events. The type set of enti-
ties and events is Φ, and the type set of entity-entity
relations and event argument roles is Ψ. For every
two event instances, we construct an event instance
graph g = (V,E, ϕ) ∈ G with all paths connecting
the two, as in Figure 1 (a) and (b). V and E are the
node and edge sets, and ϕ : {V,E} → {Φ,Ψ} is a
mapping function to obtain the type of each node or
edge. Each node vi = 〈wi, ϕ(vi)〉 ∈ V represents
an entity or an event with text mention wi, and
ϕ(vi) ∈ Φ denotes its node type. Each set of coref-
erential entities or events is mapped to one single
node. Each edge eij = 〈vi, ϕ(eij), vj〉 ∈ E rep-
resents an event-argument role or an entity-entity
relation, where i and j denote the involved nodes.
ϕ(eij) ∈ Ψ indicates the edge type. Figure 1 shows
two example instance graphs.

Event graph schema induction aims to generate
a set of recurring graph schemas S from instance
graphs G. For every event type pair, we induce
an event graph schema s = (U,H) ∈ S, where
U and H are the node and edge sets. Each node
ui = 〈φi〉 ∈ U is a node type φi ∈ Φ in instance
graphs G, and each edge hij = 〈φi, ψij , φj〉 ∈ H
represents an edge type ψij ∈ Ψ in instance graphs
G, where φi and φj denote the involved node types.
Figure 1 shows an example of an induced graph
schema between TRANSPORT and ATTACK.

3 Path Language Model based Graph
Schema Induction

3.1 Overview
As shown in Table 1, a graph schema for two event
types consists of salient and coherent paths be-
tween them. A salient path reveals knowledge of

recurring event-event connection patterns. For ex-
ample, the frequent path in Table 1 shows that the
attacker is a member of the government conduct-
ing a deployment, which repeatedly appears in the
story about attackers sending weapons and people
to attack a target place. However, the attacker is
unlikely to be affiliated with a target place, so the
infrequent path in Table 1 should be excluded from
the schema.

In addition, a good path is semantically coherent.
For example, the coherent path in Table 1 shows
that the origin of transportation is a subarea of the
attacker’s country, which captures the hierarchical
part-whole relation between two places. However,
in the bad path example, a person is affiliated with
both the origin and destination of the transportation,
which is a weakly coherent situation.

Furthermore, multiple paths in a good schema
should be semantically consistent, namely they
should co-occur frequently in the same scenario.
For example, in Table 1, the destination of trans-
portation is the attack’s target, and meanwhile, is
the location of the transported people. The co-
occurrence of these two paths represents a repeti-
tive pattern to connect TRANSPORT and ATTACK.
However, the incoherent example in Table 1 indi-
cates that the attack place is both the destination
and the origin of the transportation, where two
paths rarely co-occur.

To induce such salient and coherent graph
schemas, we start by applying Information Extrac-
tion (IE) to construct instance graphs between event
instances in each document (Section 3.2). We con-
sider a path sequence as a text sequence, and learn
an auto-regressive path language model to score
each path (Section 3.3). To capture the coherence
between paths, we learn a neighbor path classifier
to predict whether two paths co-occur (Section 3.4).
The path language model is trained jointly on these
two tasks (Section 3.5), which enables us to score
and rank paths between event type pairs, and merge
salient and coherent paths into graph schemas (Sec-
tion 3.6).

3.2 Instance Graph Construction

Starting with entities, entity-entity relations, events
and their arguments extracted from an input doc-
ument by IE systems or manual annotation, we
construct an event instance graph g for two event
instances v and v′, that includes all instance paths



687

Criteria Examples Frequency

Single
Path

Salience High TRANSPORT
AGENT−−−−→ GPE AFFILIATION−1

−−−−−−−−→ PER ATTACKER−1

−−−−−−−→ ATTACK 31

Low TRANSPORT
DESTINATION−−−−−−−→ GPE AFFILIATION−1

−−−−−−−−→ PER ATTACKER−1

−−−−−−−→ ATTACK 2

Semantic
Coherence

High TRANSPORT
ORIGIN−−−−→ FAC PART-WHOLE−−−−−−−→ LOC PART-WHOLE−−−−−−−→ GPE AFFILIATION−1

−−−−−−−−→
PER ATTACKER−1

−−−−−−−→ ATTACK

9

Low TRANSPORT
AGENT−−−−→ GPE AFFILIATION−1

−−−−−−−−→ PER AFFILIATION−−−−−−→ GPE RESIDENT−1

−−−−−−−→
PER TARGET−1

−−−−−−→ ATTACK

24

Multiple
Paths

Semantic
Consistency

High TRANSPORT
DESTINATION−−−−−−−→ GPE PLACE−1

−−−−−→ ATTACK 20
TRANSPORT

ARTIFACT−−−−−→ PER LOCATED IN−−−−−−→ GPE PLACE−1

−−−−−→ ATTACK

Low TRANSPORT
DESTINATION−−−−−−−→ GPE PLACE−1

−−−−−→ ATTACK 0
TRANSPORT

ORIGIN−−−−→ GPE PLACE−1

−−−−−→ ATTACK

Table 1: The criteria of path ranking to construct event schema graph. Frequency is computed based on ACE 2005
annotations. We use ‘−1’ to indicate the reversed edge direction.

