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Abstract

Extracting event temporal relations is a criti-
cal task for information extraction and plays
an important role in natural language under-
standing. Prior systems leverage deep learn-
ing and pre-trained language models to im-
prove the performance of the task. However,
these systems often suffer from two shortcom-
ings: 1) when performing maximum a posteri-
ori (MAP) inference based on neural models,
previous systems only used structured knowl-
edge that is assumed to be absolutely correct,
i.e., hard constraints; 2) biased predictions
on dominant temporal relations when training
with a limited amount of data. To address these
issues, we propose a framework that enhances
deep neural network with distributional con-
straints constructed by probabilistic domain
knowledge. We solve the constrained infer-
ence problem via Lagrangian Relaxation and
apply it to end-to-end event temporal relation
extraction tasks. Experimental results show
our framework is able to improve the baseline
neural network models with strong statistical
significance on two widely used datasets in
news and clinical domains.

1 Introduction

Extracting event temporal relations from raw text
data has attracted surging attention in the NLP re-
search community in recent years as it is a funda-
mental task for commonsense reasoning and nat-
ural language understanding. It facilitates various
downstream applications, such as forecasting social
events and tracking patients’ medical history. Fig-
ure 1 shows an example of this task where an event
extractor first needs to identify events (buildup,
say and stop) in the input and then a relation clas-
sifier predicts all pairwise relations among them,
resulting in a temporal ordering as illustrated in
the figure. For example, say is BEFORE stop;
buildup INCLUDES say; the temporal ordering

Figure 1: An example of the event temporal order-
ing task. Text input is taken from the news dataset
in our experiments. Solid lines / arrows between two
highlighted events show their gold temporal relations,
e.g. say BEFORE stop and buildup INCLUDES say,
and the dash line shows a wrong prediction, i.e., the
VAGUE relation between buildup and say. In the table,
Column Overall shows the relation distribution over the
entire training corpus; Column Type Pair (P) shows the
predicted relation distribution condition on the event
pairs having types occurrence and reporting
(such as buildup and say); Column Type Pair (G)
shows the gold relation distribution condition on event
pairs having the same types. Biased predictions of
VAGUE relation between buildup and say can be par-
tially corrected by using the gold event type-relation
statistics in Column Type Pair (G).

between buildup and stop cannot be decided from
the context, so the relation should be VAGUE.

Predicting event temporal relations is inherently
challenging as it requires the system to understand
each event’s beginning and end times. However,
these time anchors are often hard to specify within
a complicated context, even for humans. As a re-
sult, there is usually a large amount of VAGUE
pairs (nearly 50% in the table of Figure 1) in an
expert-annotated dataset, resulting in heavily class-
imbalanced datasets. Moreover, expert annotations
are often time-consuming to gather, so the sizes
of existing datasets are relatively small. To cope
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with the class-imbalance problem and the small
dataset issues, recent research efforts adopt hard
constraint-enhanced deep learning methods and
leverage pre-trained language models (Ning et al.,
2018c; Han et al., 2019b) and are able to establish
reasonable baselines for the task.

The hard-constraints used in the SOTA systems
can only be constructed when they are nearly 100%
correct and hence make the knowledge adoption
restrictive. Temporal relation transitivity is a fre-
quently used hard constraint that requires if A
BEFORE B and B BEFORE C, it must be that
A BEFORE C. However, constraints are usually
not deterministic in real-world applications. For ex-
ample, a clinical treatment and test are more
likely to happen AFTER a medical problem, but
not always. Such probabilistic constraints cannot
be encoded with the hard-constraints as in the pre-
vious systems.

Furthermore, deep neural models have biased
predictions on dominant classes, which is particu-
larly concerning given the small and biased datasets
in event temporal extraction. For example, in Fig-
ure 1, an event pair headed and say (with relation
INCLUDES) is incorrectly predicted as VAGUE
(Column Type Pair (P)) by our baseline neural
model, partially due to dominant percentage of
VAGUE label (Column Overall), and partially due
to the complexity of the context. Using the domain
knowledge that headed and say have event types
of occurrence and reporting, respectively,
we can find a new label probability distribution
(Type Pair (G)) for this pair. The probability mass
allocated to VAGUE would decrease by 10% and in-
crease by 7.2% for INCLUDES, which significantly
increases the chance for a correct label prediction.

We propose to improve deep structured neural
networks by incorporating domain knowledge such
as corpus statistics in the model inference, and by
solving the constrained inference problem using
Lagrangian Relaxation. This framework allows us
to benefit from the strong contextual understanding
of pre-trained language models while optimizing
model outputs based on probabilistic structured
knowledge that previous deep models fail to con-
sider. Experimental results demonstrate the effec-
tiveness of this framework.

We summarize our contributions below:

• We formulate the incorporation of probabilis-
tic knowledge as a constrained inference prob-
lem and use it to optimize the outcomes from

strong neural models.

• Novel applications of Lagrangian Relaxation
on end-to-end temporal relation extraction
task with event-type and relation constraints.

• Our framework significantly outperforms
baseline systems without knowledge adop-
tion and achieves new SOTA results on two
datasets in news and clinical domains.

2 Problem Formulation

The problem we focus on is end-to-end event tem-
poral relation extraction, which takes a raw text as
input, first identifies all events, and then classifies
temporal relations for all predicted event pairs. The
left column of Figure 2 shows an example. An end-
to-end system is practical in a real-world setting
where events are not annotated in the input and
challenging because temporal relations are harder
to predict after noise is introduced during event
extraction.

3 Method

In this section, we first describe the details of our
deep neural networks for an end-to-end event tem-
poral relation extraction system, then show how to
formulate domain-knowledge between event types
and relations as distributional constraints in Inte-
ger Linear Programming (ILP), and finally apply
Lagrangian Relaxation to solve the constrained in-
ference problem. Our base model is trained end-to-
end with cross-entropy loss and multitask learning
to obtain relation scores. We need to perform an
additional inference step in order to incorporate
domain-knowledge as distributional constraints.