between them. Each instance path

pI =
[
v, e0;1, v1, . . . , en−1;n, v

′]
is a sequence of nodes v, v1,..., v′∈V and edges
e0;1,..., en−1;n∈E, such as the instance path
attack INSTRUMENT−−−−−−−→ tank ARTIFACT−−−−−→ Russia AGENT−1

−−−−−→ deploy

in Figure 1 (a). The node instances in each path are
distinct to avoid cycles. An event-event path is a
sequence of types of nodes and edges,

p =
[
ϕ(v), ϕ(e0;1), ϕ(v1), . . . , ϕ(en−1;n), ϕ(v′)

]
.

For example, the path abstracted from the instance
path above is ATTACK

INSTRUMENT−−−−−−−→ WEA ARTIFACT−−−−−→

GPE AGENT−1

−−−−−→ TRANSPORT . We consider paths in
both directions, namely that reversed paths are
valid.

3.3 Autoregressive Path Language Model
To score and select salient and semantically co-
herent path sequences, we take a language mod-
eling approach, inspired by node representation
learning (Grover and Leskovec, 2016; Goikoetxea
et al., 2015) using language model over paths.
Autoregressive language model (Ponte and Croft,
1998; Dai and Le, 2015; Peters et al., 2018; Rad-
ford et al.; Yang et al., 2019) learns the prob-
ability of text sequences as the probability dis-
tribution of each word, given its context factor-
izing the likelihood of prior words into a for-
ward product or, for context in the other direc-
tion, a backward product. Similarly, for a path
instance pI, we estimate the probability distribu-
tion of a node type ϕ(vi) (or edge type ϕ(ej;j+1)),

given the sequence of previously observed nodes
and edges [ϕ(v), ϕ(e0;1), ϕ(v1), . . . , ϕ(ei−1;i)],
(or [ϕ(v), ϕ(e0;1), ϕ(v1), . . . , ϕ(vi)]), i.e.,

LLM =
∑
pI

[ ∑
vi∈pI

logP (ϕ(vi)|ϕ(v), ...,ϕ(ei−1;i))

+
∑

ej;j+1∈pI
logP (ϕ(ej;j+1)|ϕ(v),ϕ(e0;1), ...,ϕ(vi))

]
.

Following (Yang et al., 2019), we apply the Trans-
former (Vaswani et al., 2017) to learn the probabil-
ity distribution, with permutation operation (Yang
et al., 2019) to capture bidirectional contexts. Un-
like in text sequences, we have nodes and edges
that alternate within path sequences. As shown in
Figure 2, to distinguish nodes and edges, we add
type embedding ET = [1, 2, 1, . . . , 2, 1] into the
token representation, where 1 stands for nodes, 2
for edges, and 0 for special tokens such as [CLS].

We hypothesize that event instances from the
same discourse (e.g., a news document) describe
a coherent story, and so we use the paths between
them as training paths.

3.4 Neighbor Path Classification

To capture the consistency between paths, we train
a binary neighbor path classifier to learn the oc-
currence probability of two paths. For each path
pi ∈ P〈v,v′〉 between two event instances v and v′,
we obtain its neighbor path set as its co-occuring
paths between the same event instances v and v′,

Npi = {pj |pj ∈ P〈v,v′〉, v, v′ ∈ V }.



688

Attack attacker [SEP]GPE

Path A:
Attack	-	attacker	-	GPE	-	agent	-1	-	Transport

attacker GPE [CLS]agent-1

Neighbor 
Path 
Classifier

Auto-
regressive
Path
Language
Model

1 = neighbor
0 = not neighbor

Word
Position
Segment
Element

0 0 0
1 2 1

1 2 3
agent-1

Transport

0
2

4
Transport

[SEP]

0
1

5
[SEP] Attack instrument WEA artifact GPE agent-1

Path B:    
Attack	-	instrument	-	WEA	-	artifact	-	GPE	-	agent	-1	-	Transport

Transport

Attack instrument WEA artifact GPE agent-1 Transport [SEP]

1 1 1 1 1 1 1 1
0 1 2 1 2 1 2 1

6 7 8 9 10 11 12 13 14
1
0

Figure 2: Autoregressive path language model with neighbor path classification.

We sample negative neighbor paths from paths that
appear between the same event types ϕ(v) and
ϕ(v′), but never occur with pi in the corpus.

N ′pi = {pj |pj ∈ P〈ϕ(v),ϕ(v′)〉, pj /∈ Npi}.

We also swap each path pair to improve the con-
sistency of the neighbor path classification. The
neighbor path classifier (top of Figure 2) is a linear
layer with the classification token x[CLS] as input,

P (pj ∈ Npi) = sigmoid
(
Wx[CLS] + b

)
.

We balance the positive and negative path pairs
during training, and optimize cross-entropy loss,

LNP =
∑
pi

[ ∑
pj∈Npi

logP (pj ∈ Npi)

+
∑

pj∈N ′pi

log(1− P (pj ∈ Npi))
]
.

3.5 Joint Training
We jointly optimize autoregressive language model
loss and neighbor path classifier loss,

L = LLM + λLNP .

3.6 Graph Schema Construction
Given two event types φ and φ′, we construct
a graph schema s by merging the top k percent
ranked paths. Paths in P〈φ,φ′〉 are ranked in terms
of a score function f(p),

f(pi) = fLM(pi) + αfNP(pi),

where fLM(p) captures salience and coherence of
a single path,

fLM(pi) = logP (
[
φ, ψ0;1, φ1, ψ1;2, ..., φ

′]),
and where fNP(p) scores a path pi by its average
probability of co-occuring with other paths pj ∈
P〈φ,φ′〉 between the given event types φ and φ′,

fNP(pi) =
1

|P〈φ,φ′〉|
∑

pj∈P〈φ,φ′〉

logP (pj ∈ Npi).

We merge instance paths into a graph schema s by
mapping nodes of the same type into a single node.
We allow some self-loops in the graph, such as
GPE PART-WHOLE−−−−−−−→ GPE. Each path in the schema
has a probability,

P (pi) =
exp(f(pi))∑
pj∈s exp(f(pj))

.

Each edge and node is assigned a salience score by
aggregating the scores of paths passing through it,

f(ψi;j) =
∑

p∈{p|ψi;j∈p,p∈s}

P (p), f(φi) =
∑

p∈{p|φi∈p,p∈s}

P (p).

4 Evaluation Benchmark

4.1 Dataset
We use Automatic Content Extraction (ACE) 2005
dataset2, the widely used dataset with annotated

2https://www.ldc.upenn.edu/collaborations/
past-projects/ace

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace


689

instances of 7 entity types, 6 relation types, 33
event types, and 22 argument roles. We follow
our recent work on ACE IE (Lin et al., 2020) to
split the data. We consider the training set as his-
torical data to train the LM, and the test set as
our target data to induce schema for target scenar-
ios. The instance graphs of the target data set are
constructed from manual annotations. For histori-
cal data, we construct event instance graphs from
both manual annotations (Historicalann) and system
extraction results (Historicalsys) from the state-of-
the-art IE model (Lin et al., 2020). We perform
cross-document entity coreference resolution by
applying an entity linker (Pan et al., 2017) for both
annotated and system generated instance graphs.
Table 2 shows the data statistics.

Split #Docs #Entities #Rels #Events #Args

Historicalann 529 47,525 7,152 4,419 7,888
Historicalsys 529 48,664 7,018 4,426 6,614
Validation 40 3,422 728 468 938

Target 30 3,673 802 424 897

Table 2: Data statistics.

4.2 Instance Coverage

A salient schema can serve as a skeleton to recover
instance graphs. Therefore, we use each graph
schema s ∈ S to match back to each ground-truth
instance graph g ∈ G and evaluate their intersection
g ∩ s in terms of Precision and Recall.

Intersection is obtained by searching instance
graphs with each graph schema as a query. Since
instance graphs can be regarded as partially in-
stantiated graph schema, we employ the substruc-
tures of the schema graph, i.e., paths of different
lengths, as queries. For example, a path of length
l = 3 is a triple in graph schema 〈φi, ψij , φj〉 ∈ s.
We consider an instance triple 〈vm, emn, vn〉 ∈ g
matched if instance types match, i.e., ϕ(vm)=φi,
ϕ(emn)=ψij , ϕ(vn)=φj . Let | · |I denote the num-
ber of instance substructures matched, and | · |S is
the number of schema substructures matched, i.e.,

|g ∩ s|I =
∑

〈φi,ψij ,φj〉∈s

count(〈vm, emn, vn〉),

|g ∩ s|S =
∑

〈vm,emn,vn〉∈g

count(〈φi, ψij , φj〉).

The cardinality for an instance graph and a schema
will be the number of substructures in each, i.e.,

|g|I =
∑

〈vm,emn,vn〉∈g

count(〈vm, emn, vn〉),

|s|S =
∑

〈φi,ψij ,φj〉∈s

count(〈φi, ψij , φj〉).