3.1 End-to-end Event Relation Extraction
As illustrated in the left column in Figure 2, our
end-to-end model shares a similar work-flow as
the pipeline model in Han et al. (2019b), where
multi-task learning with a shared feature extractor
is used to train the pipeline model. Let E , EE
andR denote event, candidate event pairs and the
feasible relations, respectively, in an input instance
xn, where n is the instance index. The combined
training loss is L = cELE+LR, where LE and LR
are the losses for the event extractor and the relation
module, respectively, and cE is a hyper-parameter
balancing the two losses.

Feature Encoder. Input instances are first sent to
pre-trained language models such as BERT (Devlin
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Figure 2: An overview of the proposed framework. The left column shows the end-to-end event temporal relation
extraction workflow. The right column (in the dashed box) illustrates how we propose to enhance the end-to-end
extraction system. The final MAP inference contains two components: scores from the relation module and distri-
butional constraints constructed using domain knowledge and corpus statistics. The text input is a real example
taken from the I2B2-TEMPORAL dataset. The MAP inference is able to push the predicted probability of the event
type-relation triplet closer to the ground-truth (corpus statistics).

et al., 2018) and RoBERTa (Liu et al., 2019), then
to a Bi-LSTM layer as in previous event temporal
relation extraction work (Han et al., 2019a).

Encoded features will be used as inputs to the
event extractor and the relation module below.

Event Extractor. The event extractor first pre-
dicts scores over event classes for each input token
and then detects event spans based on these scores.
If an event has over more than one tokens, its be-
ginning and ending vectors are concatenated as the
final event representation. The event score is de-
fined as the predicted probability distribution over
event classes. Pairs predicted to include non-events
are automatically labeled as NONE, whereas valid
candidate event pairs are fed into the relation mod-
ule to obtain their relation scores.

Relation Module. The relation module’s input is
a pair of events, which share the same encoded fea-
tures as the event extractor. We simply concatenate
them before feeding them into the relation mod-
ule to produce relation scores S(yri,j ,x

n), which
are computed using the Softmax function where
yri,j is a binary indicator of whether an event pair
(i, j) ∈ EE has relation r ∈ R.

3.2 Constrained Inference for Knowledge
Incorporation

As shown in Figure 2, once the relation scores
are computed via the relation module, a MAP in-
ference is performed to incorporate distributional
constraints so that the structured knowledge can

be used to adjust neural baseline model scores and
optimize the final model outputs. We formulate
our MAP inference with distributional constraints
as an LR problem and solve it with an iterative
algorithm.

Next, we explain the details of each component
in our MAP inference.

3.2.1 Distributional constraints

Much of the domain-knowledge required for real-
world problems are probabilistic in nature. In
the task of event relation extraction, domain-
knowledge can be the prior probability of a spe-
cific event-pair’s occurrence acquired from large
corpora or knowledge base (Ning et al., 2018b);
domain-knowledge can also be event-property and
relation distribution obtained using corpus statis-
tics, as we study in this work. Previous work mostly
leverage hard constraints for inference (Yoshikawa
et al., 2009; Ning et al., 2017; Leeuwenberg and
Moens, 2017; Ning et al., 2018a; Han et al.,
2019a,b), where constraints such as transitivity and
event-relation consistency are assumed to be abso-
lutely correct. As we discuss in Section 1, hard
constraints are rigid and thus cannot be used to
model probabilistic domain-knowledge.

The right column in Figure 2 illustrates how our
work leverages corpus statistics to construct distri-
butional constraints. Let P be a set of event prop-
erties such as clinical types (e.g. treatment or
problem).

For the pair (Pm, Pn) and the triplet
(Pm, Pn, r), where Pn, Pm ∈ P and r ∈ R, we
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can retrieve their counts in the training corpus as

C(Pm, Pn, r) =
∑

i,j∈EE

c(Pi = Pm;Pj = Pn; ri,j = r)

and
C(Pm, Pn) =

∑
i,j∈EE

c(Pi = Pm;Pj = Pn).

Let t = (Pm, Pn, r). The prior triplet probability
can thus be defined as

p∗t =
C(Pm, Pn, r)

C(Pm, Pn)
.

Let p̂t denote the predicted triplet probability, dis-
tributional constraints require that,

p∗t − θ ≤ p̂t ≤ p∗t + θ (1)

where θ is the tolerance margin between the prior
and predicted probabilities.

3.2.2 Integer Linear Programming with
Distributional Constraints

We formulate our MAP inference as an ILP prob-
lem. Let T be a set of triplets whose predicted
probabilities need to satisfy Equation 1. We can
define our full ILP as

L =
∑

(i,j)∈EE

∑
r∈R

yri,jS(y
r
i,j ,x) (2)

s.t. p∗t − θ ≤ p̂t ≤ p∗t + θ, ∀t ∈ T , and

yri,j ∈ {0, 1} ,
∑
r∈R

yri,j = 1,

where S(yri,j ,x),∀r ∈ R is the scoring func-
tion obtained from the relation module. For t =
(Pm, Pn, r), we have p̂t =

∑EE
(i:Pm,j:Pn) y

r
i,j∑EE

(i:Pm,j:Pn)

∑R
r′ y

r′
i,j

.

The output of the MAP inference, ŷ, is a collec-
tion of optimal label assignments for all relation
candidates in an input instance xn.

∑
r∈R y

r
i,j = 1

ensures that each event pair gets one label assign-
ment and this is the only hard constraint we use.

To improve computational efficiency, we apply
the heuristic to optimize only the equality con-
straints p∗t = p̂t, ∀t ∈ T . Our optimization algo-
rithm terminates when |p∗t − p̂t| ≤ θ. This heuristic
has been shown to work efficiently without hurting
inference performance (Meng et al., 2019). For
each triplet t, its equality constraint can be rewrit-
ten as

F (t) = (1− p∗t )
EE∑

(i:Pm,j:Pn)

yri,j , (3)

−p∗t
EE∑

(i:Pm,j:Pn,

R∑
r′ 6=r)

yr
′

i,j = 0.

The goal is to maximize the objective function de-
fined by Eq. (2) while satisfying the equality con-
straints.