By extension, each path of length l=5 in a graph
schema [φi, ψij , φj , ψjk, φk] contains two consec-
utive triples 〈φi, ψij ,φj〉, 〈φj , ψjk, φk〉∈s, and a
matched instance path contains two consecutive in-
stance triples 〈vm,emn,vn〉, 〈vn,eno,vo〉∈g, where
ϕ(vm)=φi, ϕ(emn)=ψij , ϕ(vn)=φj , ϕ(eno)=ψjk,
ϕ(vo)=φk. Similarly, a path of length l=7 contains
three consecutive triples. Then we compute:

Precision =

∑
s∈S

∑
g∈G |g ∩ s|S∑

s∈S |s|S
,

Recall =

∑
s∈S

∑
g∈G |g ∩ s|I∑

g∈G |g|I
.

4.3 Instance Coherence
For an instance graph between two events v and
v′, we hypothesize that the graph is coherent if v
and v′ are from the same discourse (document).
We carefully select 24 documents with each doc-
ument talking about a unique complex event such
as Iraq War or North Korea Nuclear Test. A co-
herent schema should have the maximal number
of matched instance graphs g ∩ s from a single
document, but the minimal number of matched
graphs connecting two event instances from dif-
ferent documents. We define Instance Coherence
as the proportion of event-event path instances in
graphs within one document.

Coherence =

∑
s∈S

∑
g∈G

∑
p∈g∩s f(p) · Ig∑

s∈S
∑

g∈G
∑

p∈g∩s f(p)
,

where Ig is an indicator function taking value 1
when g is between event instances from the same
document, and value 0 otherwise.

4.4 Schema-Guided Information Extraction
As a case study for extrinsic evaluation, we evaluate
the impact of our induced schema3 on end-to-end
Information Extraction (IE). We choose our state-
of-the-art IE system ONEIE (Lin et al., 2020) 4

3The schema is induced from annotated instance graphs of
historical data, which is the training data of IE system.

4Code is public available at http://blender.cs.
illinois.edu/software/oneie/

http://blender.cs.illinois.edu/software/oneie/
http://blender.cs.illinois.edu/software/oneie/


690

as our baseline for two reasons: (1) it achieves
state-of-the-art performance on all IE components;
(2) it can easily incorporate global features during
decoding converting each input sentence into an
instance graph.

Given an input sentence, ONEIE generates a
set of candidate IE graphs at each decoding step,
as shown in Figure 3. The candidate IE graphs
are ranked by type prediction scores s′(G) of each
entity, relation and event in each graph G. We
consider schemas as global features and use them
as an additional scoring mechanism for ONEIE 5.
The schemas are induced from the training data of
our IE system. If a path pi in the schema appears
ni times in a candidate graph, we add ni ∗ wi to
obtain the global score of this graph,

s(G) = s′(G) +
∑

pi∈s,s∈S
ni ∗ wi,

where wi is a learnable weight. The candidate
graphs are then ranked in terms of their global
scores. In this way, the model can promote can-
didate graphs containing positive global features,
even if the graphs may have lower local type pre-
diction scores.

5 Experiments

5.1 Settings

Baselines. As the first to induce event graph
schema, we compare our method to various path
ranking methods: (1) Frequency Ranking Model
ranks paths between every two event types by the
number of associated instance paths in the histor-
ical and target data. (2) Unigram, Bigram, and
Trigram Language Models assign probabilities
to path sequences by estimating the probability
of each node (or edge) from the unigram, bigram,
and trigram frequency counts, respectively. We
also include a variant of PathLM by removing the
neighbor path classifier (CLSNP) as an ablation
study.
Schema@K. To compare the ranking of paths with
baselines, we evaluate graph schemas containing
top k % ranked paths.
Implementation Details. We use the same hyper-
parameters as in XLNet-base-cased (Yang et al.,
2019), with dropout = 0.5. λ = 0.1, and α = 0.3.
Detailed parameter settings are in Appendix.

5To show the effectiveness of schema, we remove the
original human-designed global features in ONEIE.