Algorithm 1 Gradient Ascent for LR
1: procedure
2: for t ∈ T do
3: λ0

t = 0

4: k = 0
5: while k < K do . K: max iteration
6: ŷk+1 ← arg maxL(λk)
7: for t ∈ T do
8: ∆t = p∗t − p̂t
9: if |∆t| > θ then

10: λk+1
t = λk

t + α∆t

11: if ∆t ≤ θ,∀t then
12: break
13: k = k + 1
14: α = γα . γ: decay rate

3.2.3 Lagrangian Relaxation
Solving Eq. (2) is NP-hard. Thus, we reformulate it
as a Lagrangian Relaxation problem by introducing
Lagrangian multipliers λt for each distributional
constraint. Lagrangian Relaxation has been applied
in a variety NLP tasks, as described by Rush and
Collins (2011, 2012) and Zhao et al. (2017).

The Lagrangian Relaxation problem can be writ-
ten as

L(y,λ) =
∑

(i,j)∈EE

∑
r∈R

yri,jS(y
r
i,j ,x) +

∑
t∈T

λtF (t).

(4)

Initialize λt = 0. Eq. (4) can be solved with the
following iterative algorithm (Algorithm 1).

1. At each iteration k, obtain the best rela-
tion assignments per MAP inference, ŷk =
argmaxL(y,λ)

2. Update the Lagrangian multiplier in order to
bring the predicted probability closer to the
prior. Specifically, for each t ∈ T ,

• If |p∗t − p̂t| ≤ θ, λk+1
t = λkt

• Otherwise, λk+1
t = λkt + α(p∗t − p̂t)

α is the step size. We are solving a min-max prob-
lem: the first step chooses the maximum likelihood
assignments by fixing λ; the second step searches
for λ values that minimize the objective function.

4 Constrained Inference Implementation

This section explains how to construct our distribu-
tional constraints and the implementation details
for inference with LR.
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Constraint Triplets Count %

occurrence, occurrence, * 124 19.7
occurrence, reporting, * 50 7.9
occurrence, action, * 44 7.0
reporting, occurrence, * 41 6.5
action, occurrence, * 40 6.4
action, action, * 20 3.2
reporting, reporting, * 18 2.9
action, reporting, * 18 2.9
reporting, action, * 17 2.7

Table 1: TimeBank-Dense: triplet prediction count and
percentage in the development set (sample size = 629).

4.1 Distributional Constraint Selection
The selection of distributional constraints is crucial
for our algorithm. If the probability of an event-
type and relation triplet is unstable across different
splits of data, we may over-correct the predicted
probability. We use the following search algorithm
with heuristic rules to ensure constraint stability.

4.1.1 TimeBank-Dense
For TimeBank-Dense, we first sort candidate
constraints by their corresponding values of
C(Pm, Pn) =

∑
r̂∈RC(P

m, Pn, r̂). We list
C(Pm, Pn) with the largest prediction numbers
and their percentages in the development set in
Table 1.

Next, we set 3% as our threshold to include
constraints for our main experimental results. We
found this number to work relatively well for both
TimeBank-Dense and I2B2-TEMPORAL. We will
show the impact of relaxing this threshold in the
discussion section. In Table 1, the constraints in
the bottom block are filtered out. Moreover, Eq. 3
implies that a constraint defined on one triplet
(Pm, Pn, r) has impact on all (Pm, Pn, r′) for
r′ ∈ R\r. In other words, decreasing p̂(Pm,Pn,r) is
equivalent to increasing p̂(Pm,Pn,r′) and vice versa.
Thus, we heuristically pick (Pm, Pn,VAGUE) as
our default constraint triplets.

Finally, we adopt a greedy search rule to select
the final set of constraints. We start with the top
constraint triplet in Table 1 and then keep adding
the next one as long as it doesn’t hurt the grid
search1 F1 score on the development set. Eventu-
ally, four constraints triplets are selected, and they

1Recall that our LR algorithm in Section 3.2.3 has three
hyper-parameters: initial step size α, decay rate γ, and toler-
ance θ. We perform a grid search on the development set and
use the best hyper-parameters on the test set.

can be found in Table 3.

4.1.2 I2B2-TEMPORAL

Similar to TimeBank-Dense, we use the 3% thresh-
old to select candidate constraints. However, it is
computationally expensive to use the greedy search
rule above by conducting grid search as the number
of constraints that pass this threshold is large (15 of
them), development set sample size is more than 3
times of TimeBank-Dense, and a large transformer
is used for modeling, Therefore, we incorporate
another two heuristic rules to directly select con-
straints,

1. We randomly split the train data into five
subsets of equal size {s1, s2, s3, s4, s5}. For
triplet t to be selected, we must have
1
5

∑5
k=1 |pt,sk − p∗t | < 0.001.

2. |p̂t − p∗t | > 0.1, where p̂t is the predicted
probability of t on the development set.

The first rule ensures that a constraint triplet is
stable over a randomly split of data; the second
one ensures that the probability gaps between the
predicted and gold are large so that we will not
over-correct them. Eventually, four constraints sat-
isfy these rules, and they can be found in Table 9,
and we run only one final grid search for these
constraints.

4.2 Inference
The ILP component in Sec. 3.2.2 is implemented
using an off-the-shelf solver provided by Gurobi
optimizer. Hyper-parameters choices can be found
in Table 6 in the Appendix.

5 Experimental Setup

This section describes the two event temporal rela-
tion datasets used in this paper and then explains
the evaluation metrics.

5.1 Data
TimeBank-Dense. Temporal relation corpora
such as TimeBank (Pustejovsky et al., 2003) and
RED (O’Gorman et al., 2016) consist of expert an-
notations of news articles. The common issue of
these corpora is missing annotations. Collecting
densely annotated temporal relation corpora with
all events and relations fully annotated is a chal-
lenging task as annotators could easily overlook
some facts (Bethard et al., 2007; Cassidy et al.,
2014; Chambers et al., 2014; Ning et al., 2017).