5.2 Results and Analysis

We induce 124 and 197 graph schemas for
Schema@10 and Schema@20 respectively. Fig-
ure 1 shows an output graph schema.6 According
to Table 3 and Table 4, PathLM achieves signifi-
cant improvement on both instance coverage and
instance coherence. T-test shows that the gains
achieved by PathLM are all statistically signifi-
cant over baselines (Frequency, UnigramLM, Bi-
gramLM, TrigramLM), with a P value less than
0.01. We make the following observations:
(1) PathLM achieves larger gains compared to base-
lines on Schema@10 than Schema@20 in Table 3,
demonstrating the effectiveness of our ranking ap-
proach, especially on top ranked ones.
(2) The improvement relative to baselines on longer
path queries (e.g. l = 7) is greater than shorter paths
(e.g., l = 3) in Table 3, showing that our approach
is able to capture complex graph structures involv-
ing long distance between related events. In the
l=3 setting, the performance of PathLM is close to
baselines. The reason is that l=3 setting evaluates a
single overlapped triple, which is exactly the objec-
tive of TrigramLM. We conduct t-test, and the gain
is statistically significant (P value less than 0.01).
(3) The neighbor path classification proves to be ef-
fective in enhancing the salience (see ‘w/o CLSNP’
in Table 3) and coherence (see ‘w/o CLSNP’ in Ta-
ble 4) of the induced schemas, showing that salient
substructures can be better captured by frequently
co-occurring paths. The model outputs consistent
neighbor path classification results for the swapped
path pairs. 96.17% swapped path pairs yield the
same results as original pairs.
(4) The schemas induced from Historicalsys and
Historicalann have comparable performance. This
proves our approach is robust to extraction noise
and effective even with lower quality input.

As shown in Table 5, our event graph schemas
have provided significant improvement on rela-
tion extraction and event extraction which require
knowledge of complex connections among events
and entities. Our approach achieves dramatic im-
provement on relation extraction, because existing
methods mainly rely on local contexts between
two entities, which are typically short and ambigu-
ous. In contrast, the paths in our graph schemas
can capture the global context between two events,
and thus event-related information captures deeper

6Visualization of schema repository is in http://
blender.cs.illinois.edu/software/pathlm.

http://blender.cs.illinois.edu/software/pathlm
http://blender.cs.illinois.edu/software/pathlm


691

Historical
Model

Schema@10 Schema@20
Instance l = 7 l = 5 l = 3 l = 7 l = 5 l = 3
Graphs P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Historicalann

Frequency 76.7 9.5 16.9 90.5 48.3 63.0 100 37.5 54.6 63.6 17.9 28.0 87.6 70.6 78.2 100 42.6 59.7
Unigram LM 63.9 7.3 13.1 87.1 35.4 50.3 100 33.7 50.4 55.4 14.8 23.4 86.0 60.8 71.2 100 43.8 60.9
Bigram LM 75.4 8.5 15.3 92.6 36.8 52.6 100 33.4 50.1 62.6 16.4 26.0 88.1 63.2 73.6 100 43.2 60.3
Trigram LM 62.7 8.5 15.0 89.4 41.6 56.7 100 39.9 57.0 53.4 17.8 26.7 85.6 68.2 75.9 100 44.6 61.6

PathLM 54.3 16.6 25.4 83.7 63.8 72.4 100 41.8 58.9 53.8 27.2 36.1 83.0 80.0 81.5 100 44.7 61.8
w/o CLSNP 71.2 14.5 24.1 90.3 58.3 70.9 100 39.8 56.9 57.8 25.8 35.6 85.7 80.1 82.8 100 42.9 60.1

Historicalsys

Frequency 68.6 9.8 17.1 87.0 49.4 63.0 100 37.6 54.7 67.8 19.3 29.9 88.5 70.1 78.2 100 41.6 58.8
Unigram LM 54.3 7.5 13.1 83.7 36.2 50.5 100 41.0 58.2 52.4 17.9 26.7 83.0 66.4 73.8 100 44.6 61.7
Bigram LM 61.4 7.9 13.9 88.5 37.7 52.8 100 39.2 56.3 58.3 15.3 24.2 86.5 63.8 73.4 100 43.5 60.6
Trigram LM 65.2 9.8 17.1 89.6 46.8 61.5 100 37.3 54.4 54.5 17.6 26.6 86.2 68.7 76.5 100 44.1 61.2

PathLM 51.8 18.5 27.3 83.2 68.0 74.8 100 41.7 58.8 49.6 29.3 36.9 81.7 85.4 83.5 100 44.8 61.9
w/o CLSNP 72.7 14.4 24.1 89.5 55.1 68.2 100 40.1 57.3 54.8 24.7 34.0 83.8 75.9 80.0 100 44.7 61.7

Table 3: Instance coverage (%) by checking the intersection of schemas and instance graphs.

Historical Model Schema@10 Schema@20

Historicalann

Frequency 67.8 65.6
Unigram LM 62.4 69.9
Bigram LM 59.0 67.5
Trigram LM 56.6 64.9

PathLM 76.0 79.9
w/o CLSNP 75.3 79.2

Historicalsys

Frequency 60.1 65.6
Unigram LM 61.8 70.0
Bigram LM 59.7 69.6
Trigram LM 55.8 65.8

PathLM 76.4 78.5
w/o CLSNP 73.9 77.1

Table 4: Instance coherence (%) of schema graphs cov-
ering top k percent paths, k = 10, 20.

Model Entity Rel Event
Trig-I Trig-C Arg-I Arg-C

OneIE Baseline 90.3 44.7 75.8 72.7 57.8 55.5

+PathLM 90.2 60.9 76.0 73.4 59.0 56.6
w/o CLSNP 90.1 60.3 75.7 72.8 58.3 55.8

Table 5: F1 score (%) of schema-guided information
extraction, including entity extraction (Entity), rela-
tion extraction (Rel), event trigger identification (Trig-
I) and classification (Trig-C), event argument identifica-
tion (Arg-I) and argument role classification (Arg-C).

contextual features, yielding a big boost in perfor-
mance. For example, when decoding candidate IE
graph in Figure 3, the LOCATED IN relation is ex-
tracted by promoting the structures matching paths

Candidate IE GraphInput Sentence
PERTransportCNN Pentagon correspondent

Barbara Starr reports coalition
troops entering [Transport] 
Baghdad were met with fierce
fighting [Attack], and there
were casualties on both sides

Attack

entering

fighting

troops

GPE
Baghdad

artifact
target

located_in

Transport GPEdestination
AttackPERlocated_in target

Transport PER AttackGPE placelocated_inartifact

destination place

Paths from Schema Repository

Figure 3: An example showing how schema improves
the quality of IE by promoting the candidate IE graph
matching paths from schema.

in the graph schema.

5.3 Remaining Challenges

A major challenge in schema induction is to auto-
matically decide the type granularity. For example,
if two events happen on the same street, it is likely
that they are related; if it is a country that connects
to two events through place arguments, they can
be independent. In this case, the fine-grained type
information of shared place argument is required
in schemas. However, to induce schemas about
war, geopolitical entities of different granularities
should be generalized as GPE.

6 Related Work

Atomic Event Schema Induction. Atomic event
schema induction methods (Chambers, 2013; Che-
ung et al., 2013; Nguyen et al., 2015; Huang et al.,



692

2016; Sha et al., 2016; Yuan et al., 2018) focus
on discovering event types and argument roles of
individual atomic events.
Narrative Event Schema Induction. Previous
work (Chambers and Jurafsky, 2008, 2009, 2010;
Jans et al., 2012; Balasubramanian et al., 2013; Pi-
chotta and Mooney, 2014, 2016; Rudinger et al.,
2015; Granroth-Wilding and Clark, 2016; Modi,
2016; Mostafazadeh et al., 2016a; Peng et al., 2019)
focuses on inducing narrative schemas as partially
ordered sets of events (represented as verbs) shar-
ing a common argument. The event order is fur-
ther extended to include causality (Mostafazadeh
et al., 2016b; Kalm et al., 2019), and temporal
script graph is proposed where events and argu-
ments are abstracted as event types and participant
types (Modi et al., 2017; Wanzare et al., 2017; Zhai
et al., 2019). In our work, we propose a new event
graph schema representation to capture more com-
plex connections between events, and use event
types instead of verbs as in previous work for more
abstraction power.
Path-based Language Model. Language mod-
els (LMs) (Ponte and Croft, 1998) achieve great
advances on contextualizing LMs in the last few
years (Peters et al., 2018; Devlin et al., 2019; Yang
et al., 2019). LM has been used over paths to learn
node representations in a network (Goikoetxea
et al., 2015; Grover and Leskovec, 2016; Dong
et al., 2017). To the best of our knowledge, there
has not been an effort to incorporate latent linguis-
tic structures into language models based on typed
event-event paths. This is also the first work to
demonstrate how to leverage event schemas to en-
hance the performance of an IE system.
Graph Pattern Mining. Motif finding on hetero-
geneous networks (Prakash et al., 2004; Carranza
et al., 2018; Rossi et al., 2019; Hu et al., 2019)
discovers highly recurrent instance graph patterns,
but fails in abstracting schema graphs to the type
level. Previous work applies graph summarization
to discover frequent subgraph patterns for heteroge-
neous networks (Cook and Holder, 1993; Buehrer
and Chellapilla, 2008; Li and Lin, 2009; Zhang
et al., 2010; Koutra et al., 2014; Wu et al., 2014;
Song et al., 2018; Bariatti et al., 2020), but ignores
semantic coherence among multiple patterns.

7 Conclusions and Future Work

We propose Event Graph Schema induction as a
new step towards semantic understanding of inter-

event connections. We develope a path language
model based method to construct graph schemas
containing salient and semantically coherent event-
event paths, which also effectively enhances end-
to-end Information Extraction. In the future, we
aim to extend graph schemas to encode hierarchical
and temporal relations, as well as rich ontologies
in open domain. We will also assemble our graph
schemas to represent more complex scenarios in-
volving multiple events, so they can be applied
to more downstream applications including event
graph completion and event prediction.