5722

TimeBank-Dense 2012 i2b2 Challenge (I2B2-TEMPORAL)

Event Relation Event Relation (TempEval Metrics)

F1 R P F1 Span F1 Type Accuracy R P F1

Feature-based Benchmark 87.4 43.8 35.7 39.4 90.1 86.0 37.8 51.8 43.0
Han et al. (2019b) 90.9 52.6 46.5 49.4 - - 73.4 76.3 74.8
End-to-end Baseline 90.3 51.5 45.9 48.5 87.8 87.8 73.3 79.9 76.5
End-to-end + Inference 90.3 53.4 47.9 50.5 87.8 87.8 74.0 80.8 77.3

Table 2: Overall experiment results: per MacNemar’s test, the improvements against the end-to-end baseline
models by adding inference with distributional constraints are both statistically significant for TimeBank-Dense
(p-value < 0.005) and I2B2-TEMPORAL (p-value < 0.0005). For I2B2-TEMPORAL, our end-to-end system is
optimized for the F1 score of the gold pairs.

The TimeBank-Dense dataset mitigates this is-
sue by forcing annotators to examine all pairs of
events within the same or neighboring sentences,
and this dataset has been widely evaluated on this
task (Chambers et al., 2014; Ning et al., 2017;
Cheng and Miyao, 2017; Meng and Rumshisky,
2018). Temporal relations consist of BEFORE,
AFTER, INCLUDES, INCLUDED, SIMULTANE-
OUS, and VAGUE. Moreover, each event has
several properties, e.g., type, tense, and polar-
ity. Event types include occurrence, action,
reporting, state, etc. Event pairs that are
more than 2 sentences away are not annotated.

I2B2-TEMPORAL. In the clinical domain, one
of the earliest event temporal datasets was provided
in the 2012 Informatics for Integrating Biology and
the Bedside (i2b2) Challenge on NLP for Clinical
Records (Sun et al., 2013). Clinical events are cat-
egorized into 6 types: treatment, problem,
test, clinical-dept, occurrence, and
evidential. The final data used in the chal-
lenge contains three temporal relations: BEFORE,
AFTER, and OVERLAP. The 2012 i2b2 challenge
also had an end-to-end track, which we use as our
feature-based system baseline. To mimic the input
structure of TimeBank-Dense, we only consider
event pairs that are within 3 consecutive sentences.
Overall, 13% of the long-distance relations are ex-
cluded.2

5.2 Evaluation Metrics

To be consistent with previous work, we adopt two
different evaluation metrics. For TimeBank-Dense,
we use standard micro-average scores that are also
used in the baseline system (Han et al., 2019b).
Since the end-to-end system can predict the gold

2Over 80% of these long-distance pairs are event co-
reference, i.e., simply predicting them as OVERLAP will
achieve high performance.

pair as NONE, we follow the convention of IE tasks
and exclude them from the evaluation. For I2B2-
TEMPORAL, we adopt the TempEval evaluation
metrics used in the 2012 i2b2 challenge. These
evaluation metrics differ from the standard F1 in a
way that it computes the graph closure for both gold
and predictions labels. Since I2B2-TEMPORAL

contains roughly six times more missing annota-
tions than the gold pairs, we only evaluate the per-
formance of the gold pairs.

Both datasets contain three types of entities:
events, time expressions, and document time. In
this work, we focus on event-event relations and
exclude all other relations from the evaluation.

5.3 Baselines

Feature-based Systems. We use CAEVO3

(Chambers et al., 2014), a hybrid system of rules
and linguistic feature-based MaxEnt classifier, as
our feature-based benchmark for TimeBank-Dense.
Model implementation and performance are both
provided by Han et al. (2019b). As for I2B2-
TEMPORAL, we retrieve the predictions from the
top end-to-end system provided by Yan et al. (2013)
and report the performance according to the evalu-
ation metrics specified in Section 5.2.

Neural Model Baselines. We use the end-to-end
systems described by Han et al. (2019b) as our
neural network model benchmarks (Row 2 of Ta-
ble 2). For TimeBank-Dense, the best global struc-
tured model’s performance is reported by Han et al.
(2019b). For I2B2-TEMPORAL, we re-implement
the pipeline joint model. 4 Note that this end-to-
end model only predicts whether each token is an
event as well as each pair of token’s relation. Event

3https://www.usna.edu/Users/cs/
nchamber/caevo/

4https://github.com/PlusLabNLP/
JointEventTempRel

 https://www.usna.edu/Users/cs/nchamber/caevo/
 https://www.usna.edu/Users/cs/nchamber/caevo/
https://github.com/PlusLabNLP/JointEventTempRel
https://github.com/PlusLabNLP/JointEventTempRel
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spans are not predicted, so head-tokens are used
to represent events; event types are also not pre-
dicted. Therefore, we do not report Span F1 and
Type Accuracy in this benchmark.

End-to-end Baseline. For the TimeBank-Dense
dataset, we use the pipeline joint (local) model with
no global constraints as presented by Han et al.
(2019b). In contrast to the aforementioned neural
baseline provided in the same paper, this end-to-
end model does not use any inference techniques.
Hence, it serves as a fair baseline for our method
(with inference). For TimeBank-Dense, we build
our framework based on this model5.

For the I2B2-TEMPORAL dataset to be more
comparable with the 2012 i2b2 challenge, we aug-
ment the event extractor illustrated in Figure 2 by
allowing event type predictions; that is, for each in-
put token, we not only predict whether it is an event
or not, but also predict its event type. We follow
the convention in the IE field by adding a “BIO”
label to each token in the data. For example, the
two tokens in “physical therapy” in Figure 2 will be
labeled as B-treatment and I-treatment, re-
spectively. To be consistent with the partial match
method used in the 2012 i2b2 challenge, the event
span detector looks for token predictions that start
with either “B-” or “I-” and ensures that all tokens
predicted within the same event span have only one
event type.

RoBERTa-large is used as the base model, and
cross-entropy loss is used to train the model. We
fine-tune the base model and conduct a grid search
on the random hold-out set to pick the best hyper-
parameters such as cE in the multitask learning loss
and the weight, wEpos for positive event types (i.e.
B- and I-). The best hyper-parameter choices can
be found in Table 6 in the Appendix.

6 Results and Analysis
Table 2 contains our main results. We discuss
model performances on TimeBank-Dense and
I2B2-TEMPORAL in this section.