Acknowledgement

This research is based upon work supported in part
by U.S. DARPA KAIROS Program Nos. FA8750-
19-2-1004, FA8750-19-2-0500 and FA8750-19-2-
1003, U.S. DARPA AIDA Program No. FA8750-
18-2-0014 and Air Force No. FA8650-17-C-7715.
The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of DARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein.

References
Niranjan Balasubramanian, Stephen Soderland, Oren

Etzioni, et al. 2013. Generating coherent event
schemas at scale. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1721–1731.

Francesco Bariatti, Peggy Cellier, and Sébastien Ferré.
2020. Graphmdl: Graph pattern selection based on
minimum description length. In International Sym-
posium on Intelligent Data Analysis, pages 54–66.
Springer.

Gregory Buehrer and Kumar Chellapilla. 2008. A scal-
able pattern mining approach to web graph compres-
sion with communities. In Proceedings of the 2008
International Conference on Web Search and Data
Mining, pages 95–106.

Aldo G. Carranza, Ryan A. Rossi, Anup Rao, and Eun-
yee Koh. 2018. Higher-order spectral clustering for
heterogeneous graphs. CoRR, abs/1810.02959.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP2013),
volume 13, pages 1797–1807.

http://arxiv.org/abs/1810.02959
http://arxiv.org/abs/1810.02959


693

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of the 2008 Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL2008),
pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised learning of narrative schemas and their partici-
pants. In Proceedings of the Joint conference of the
47th Annual Meeting of the Association for Compu-
tational Linguistics and the 4th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP2009).

Nathanael Chambers and Daniel Jurafsky. 2010. A
database of narrative schemas. In Proceedings of
the 9th International Conference on Language Re-
sources and Evaluation (LREC2010).

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy
Vanderwende. 2013. Probabilistic frame induction.
NAACL HLT 2013, pages 837–846.

Diane J Cook and Lawrence B Holder. 1993. Substruc-
ture discovery using minimum description length
and background knowledge. Journal of Artificial In-
telligence Research, 1:231–255.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in neural informa-
tion processing systems, pages 3079–3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Yuxiao Dong, Nitesh V. Chawla, and Ananthram
Swami. 2017. metapath2vec: Scalable representa-
tion learning for heterogeneous networks. In Pro-
ceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, Halifax, NS, Canada, August 13 - 17, 2017,
pages 135–144. ACM.

Josu Goikoetxea, Aitor Soroa, and Eneko Agirre. 2015.
Random walks and neural network language mod-
els on knowledge bases. In NAACL HLT 2015,
The 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Denver, Colorado,
USA, May 31 - June 5, 2015, pages 1434–1439. The
Association for Computational Linguistics.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Thirtieth AAAI
Conference on Artificial Intelligence.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,

San Francisco, CA, USA, August 13-17, 2016, pages
855–864. ACM.

Yu Hong, Tongtao Zhang, Tim O’Gorman, Sharone
Horowit-Hendler, Heng Ji, and Martha Palmer. 2016.
Building a cross-document event-event relation cor-
pus. In Proceedings of the 10th Linguistic Annota-
tion Workshop held in conjunction with ACL 2016
(LAW-X 2016), pages 1–6, Berlin, Germany. Associ-
ation for Computational Linguistics.

Jiafeng Hu, Reynold Cheng, Kevin Chen-Chuan
Chang, Aravind Sankar, Yixiang Fang, and Brian
Y. H. Lam. 2019. Discovering maximal motif
cliques in large heterogeneous information networks.
In 35th IEEE International Conference on Data En-
gineering, ICDE 2019, Macao, China, April 8-11,
2019, pages 746–757. IEEE.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R. Voss, Jiawei Han, and Avirup Sil. 2016.
Liberal event extraction and event schema induction.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL2016).

Bram Jans, Steven Bethard, Ivan Vulić, and
Marie Francine Moens. 2012. Skip n-grams
and ranking functions for predicting script events.
In Proceedings of the 13th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 336–344. Association for
Computational Linguistics.

Pavlina Kalm, Michael Regan, and William Croft.
2019. Event structure representation: Between
verbs and argument structure constructions. In Pro-
ceedings of the First International Workshop on De-
signing Meaning Representations, pages 100–109.

Danai Koutra, U Kang, Jilles Vreeken, and Christos
Faloutsos. 2014. Vog: Summarizing and understand-
ing large graphs. In Proceedings of the 2014 SIAM
international conference on data mining, pages 91–
99. SIAM.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor Melis, and
Edward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Cheng-Te Li and Shou-De Lin. 2009. Egocentric in-
formation abstraction for heterogeneous social net-
works. In 2009 International Conference on Ad-
vances in Social Network Analysis and Mining,
pages 255–260. IEEE.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint end-to-end neural model for information ex-
traction with global features. In Proceedings of the
2020 Annual Meeting of the Association for Compu-
tational Linguistics (ACL2020).