6.1 TimeBank-Dense

All neural models outperform the feature-based sys-
tem by more than 10% per relation F1 score. Our
structured model outperforms the previous SOTA
systems with hard constraints and joint event and
relation training by 1.1%. Compared with the

5Code and data for TimeBank-Dense are published here:
https://github.com/rujunhan/EMNLP-2020

end-to-end baseline model with no constraints, our
system achieves 2% absolute improvement, which
is statistically significant with a p-value < 0.005
per MacNemar’s test. This is strong evidence that
leveraging Lagrangian Relaxation to incorporate
domain knowledge can be extremely beneficial
even for strong neural network models.

The ablation study in Table 3 shows how dis-
tributional constraints work and the constraints’
individual contributions. The predicted probability
gaps shrink by 0.15, 0.24, and 0.13 respectively
for the three constraints chosen, while providing
0.91%, 0.65%, and 0.44% improvements to the fi-
nal F1 score for relation extraction. We also show
the breakdown of the performance for each relation
class in Table 4. The overall F1 improvement is
mainly driven by the recall scores in the positive re-
lation classes (BEFORE, AFTER, and INCLUDES)
that have much smaller sample size than VAGUE.
These results are consistent with the ablation study
in Table 3, where the end-to-end baseline model
over-predicts on VAGUE, and the LR algorithm cor-
rects it by assigning less confident predictions on
VAGUE to positive and minority classes according
to their relation scores.

6.2 I2B2-TEMPORAL

All neural models outperform the feature-based sys-
tem by more than 30% per relation F1 score. Our
structured model with distributional constraints
outperforms the neural pipeline joint models of
Han et al. (2019b) by 2.5% per absolute scale.
Compared with our end-to-end baseline model, our
system achieves 0.77% absolute improvement on
F1 measure, which is statistically significant with
a p-value < 0.0005 per MacNemar’s test. This
result also shows that adding inference with dis-
tributional constraints can be helpful for strong
neural baseline models.

Table 9 in the Appendix Section C shows how
distributional constraints work and their individual
contributions. Predicted probability gaps shrink
by 0.17, 0.16, 0.11, and 0.14, respectively, for the
four constraints chosen, providing 0.19%, 0.25%,
0.22%, and 0.12% improvements to the final F1

scores for relation extraction. We also have the
breakdown performance for each relation class in
Table 8. The performance gain is caused mostly by
the increase of recall scores in BEFORE and AF-
TER. This is consistent with the results in Table 9
where the model over-predicts on the OVERLAP

https://github.com/rujunhan/EMNLP-2020
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Constraint Triplets Prob. Gap F1

occur., occur., VAGUE -0.15 +0.91%
occur., reporting, VAGUE -0.24 +0.65%
action, occur., VAGUE -0.13 +0.44%
reporting, occur., VAGUE∗ 0.0 0%
Combined F1 Improvement 2.0%

Table 3: TimeBank-Dense ablation study: gap shrink-
age of predicted probability and F1 contribution per
constraint. ∗ is selected per Sec. 4, but the probability
gap is smaller than the tolerance in the test set, hence
no impact to the F1 score.

End-to-end Baseline End-to-end Inference
P R F1 P R F1

B 59.0 46.9 52.3 58.6 55.7 57.1
A 69.3 45.3 54.8 67.8 51.5 58.5
I - - - 8.3 1.8 2.9
II - - - - - -
S - - - - - -
V 45.1 55.0 49.5 47.6 51.4 49.4

Avg 51.5 45.9 48.5 53.4 47.9 50.5

Table 4: Model performance breakdown for TimeBank-
Dense. “-” indicates no predictions were made for that
particular label, probably due to the small size of the
training sample. BEFORE (B), AFTER (A), INCLUDES (I),
IS INCLUDED (II), SIMULTANEOUS (S), VAGUE (V)

class, possibly because of label imbalance. Infer-
ence is able to partially correct this mistake by
leveraging distributional constraints constructed
with event type and relation corpus statistics.

6.3 Qualitative Error Analysis

We can use the errors made by our structured neural
model on TimeBank-Dense to guide potential direc-
tions for future research. There are 26 errors made
by the structured model that are correctly predicted
by the baseline model. In Table 5, we show the
error breakdown by constraints. Our method works
by leveraging corpus statistics to correct border-
line errors made by the baseline model; however,
when the baseline model makes borderline correct
predictions, the inference could mistakenly change
them to the wrong labels. This situation can happen
when the context is complicated or when the event
time interval is confusing.

For the constraint (occur., occur., VAGUE),
nearly all errors are cross-sentence event pairs with
long context information. In ex.1, the gold relation
between responded and use is VAGUE because
of the negation of use, but one could also argue
that if use were to happen, responded is BEFORE
use. This inherent annotation confusion can cause
the baseline model to predict VAGUE marginally
over BEFORE. When informed by the constraint
statistics that vague is over-predicted, the infer-

occurrence, occurrence, VAGUE (57.7%)
ex.1 In a bit of television diplomacy, Iraq’s deputy
foreign minister responded from Baghdad in less than
one hour, saying Washington would break international
law by attacking without UN approval. The United States
is not authorized to use force before going to the council.
occurrence, reporting, VAGUE (26.9%)
ex.2 A new Essex County task force began delving
Thursday into the slayings of 14 black women over the
last five years in the Newark area, as law-enforcement
officials acknowledged that they needed to work harder...
action, occurrence, VAGUE (15.4%)
ex.3 The Russian leadership has staunchly opposed
the western alliance’s expansion into Eastern Europe.

Table 5: Error examples and breakdown by constraints.

ence algorithm revises the baseline prediction to
BEFORE. Similarly, in ex.2 and ex.3, one could
make strong cases that both the relations between
delving and acknowledged, and opposed and ex-
pansion are BEFORE rather than VAGUE from the
context. This annotation ambiguity can contribute
to the errors made by the proposed method.

Our analysis shows that besides the necessity to
create high-quality data for event temporal relation
extraction, it could be useful to incorporate addi-
tional information such as discourse relation (par-
ticularly for (occur., occur., VAGUE)) and
other prior knowledge on event properties to re-
solve the ambiguity in event temporal reasoning.

7 Discussion

7.1 Constraint Selection
In Sec. 4, we use a 3% threshold when selecting
candidate constraints. In this section, we show the
impact of relaxing this threshold on TimeBank-
Dense. Table 1 shows three constraints that miss
the 3% bar by 0.1-0.3%. In Figure 3, we show F1

scores on the development and test sets by includ-
ing these constraints. Recall that only constraints
that do not hurt development F1 score are used.
Therefore, Top5 and Top6 on the chart both cor-
respond to the results in Table 2. Top7 includes
(reporting, reporting, VAGUE), Top8
includes (actioin, reporting, VAGUE),
and Top9 includes (reporting, actioin,
VAGUE).

We observe that F1 score continues to improve
over the development set, but on the test set, F1

score eventually falls. This appears to support our
hypothesis that when the triplet count is small, the
ratio calculated based on that count is not so re-
liable as the ratio could vary drastically between
development and test sets. Optimizing over the
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Figure 3: Dev v.s. Test sets performance (F1 score)
after relaxing the threshold of triplet count for selecting
constraints. All numbers are percentages.

development set can be an over-correction for the
test set, and hence results in a performance drop.

7.2 Event Type Prediction
As described in Sec 5.3, to ensure fair comparison
with the previous SOTA system (Han et al., 2019b),
our baseline model for TimeBank-Dense does not
predict event types. That is, when counting the
triplet (Pm, Pn, r̂), we assume there is an oracle
model that provides event types Pm, Pn for the
predicted relation r̂. One could potentially extend
our work by training a similar multi-task learning
model to predict both types and relations as our
model does for the I2B2-TEMPORAL dataset. We
leave this as a future research direction.

8 Related Work

News Domain. Early work on temporal rela-
tion extraction use local pair-wise classification
with hand-engineered features (Mani et al., 2006;
Verhagen et al., 2007; Chambers et al., 2007; Ver-
hagen and Pustejovsky, 2008). Later efforts, such
as ClearTK (Bethard, 2013), UTTime (Laokul-
rat et al., 2013), NavyTime (Chambers, 2013),
and CAEVO (Chambers et al., 2014), improve
earlier work with better linguistic and syntactic
rules. Yoshikawa et al. (2009); Ning et al. (2017);
Leeuwenberg and Moens (2017) explore structured
learning for this task, and more recently, neural
methods have also been shown effective (Tourille
et al., 2017; Cheng and Miyao, 2017; Meng et al.,
2017; Meng and Rumshisky, 2018). Ning et al.
(2018c) and Han et al. (2019b) are the most recent
work leveraging neural network and pre-trained
language models to build an end-to-end system.
Our work differs from these prior work in that we
build a structured neural model with distributional
constraints that combines both the benefits of both

deep learning and domain knowledge.

Clinical Domain. The 2012 i2b2 Challenge
((Sun et al., 2013)) is one of the earliest efforts
to advance event temporal relation extraction of
clinical data. The challenge hosted three tasks on
event (and event property) classification, temporal
relation extraction, and the end-to-end track. Fol-
lowing this early effort, a series of clinical event
temporal relation challenges were created in the fol-
lowing years ((Bethard et al., 2015, 2016, 2017)).
However, data in these challenges are relatively
hard to acquire, and therefore they are not used
in this paper. As in the news data, traditional ma-
chine learning approaches (Lee et al., 2016; Chikka,
2016; Xu et al., 2013; Tang et al., 2013; Savova
et al., 2010) that tackle the end-to-end event and
temporal relation extraction problem require time-
consuming feature engineering such as collecting
lexical and syntax features. Some recent work (Dli-
gach et al., 2017; Leeuwenberg and Moens, 2017;
Galvan et al., 2018) apply neural network-based
methods to model the temporal relations, but are
not capable of incorporating prior knowledge about
clinical events and temporal relations as proposed
by our framework.

9 Conclusion

In conclusion, we propose a general framework
that augments deep neural networks with distribu-
tional constraints constructed using probabilistic
domain knowledge. We apply it in the setting of
end-to-end temporal relation extraction task with
event-type and relation constraints and show that
the MAP inference with distributional constraints
can significantly improve the final results.

We plan to apply the proposed framework on
various event reasoning tasks and construct novel
distributional constraints that could leverage do-
main knowledge beyond corpus statistics, such as
the larger unlabeled data and rich information con-
tained in knowledge bases.

Acknowledgments

This work is supported by the Intelligence Ad-
vanced Research Projects Activity (IARPA), via
Contract No. 2019-19051600007 and the US
Defense Advanced Research Projects Agency
(DARPA), via Contract W911NF-15-1-0543. The
views expressed are those of the authors and do not
reflect the Department of Defense’s official policy
or position or the U.S. Government.



5726

References
Steven Bethard. 2013. Cleartk-timeml: A minimal-

ist approach to tempeval 2013. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 2: Proceedings of the Seventh
International Workshop on Semantic Evaluation (Se-
mEval 2013), pages 10–14. Association for Compu-
tational Linguistics.

Steven Bethard, Leon Derczynski, Guergana Savova,
James Pustejovsky, and Marc Verhagen. 2015.
SemEval-2015 task 6: Clinical TempEval. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 806–814,
Denver, Colorado. Association for Computational
Linguistics.

Steven Bethard, James H. Martin, and Sara Klingen-
stein. 2007. Timelines from text: Identification
of syntactic temporal relations. In Proceedings of
the International Conference on Semantic Comput-
ing, ICSC ’07, pages 11–18, Washington, DC, USA.
IEEE Computer Society.

Steven Bethard, Guergana Savova, Wei-Te Chen, Leon
Derczynski, James Pustejovsky, and Marc Verhagen.
2016. SemEval-2016 task 12: Clinical TempEval.
In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages
1052–1062, San Diego, California. Association for
Computational Linguistics.

Steven Bethard, Guergana Savova, Martha Palmer,
and James Pustejovsky. 2017. SemEval-2017 task
12: Clinical TempEval. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 565–572, Vancouver,
Canada. Association for Computational Linguistics.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
501–506. Association for Computational Linguis-
tics.

Nate Chambers. 2013. Navytime: Event and time or-
dering from raw text. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 73–77, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. In ACL.

Nathanael Chambers, Shan Wang, and Dan Juraf-
sky. 2007. Classifying temporal relations between
events. In Proceedings of the 45th Annual Meeting
of the ACL on Interactive Poster and Demonstration
Sessions, ACL ’07, pages 173–176, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional lstm over depen-
dency paths. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
1–6.

Veera Raghavendra Chikka. 2016. CDE-IIITH at
SemEval-2016 task 12: Extraction of temporal in-
formation from clinical documents using machine
learning techniques. In Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016), pages 1237–1240, San Diego, Cal-
ifornia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural tem-
poral relation extraction. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 746–751, Valencia, Spain. Associa-
tion for Computational Linguistics.

Diana Galvan, Naoaki Okazaki, Koji Matsuda, and
Kentaro Inui. 2018. Investigating the challenges of
temporal relation extraction from clinical text. In
Proceedings of the Ninth International Workshop on
Health Text Mining and Information Analysis, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan,
Ralph Weischedel, and Nanyun Peng. 2019a. Deep
structured neural network for event temporal rela-
tion extraction. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 666–106, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Rujun Han, Qiang Ning, and Nanyun Peng. 2019b.
Joint event and temporal relation extraction with
shared representations and structured prediction. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 434–
444, Hong Kong, China. Association for Computa-
tional Linguistics.

Natsuda Laokulrat, Makoto Miwa, Yoshimasa Tsu-
ruoka, and Takashi Chikayama. 2013. Uttime: Tem-
poral relation classification using deep syntactic fea-
tures. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Pro-
ceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval 2013), pages 88–92,
Atlanta, Georgia, USA. Association for Computa-
tional Linguistics.

Hee-Jin Lee, Hua Xu, Jingqi Wang, Yaoyun Zhang,
Sungrim Moon, Jun Xu, and Yonghui Wu. 2016.

http://aclweb.org/anthology/S13-2002
http://aclweb.org/anthology/S13-2002
https://doi.org/10.18653/v1/S15-2136
https://doi.org/10.1109/ICSC.2007.101
https://doi.org/10.1109/ICSC.2007.101
https://doi.org/10.18653/v1/S16-1165
https://doi.org/10.18653/v1/S17-2093
https://doi.org/10.18653/v1/S17-2093
https://doi.org/10.3115/v1/P14-2082
https://doi.org/10.3115/v1/P14-2082
http://www.aclweb.org/anthology/S13-2012
http://www.aclweb.org/anthology/S13-2012
http://www.aclweb.org/anthology/Q14-1022
http://www.aclweb.org/anthology/Q14-1022
http://dl.acm.org/citation.cfm?id=1557769.1557820
http://dl.acm.org/citation.cfm?id=1557769.1557820
https://doi.org/10.18653/v1/S16-1192
https://doi.org/10.18653/v1/S16-1192
https://doi.org/10.18653/v1/S16-1192
https://doi.org/10.18653/v1/S16-1192
https://www.aclweb.org/anthology/E17-2118
https://www.aclweb.org/anthology/E17-2118
https://doi.org/10.18653/v1/W18-5607
https://doi.org/10.18653/v1/W18-5607
https://doi.org/10.18653/v1/K19-1062
https://doi.org/10.18653/v1/K19-1062
https://doi.org/10.18653/v1/K19-1062
https://doi.org/10.18653/v1/D19-1041
https://doi.org/10.18653/v1/D19-1041
http://www.aclweb.org/anthology/S13-2015
http://www.aclweb.org/anthology/S13-2015
http://www.aclweb.org/anthology/S13-2015


5727

UTHealth at SemEval-2016 task 12: an end-to-end
system for temporal information extraction from
clinical notes. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 1292–1297, San Diego, California. As-
sociation for Computational Linguistics.

Artuur Leeuwenberg and Marie-Francine Moens. 2017.
Structured learning for temporal relation extraction
from clinical records. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, volume 1, pages 1150–1158.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint, arXiv:1907.11692.

Inderjeet Mani, Marc Verhagen, Ben Wellner,
Chong Min Lee, and James Pustejovsky. 2006. Ma-
chine learning of temporal relations. In Proceedings
of the 21st International Conference on Compu-
tational Linguistics and the 44th Annual Meeting
of the Association for Computational Linguistics,
ACL-44, pages 753–760, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Tao Meng, Nanyun Peng, and Kai-Wei Chang. 2019.
Target language-aware constrained inference for
cross-lingual dependency parsing. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1117–1128, Hong
Kong, China. Association for Computational Lin-
guistics.

Yuanliang Meng and Anna Rumshisky. 2018. Context-
aware neural model for temporal information extrac-
tion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Yuanliang Meng, Anna Rumshisky, and Alexey Ro-
manov. 2017. Temporal information extraction for
question answering using syntactic dependencies in
an lstm-based architecture. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 887–896.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In EMNLP, Copenhagen, Denmark.

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018a.
Joint reasoning for temporal and causal relations.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2278–2288. Association for
Computational Linguistics.

Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth.
2018b. Improving temporal relation extraction with

a globally acquired statistical resource. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 841–851, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and
Dan Roth. 2018c. CogCompTime: A tool for under-
standing time in natural language. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 72–77, Brussels, Belgium. Association
for Computational Linguistics.

Tim O’Gorman, Kristin Wright-Bettner, and Martha
Palmer. 2016. Richer event description: Integrating
event coreference with temporal, causal and bridg-
ing annotation. In Proceedings of 2nd Workshop on
Computing News Storylines, pages 47–56. Associa-
tion for Computational Linguistics.

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, and
Lisa Ferro. 2003. The timebank corpus. In Corpus
linguistics, pages 647–656.

Alexander M. Rush and Michael Collins. 2011. Ex-
act decoding of syntactic translation models through
Lagrangian relaxation. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 72–82, Portland, Oregon, USA. Association
for Computational Linguistics.

Alexander M Rush and MJ Collins. 2012. A tutorial
on dual decomposition and lagrangian relaxation for
inference in natural language processing. Journal of
Artificial Intelligence Research, page 305–362.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507–513.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.
Evaluating temporal relations in clinical text: 2012
i2b2 challenge.

Buzhou Tang, Yonghui Wu, Min Jiang, Yukun Chen,
Joshua C Denny, and Hua Xu. 2013. A hybrid sys-
tem for temporal information extraction from clini-
cal text. Journal of the American Medical Informat-
ics Association, 20(5):828–835.

Julien Tourille, Olivier Ferret, Aurelie Neveol, and
Xavier Tannier. 2017. Neural architecture for tem-
poral relation extraction: a bi-lstm approach for de-
tecting narrative containers. In Proceedings of the

https://doi.org/10.18653/v1/S16-1201
https://doi.org/10.18653/v1/S16-1201
https://doi.org/10.18653/v1/S16-1201
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.18653/v1/D19-1103
https://doi.org/10.18653/v1/D19-1103
http://cogcomp.org/papers/NingFeRo17.pdf
http://cogcomp.org/papers/NingFeRo17.pdf
http://cogcomp.org/papers/NingFeRo17.pdf
http://aclweb.org/anthology/P18-1212
https://doi.org/10.18653/v1/N18-1077
https://doi.org/10.18653/v1/N18-1077
https://www.aclweb.org/anthology/D18-2013
https://www.aclweb.org/anthology/D18-2013
http://www.aclweb.org/anthology/W16-5706
http://www.aclweb.org/anthology/W16-5706
http://www.aclweb.org/anthology/W16-5706
https://www.aclweb.org/anthology/P11-1008
https://www.aclweb.org/anthology/P11-1008
https://www.aclweb.org/anthology/P11-1008
https://doi.org/10.1136/amiajnl-2013-001628
https://doi.org/10.1136/amiajnl-2013-001628


5728

55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 224–230.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
2007. Semeval-2007 task 15: Tempeval temporal
relation identification. In Proceedings of the 4th In-
ternational Workshop on Semantic Evaluations, Se-
mEval ’07, pages 75–80, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Marc Verhagen and James Pustejovsky. 2008. Tempo-
ral processing with the tarsqi toolkit. In 22Nd Inter-
national Conference on on Computational Linguis-
tics: Demonstration Papers, COLING ’08, pages
189–192, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Yan Xu, Yining Wang, Tianren Liu, Junichi Tsujii, and
Eric I-Chao Chang. 2013. An end-to-end system to
identify temporal relation in discharge summaries:
2012 i2b2 challenge. Journal of the American Med-
ical Informatics Association, 20(5):849–858.

Xu Yan, Wang Yining, Liu Tianren, Tsujii Junichi, and
Chang EI. 2013. An end-to-end system to iden-
tify temporal relation in discharge summaries: 2012
i2b2 challenge.

Katsumasa Yoshikawa, Sebastian Riedel, Masayuki
Asahara, and Yuji Matsumoto. 2009. Jointly identi-
fying temporal relations with markov logic. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP: Volume 1-Volume 1, pages 405–413. Asso-
ciation for Computational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification using
corpus-level constraints. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2979–2989, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Appendix

A Hyper-parameters

B Data Summary

C I2B2-TEMPORAL Results

We show the breakdown performance and con-
tributions of individual constraints for I2B2-
TEMPORAL in Table 8 and Table 9 respectively.

TimeBank-Dense I2B2-TEMPORAL

cE - 1.0
wEpos - 5.0
lr - 2e−5

α 5.0 5.0
θ 0.05 0.02
γ 0.7 0.8

Table 6: Hyper-parameters chosen using development
data. For TimeBank-Dense, end-to-end baseline model
is provided by the Han et al. (2019b), so we do not train
it from scratch.

TimeBank-Dense I2B2-TEMPORAL

# of Documents
Train 22 190
Dev 5 -
Test 9 120

# of Pairs
Train 4032 11253
Dev 629 -
Test 1427 8794

Table 7: Data overview. Note that we exclude event
pairs whose sentence distance longer than 3 in I2B2-
TEMPORAL, and there are 6 times more missing rela-
tions than the gold annotated ones in, which explains
why number of pairs per documents are smaller in
I2B2-TEMPORAL than in TimeBank-Dense.

D Reproducibility List

• Data and code used for TimeBank-Dense can
be found in project code base. However, due
to user confidentiality agreement, we are not
able to provide data and and data analysis code
for I2B2-TEMPORAL. Modeling code will be
added to the project code base upon obtaining
permission from the data owner.

• We use BERT-base-uncased and Roberta-
large models implemented in Huggingface
transformers. Additional parameters (such as
LSTM and MLP) are negligible compared to
those used in the pre-trained LMs;

• ILP is solved by an off-the-shelf solver pro-
vided by Gurobi optimizer;

• Range of grid-search. cE : (1.0, 2.0); wEpos :
(1.0, 2.0, 5.0, 10.0); lr: (1e−5, 2e−5, 5e−5), α:
(1.0, 2.0, 5.0, 10.0); θ: (0.2, 0.3, 0.5); γ: (0.7,
0.8, 0.9).
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End-to-end Baseline End-to-end Inference
P R F1 P R F1

B 82.1 60.6 69.7 80.9 65.3 72.2
A 69.9 59.9 64.5 67.8 62.8 65.2
O 81.3 81.5 81.4 83.6 80.2 81.9

TempEval 73.3 79.9 76.5 74.0 80.8 77.3

Table 8: Model performance breakdown for I2B2-
TEMPORAL. BEFORE (B), AFTER (A), OVERLAP (O).

Constraint Triplets Prob. Gap F1

occur., problem, OVERLAP -0.17 +0.19%
occur., treatment, OVERLAP -0.16 +0.24%
treatment, occur., OVERLAP -0.11 +0.22%
treatment, problem, OVERLAP -0.14 +0.12%
Combined F1 Improvement 0.77%

Table 9: I2B2-TEMPORAL ablation study: gap shrink-
age of predicted probability and F1 contribution per
constraint.