Ashutosh Modi. 2016. Event embeddings for seman-
tic script modeling. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 75–83.

http://www.aclweb.org/anthology/P/P08/P08-1090
http://www.aclweb.org/anthology/P/P08/P08-1090
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.3115/v1/n15-1165
https://doi.org/10.3115/v1/n15-1165
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.18653/v1/W16-1701
https://doi.org/10.18653/v1/W16-1701
https://doi.org/10.1109/ICDE.2019.00072
https://doi.org/10.1109/ICDE.2019.00072
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023


694

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2017. Inscript: Narrative texts
annotated with script information. arXiv preprint
arXiv:1703.05260.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016a. A cor-
pus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of NAACL-
HLT, pages 839–849.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James Allen, and Lucy Vanderwende.
2016b. Caters: Causal and temporal relation scheme
for semantic annotation of event structures. In Pro-
ceedings of the Fourth Workshop on Events, pages
51–61.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret,
and Romaric Besançon. 2015. Generative event
schema induction with entity disambiguation. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 188–
197.

Simon Ostermann, Michael Roth, and Manfred Pinkal.
2019. Mcscript2. 0: A machine comprehension cor-
pus focused on script events and participants. In Pro-
ceedings of the Eighth Joint Conference on Lexical
and Computational Semantics (* SEM 2019), pages
103–117.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958.

Haoruo Peng, Qiang Ning, and Dan Roth. 2019.
Knowsemlm: A knowledge infused semantic lan-
guage model. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 550–562.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Karl Pichotta and Raymond Mooney. 2014. Statisti-
cal script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 220–229.

Karl Pichotta and Raymond J Mooney. 2016. Learn-
ing statistical scripts with lstm recurrent neural net-
works. In Thirtieth AAAI Conference on Artificial
Intelligence.

Jay M Ponte and W Bruce Croft. 1998. A language
modeling approach to information retrieval. In Pro-
ceedings of the 21st annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 275–281.

Amol Prakash, Mathieu Blanchette, Saurabh Sinha,
and Martin Tompa. 2004. Motif discovery in hetero-
geneous sequence data. In Biocomputing 2004, Pro-
ceedings of the Pacific Symposium, Hawaii, USA, 6-
10 January 2004, pages 348–359. World Scientific.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving language understanding
by generative pre-training.

Ryan A. Rossi, Nesreen K. Ahmed, Aldo G. Carranza,
David Arbour, Anup Rao, Sungchul Kim, and Eu-
nyee Koh. 2019. Heterogeneous network motifs.
CoRR, abs/1901.10026.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681–1686.

Roger C Schank and Robert P Abelson. 1977. Scripts,
plans, goals and understanding: An inquiry into
human knowledge structures. Mhwah, NJ (US):
Lawrence Erlbaum Associates.

Lei Sha, Sujian Li, Baobao Chang, and Zhifang Sui.
2016. Joint learning templates and slots for event
schema induction. In Proceedings of NAACL-HLT,
pages 428–434.

Qi Song, Yinghui Wu, Peng Lin, Luna Xin Dong, and
Hui Sun. 2018. Mining summaries for knowledge
graph search. IEEE Transactions on Knowledge and
Data Engineering, 30(10):1887–1900.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2017. Inducing script struc-
ture from crowdsourced event descriptions via semi-
supervised clustering. In Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics, pages 1–11.

Ye Wu, Zhinong Zhong, Wei Xiong, and Ning Jing.
2014. Graph summarization for attributed graphs.
In 2014 International Conference on Information
Science, Electronics and Electrical Engineering,
volume 1, pages 503–507. IEEE.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for

http://psb.stanford.edu/psb-online/proceedings/psb04/prakash.pdf
http://psb.stanford.edu/psb-online/proceedings/psb04/prakash.pdf
http://arxiv.org/abs/1901.10026
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding


695

language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 5754–5764.

Quan Yuan, Xiang Ren, Wenqi He, Chao Zhang, Xinhe
Geng, Lifu Huang, Heng Ji, Chin-Yew Lin, and Ji-
awei Han. 2018. Open-schema event profiling for
massive news corpora. In Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management, pages 587–596.

Fangzhou Zhai, Vera Demberg, Pavel Shkadzko, Wei
Shi, and Asad Sayeed. 2019. A hybrid model for
globally coherent story generation. In Proceedings
of the Second Workshop on Storytelling, pages 34–
45.

Ning Zhang, Yuanyuan Tian, and Jignesh M Patel.
2010. Discovery-driven graph summarization. In
2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), pages 880–891. IEEE.

http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding

