
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5357–5367,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5357

Biomedical Event Extraction as Sequence Labeling

Alan Ramponi♦♣ Rob van der Goot♠ Rosario Lombardo♣ Barbara Plank♠
♦Department of Information Engineering and Computer Science, University of Trento, Italy

♠Department of Computer Science, IT University of Copenhagen, Denmark
♣Fondazione the Microsoft Research – University of Trento

Centre for Computational and Systems Biology (COSBI), Italy
ramponi@cosbi.eu, robv@itu.dk, lombardo@cosbi.eu, bapl@itu.dk

Abstract

We introduce Biomedical Event Extraction
as Sequence Labeling (BEESL), a joint end-
to-end neural information extraction model.
BEESL recasts the task as sequence labeling,
taking advantage of a multi-label aware encod-
ing strategy and jointly modeling the interme-
diate tasks via multi-task learning. BEESL is
fast, accurate, end-to-end, and unlike current
methods does not require any external knowl-
edge base or preprocessing tools. BEESL out-
performs the current best system (Li et al.,
2019) on the Genia 2011 benchmark by 1.57%
absolute F1 score reaching 60.22% F1, es-
tablishing a new state of the art for the task.
Importantly, we also provide first results on
biomedical event extraction without gold en-
tity information. Empirical results show that
BEESL’s speed and accuracy makes it a viable
approach for large-scale real-world scenarios.1

1 Introduction

Biomedical event extraction provides invaluable
means for assisting domain experts in the cura-
tion of knowledge bases and biomolecular path-
ways (Ananiadou et al., 2010). While the task has
received significant attention in research over the
last decade, it remains challenging. Progress has
been rather stagnating (see Figure 1).

Events are typically highly complex and nested
structures, which require deep contextual knowl-
edge to resolve. This is particularly the case
for biomedical NLP (Kim et al., 2011), where
biomolecular events can be nested (Miwa et al.,
2014) and long-distance arguments are frequent (Li
et al., 2019). Figure 2 shows an example with four
events. Each event consists of an event mention
(trigger) and one or more arguments. For instance,
there is a +REGULATION event triggered by the

1The source code is available at https://github.
com/cosbi-research/beesl.
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Figure 1: Performance of biomedical event extraction
on the BioNLP Genia 2011 test set over time.

span “induced”, with a PROTEIN entity (i.e., “IL-
12”) as CAUSE and a nested +REGULATION event
(i.e., “activation”) as THEME. Many state-of-the-
art biomedical event extraction systems still work
as a pipeline and extract event triggers and their
arguments independently (Björne and Salakoski,
2018; Li et al., 2019). They typically employ de-
pendency parsing as features in a CNN model en-
semble (Björne and Salakoski, 2018) or in Tree-
LSTMs with knowledge bases (Li et al., 2019).

We propose a new approach for biomedical event
extraction by casting it as a sequence labeling task
(BEESL). Our approach is conceptually simple:
we convert the event structures into a represen-
tation suitable for sequence labeling, and lever-
age a multi-label aware decoder with BERT (De-
vlin et al., 2019) in a multi-task sequence labeling
model. This reduces the problem to predicting a
structured output for an input sequence to word-
level tagging decisions. Compared to previous al-
ternatives (cf. Section 7) which cast event extrac-
tion as syntactic or semantic tree- or graph-parsing
task, this leads to a faster, joint model which also
mitigates error propagation of locally-optimized
classifier pipelines (Björne and Salakoski, 2018;

https://github.com/cosbi-research/beesl
https://github.com/cosbi-research/beesl
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Figure 2: Top: a text excerpt with four biomedical events. Above the text (italicized), mentions (triggers inside
rounded boxes, and entities without rounded boxes) and argument roles are indicated. Bottom: our proposed
encoding, where d, r and h represent the label parts for dependents, relations, and heads, respectively.

Li et al., 2019). Our empirical evaluation shows
the effectiveness of BEESL for biomedical event
extraction. A quantitative and qualitative analysis
shows that BEESL is fast and effective. Despite
the model’s simplicity, BEESL outperforms the
previous best model (Li et al., 2019) on most event
categories.

Contributions To the best of our knowledge, we
are the first to cast biomedical event extraction as
sequence labeling. We demonstrate that BEESL
is an attractive and efficient solution to extract
biomedical events. We evaluate it on the BioNLP
Genia 2011 benchmark, obtaining a new state of the
art (cf. Figure 1), while gaining on efficiency. We
additionally provide empirical results of the impact
of alternative multi-task encodings, and to the best
of our knowledge, the first results of biomedical
event extraction without assuming gold entities.

2 Encoding Event Structures

This section introduces the event structures and
how we encode them for sequence labeling.

2.1 Event structures

Events are structured representations which com-
prise multiple information units (Figure 2, top). An
event is anchored to a trigger, a text span which in-
dicates the presence of an event (Figure 2, rounded
boxes). Each event has one or more arguments,
namely entities or other events (Figure 2, end of
arrows), which are assigned a role in the event (Fig-
ure 2, labels on arrows). For example, an EXPRES-
SION event is indicated in Figure 2 at “production”
involving the PROTEIN “IL-10” as its argument.
Nested structures are possible and frequent. For in-
stance, the +REGULATION event centered on “acti-
vation” is both argument of the “induced”-anchored
event as well as the “promote”-anchored event.

2.2 Sequence labeling encoding

Given [x1, ..., xn] a sequence of n tokens, we
encode event structures as token-level labels
[y1, ..., yn], to reduce the task to a sequence label-
ing problem. Adopting dependency parsing termi-
nology, we encode the label yi for each token xi
as a tuple 〈d, r, h〉, where d is the dependent and
refers to the token and its mention type (either trig-
ger, entity, or nothing), r is the relation and used to
refer to its role, and head (h) denotes the event the
token refers to (Figure 2, bottom). In more detail,
to discriminate event heads with the same type in
text, we encode the heads h as relative head men-
tion position.2 For instance, h = +REG+1 means
the head is the first +REGULATION on the right
of d in the relative surface order, whereas h =
+REG−2 means it is the second +REGULATION on
the left. In Figure 2 the label for “production” is
〈EXPRESSION, THEME, +REG−1〉, denoting the
token is an EXPRESSION trigger, THEME of the
first +REGULATION event on the left.

As opposed to dependency parsing, tokens may
have zero or multiple roots, and thus multiple heads
and relations. This poses additional challenges.
For instance, the “activation”-anchored event (Fig-
ure 2) is both THEME and CAUSE of “induced”-
and “promote”-anchored event heads, respectively.
As a result, both r and h are multi-label, and the la-
bel for “activation” is encoded as 〈+REGULATION,
[THEME, CAUSE], [+REG−1, +REG+1]〉, where
the order of r and h items is preserved.

3 Event Extraction as Sequence Labeling

Formally, we aim to learn a function f : X 7→ Y
that assigns each token xi a structured label yi, i.e.,

2In preliminary experiments we found this mitigates the
label sparsity problem of other positional encodings, e.g., rela-
tive positional encoding (Strzyz et al., 2019). We additionally
found relative head mention positions≥ 2 are rare in our data.
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Figure 3: BEESL uses a multi-task multi-label model,
using a BERT encoder with layer attention, and dedi-
cated decoders for predicting the labels for each label
sub-space, which are trivially merged.

〈d, r, h〉. A straightforward solution is to predict
the label yi as an atomic entity (i.e., single label)
in a single-task model. For BEESL, we instead
propose to use multi-task learning (MTL) which al-
lows to learn interdependencies while cutting down
the label space, paired with multi-label prediction.

An overview of BEESL is shown in Figure 3.
We use BERT (Devlin et al., 2019) as encoder, pre-
trained on biomedical texts (Section 4). We mask
entity spans for better generalization (Alt et al.,
2019). The first WordPiece (Schuster and Naka-
jima, 2012) of each token xi is used for prediction,
where the contextual hidden representation ei of
the token xi is encoded with layer-wise attention
over the BERT layers, similarly to (Peters et al.,
2018; Kondratyuk and Straka, 2019). As decoders,
we use standard softmax with a cross entropy loss
unless otherwise specified, and introduce a multi-
label decoder (Section 3.2) (Figure 3, upper right).

We empirically evaluate both single-task and
multi-task setups, including several MTL encod-
ing alternatives, discussing their limitations and
benefits. In the following, we first introduce the
multi-task setups, and then multi-label decoding.

3.1 Multi-task strategies

We denote the label spaces for each component of
the labels as di ∈ D, ri ∈ R, and hi ∈ H . Further,

we use L to refer to the maximum label space size.

Single-task A single-task (ST) setup is used as
a baseline. It predicts a single label yi = 〈d, r, h〉
for each input token xi. The label space is up to
L = |D| × |R| × |H|.

Multi-task The label yi for each token xi is de-
composed into parts (hereafter, sub-labels), each
treated as a prediction task. The decomposition of
the label space allows each sub-label space to be
framed as a different task with its own private de-
coder, mitigating the output space sparsity (Vilares
et al., 2019). Depending on the decomposition of
the label yi = 〈d, r, h〉, we have four multi-task
learning options (pairs of tasks, or each subpart as
a task, respectively) with the following properties:

1. 〈d〉, 〈r, h〉: up to L = |D|+ |R| × |H|;

2. 〈d, r〉, 〈h〉: up to L = |D| × |R|+ |H|;

3. 〈d, h〉, 〈r〉: up to L = |D| × |H|+ |R|;

4. 〈d〉, 〈r〉, 〈h〉: up to L = |D|+ |R|+ |H|.

Option 4 encodes each subpart as its own task.
While this leads to the smallest label space, it de-
couples the problem into 3 separate tasks. Options
1-3 are pair-wise task setups. We hypothesize that
BEESL benefits from disentangling mention detec-
tion from head labeling (option 1).

As illustrated in Figure 3, BEESL uses the pre-
dicted sub-labels to form the complete label tuple
ŷi = 〈d̂, r̂, ĥ〉. In case r and h belong to different
sub-label spaces (as is possible in options 2-4), we
require that both predictions r̂ and ĥ are present
(non-empty) to ensure well-formedness. This is a
downside of these alternative options 2-4, as we
will see empirically (Section 5).

During training, the MTL loss is computed as
L =

∑
t λtLt, where Lt is the loss for each task

t, given by the respective decoder (see also Sec-
tion 3.2), with λt a task-specific weighting param-
eter. In our experiments we kept λ = 1.0 for all,
since preliminary experiments showed weighting
sub-tasks differently was not beneficial. In the
single-task setup, the loss reduces to L = Lt.

3.2 Multi-label decoder
The multi-label decoder is designed to handle multi-
ple labels per token, thus being suitable for predict-
ing relations and heads. Given a task with lj ∈ L
labels, it models P (lj |ei) for each label lj . Dif-
ferently from the single-label decoder, each label
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Item Train Dev Test

Documents 908 259 347
Sentences 8,664 2,888 3,363
Tokens 230,737 74,334 90,091

Entities 11,625 4,690 5,301
Events 10,310 3,250 4,487

Table 1: Statistics of the Genia 2011 event dataset.

is predicted with a sigmoid, where all contribute
equally to the loss. Given the probabilities P (lj |ei)
for the lj ∈ L labels and a threshold τ , the to-
ken xi is assigned all the labels lj with probability
P (lj |ei) ≥ τ . If no P (lj |ei) ≥ τ is found, we take
the highest scoring label lj (which may also be
empty) as a fallback.3 We employ a binary cross-
entropy loss, averaged across all batches.

4 Experimental Setup

We evaluate BEESL on the Genia 2011 bench-
mark (Kim et al., 2011), which comprises both
abstracts and full-texts. The corpus consists of an-
notations for PROTEIN entities and 9 fine-grained
event types. The Genia event extraction tasks ex-
pect both texts and entities as input, and complete
events need to be predicted. Statistics on the dataset
are shown in Table 1.

Event types can be categorized into simple, bind-
ing and complex events, related to the number and
types of arguments. Simple events require a THEME

only, binding events require one or more THEME

arguments, while complex events take both THEME

and CAUSE arguments, where both can in turn be
other events, resulting in nested structures. Björne
and Salakoski (2011) estimated that 37.2% of the
events in the data are nested. We refer the reader to
Appendix A.1 for formal event definitions.

BEESL is based on MaChAmp (van der Goot
et al., 2020), a toolkit for multi-task learning
and fine-tuning of BERT-like models. We extend
MaChAmp to also handle multi-label sequence la-
beling. We experiment with BEESL in single- and
different multi-task setups.

After sequence labeling, token-level labels are
converted into the official BioNLP-ST standoff for-
mat for evaluation (Kim et al., 2011). We simply
split the event arguments based on their formal
definition, producing complete structures (e.g., an

3In case τ = 0 ∨ τ = 1, we adopt the same strategy, since
all or no labels would be potentially predicted, respectively.

EXPRESSION event with k THEME arguments is
split into k EXPRESSION events, with one THEME

each). Similarly to previous work, we focus on
sentence-level events. We used BioBERT-Base
1.1 as our BERT model for experiments, since it
provides state-of-the-art performance across mul-
tiple biomedical information extraction tasks (Lee
et al., 2019). For multi-label decoding, we tune the
threshold τ for each setup (yielding τMT = 0.5
and τST = 0.7). Other hyper-parameter values and
tuning details are provided in Appendix A.2.

Evaluation In line with previous work, we eval-
uate BEESL in terms of precision (P), recall (R),
and F1 score according to the approximate recur-
sive span matching criterion (Kim et al., 2011) us-
ing the official BioNLP online evaluation service.4

For early stopping during training, we employ the
simpler span-based F1 score (as used in named en-
tity recognition) as our proxy metric. We found it
highly correlates with the approximate recursive
span based F1 official metric.

No gold entities In biomedical event extraction,
entities are typically given in advance. To evalu-
ate BEESL in a setup with predicted entities (Sec-
tion 6.3), we firstly employ our model as single-
task sequence labeler for BIO-tagged entity men-
tions using default settings and a standard CRF
decoder (Gardner et al., 2018). Note that for com-
parison purposes in all other experiments we as-
sume entity mentions are gold-tagged. Then, we
evaluate BEESL with raw texts and predicted enti-
ties as input, thus indirectly penalizing events that
take over-predicted entities or that miss entities
since they are under-predicted.

5 Results

First, we evaluate the MTL and multi-label decod-
ing strategies on the development set to determine
the best setup (Sections 5.1, 5.2). Then, we com-
pare BEESL to the results obtained by the top
performing systems on the official test set (Sec-
tion 5.3). Finally, we gauge its speed (Section 5.4).

5.1 Multi-task settings

Table 3 (top) summarizes the main results for the
MTL experiments. They confirm our hypothesis
that 〈d〉, 〈r, h〉 (option 1) is the most viable repre-
sentation; it leads to the highest F1 score, largely

4http://bionlp-st.dbcls.jp/GE/2011/
eval-test/.

http://bionlp-st.dbcls.jp/GE/2011/eval-test/
http://bionlp-st.dbcls.jp/GE/2011/eval-test/
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Work Method P R F1

Riedel et al. (2011) FAUST – Model combination (joint+parsing) 64.75 49.41 56.04
Miwa et al. (2012) EventMine – SVM pipeline (+coref) 63.48 53.35 57.98
Venugopal et al. (2014) BioMLN – SVM pipeline & MLN (joint) 63.61 53.42 58.07
Majumder et al. (2016) Stacked generalization 66.46 48.96 56.38

Björne and Salakoski (2018) TEES – CNN pipeline (single model) 64.86 50.53 56.80
Björne and Salakoski (2018) TEES – CNN pipeline (5x ensemble) 68.76 49.97 57.87
Björne and Salakoski (2018)* TEES – CNN pipeline (mixed 5x ensemble) 69.45 49.94 58.10
Li et al. (2019) BiLSTM pipeline 62.18 48.44 54.46
Li et al. (2019) Tree-LSTM pipeline 64.56 50.28 56.53
Li et al. (2019) KB-driven Tree-LSTM pipeline 67.01 52.14 58.65

BEESL Multi-task neural sequence labeling 69.72 53.00 60.22

Table 2: Performance comparison on the test set of BioNLP Genia 2011. *indicates that the system was trained on
training plus part of development data. BEESL uses the official training portion only. Top: traditional ML systems;
Middle: state-of-the-art neural systems; Bottom: proposed multi-task sequence labeling system.

Multi-task P R F1

〈d〉, 〈r, h〉 71.28 55.44 62.37
〈d, r〉, 〈h〉 72.35 51.31 60.04
〈d, h〉, 〈r〉 73.51 49.49 59.16
〈d〉, 〈r〉, 〈h〉 73.05 51.34 60.30

Multi-label P R F1

BEESLST 73.30 52.42 61.13
with multi-label 71.74 56.71 63.34

BEESLMT 71.28 55.44 62.37
with multi-label 71.84 59.42 65.04

Table 3: Performance of diverse settings for BEESL
(multi-task and multi-label) on the development set.

outperforming the other MTL options, particularly
in recall. These results show that a multi-task setup
with separate tasks for mention detection and head
labeling, respectively, is the most useful. Option
1, i.e., 〈d〉, 〈r, h〉 defaults to the multi-task option
for BEESL (Figure 3) used in the following experi-
ments.

5.2 Adding the multi-label decoder

We evaluate the multi-label decoder for both single-
task (BEESLST ) and multi-task (BEESLMT ) se-
tups (Table 3, bottom). Multi-label decoding is
beneficial, as the data contains many multi-headed
tokens, and modeling them improves both setups.
Single task performance increases substantially,
from 61.13 to 63.34 F1 score. Similar signifi-

cant performance gains are observed for multi-task
learning, from 62.37 to 65.04 F1 score. Regardless
of the multi-label modeling, the multi-task setup
provides the highest overall performance.

5.3 Comparison to the state of the art

We now compare the multi-task multi-label BEESL
to the top performing systems (hereafter, simply
BEESL). As shown in Table 2, BEESL outperforms
the state-of-the-art by a large margin, i.e., an abso-
lute improvement of 1.57 points in F1 score over
the KB-Tree LSTM model (Li et al., 2019) (here-
after, KBTL). It improves over both precision and
recall, and yields a new state of the art with an F1
score of 60.22%, yet being conceptually simple.

Table 4 compares F1 scores of BEESL to the
previous best model on a per-event level (precision
and recall are provided in Appendix A.3). BEESL
outperforms the KBTL approach (Li et al., 2019)
overall on 7 out of the 9 event types. From a coarse-
grained perspective, BEESL outperforms KBTL
on simple, binding, and complex event categories.
Particularly, improvements over KBTL on simple
events are as large as +13% F1 score. Furthermore,
noticeable are also the improvements for binding
and nested, complex events, for which our model
achieves 50.19% and 48.32% F1 score. From a
closer look, the recall of BEESL on simple events
is substantially higher than KBTL, which ease a
correct identification of complex events.

Next, we look at performance per text type (i.e.,
abstract and full-text subsets). BEESL achieves
62.14% F1 score on abstracts-only documents,
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Event type BEESL KBTL

Simple events 79.31 78.73
Gene expression 80.90 80.28
Transcription 69.46 75.39
Protein catabolism 74.07 60.87
Phosphorylation 89.52 84.36
Localization 69.51 68.47

Binding 50.19 44.10

Complex events 48.32 47.72
Regulation 45.90 43.52
Positive regulation 49.41 48.26
Negative regulation 47.17 49.02

All events 60.22 58.65

Table 4: Per-event performance of BEESL and KBTL
(KB-driven TreeLSTM) (Li et al., 2019) on the test set.

and 55.59% F1 score on full-texts. This confirms
that full-texts are harder to process than abstracts,
due to the differences in structural and content as-
pects (Cohen et al., 2010).

To sum up, BEESL handles events well, and
unlike most prior work, does not use knowledge
bases or dependency parsers as pre-processing step.
BEESL uses multi-task learning with a contextual
encoder and multi-label aware decoding, herewith
bringing progress to the biomedical event extrac-
tion task as illustrated in Figure 1.

5.4 Speed comparison

We compare BEESL to TEES, the Turku Event
Extraction System (Björne and Salakoski, 2018)
to compare their speed at inference time on com-
modity hardware. TEES is the 2nd top-performing
system (Figure 1), and its code is freely available.
To the best of our knowledge, the source code of (Li
et al., 2019) is not yet available.

Results in Table 5 show that BEESL is ∼2x
faster and ∼5x faster on a consumer grade
CPU5 than TEES single and ensemble system,
respectively. In terms of sentences per minute,
BEESL processes ∼500 sents/min compared to
255 sents/min and 101 sents/min in TEES single
(3.42% lower F1) and ensemble (2.12% lower F1),
respectively.

sents/min

TEES (single) 255±1
TEES (ensemble) 101±1

BEESL 499±3

Table 5: Speed comparison to TEES (Björne and
Salakoski, 2018) single and ensemble models at infer-
ence time. Results are sents/min, averaged over 5 runs.

Setting P R F1

BEESL 71.84 59.42 65.04
– multi-task 71.66 56.95 63.47

– multi-label 74.28 52.39 61.44

Table 6: Ablation study on BEESL when removing
the multi-task capability (i.e., replacing MTL with in-
dependent classifiers) and the multi-label handling.

6 Analysis and Discussion

To gain insights about BEESL, we shed more light
on several aspects. Firstly, we analyze how much
BEESL gains from multi-task learning, compared
to using a powerful contextualized BERT encoder
alone in a single-task learning setup and a formula-
tion with two independent classifiers (Section 6.1).
Then, we quantify the stability of the threshold τ of
the multi-label decoder (Section 6.2). We also aim
to get deeper insight on model performance with-
out gold entities (Section 6.3), and qualitatively
study the sources of prediction errors of BEESL
(Section 6.4).

6.1 How important is multi-task learning?

As opposed to running one single model which
models 〈d〉 and 〈r, h〉 jointly in a multi-task setup,
we also compare to single-task (ST) and an experi-
ment in which we formulate two classifiers which
predict the two labels from the best MTL setup sep-
arately. This allows us to gauge the effectiveness of
the multi-task learning approach compared to local
classifiers which use strong BERT-based encoding,
and compared to predicting an atomic label in ST.

Results in Table 6 confirm that leveraging a
shared encoder and multi-task learning for both
triggers and heads is crucial. Without multi-task
learning and multi-label decoding, the F1 score
drops to 61.44 (independent classifiers) and 61.13

5Intel Core i5-6360U (2 cores).
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Setting F1 ∆

BEESLST (multi-label) 63.34
with best-only prediction 62.87 -0.47

BEESLMT (multi-label) 65.04
with best-only prediction 64.54 -0.50

Table 7: Ablation study on the threshold τ of the multi-
label decoder (“with best-only predicion”: τ = 1.0).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
63.75

64

64.25

64.5

64.75

65

65.25

τ value

F
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Figure 4: Stability of the threshold τ . Values in the
range 0.3-0.7 only minimally alter BEESL scores.

(ST setup, BEESLST in Table 3). Adding multi-
label decoding helps, as expected. However, the
full power of BEESL is only achieved by using
both the multi-task and the multi-label approach,
which leads to the novel state of the art.

6.2 How brittle is BEESL to the threshold τ?

As shown in Table 3, using a multi-label decoder
largely increases the performance of a system with
a single-label decoder (from 62.37 to 65.04 F1
score). However, what is left is how much the
threshold τ impacts the performance. To get in-
sights on it, we firstly performed an ablation study
setting τ = 1.0. As introduced in Section 3.2, this
reduces to predicting the highest scoring label only
– however, in a reduced label space induced by the
multi-label aware decoder. We found only part of
the improvement is due to the threshold τ in both
multi-task and single-task settings (+0.50% and
+0.47%, respectively) (Table 7).

Moreover, we evaluated BEESL with different
τ values. As shown in Figure 4, a threshold in
the range 0.3-0.7 only marginally alters the results,
which are still better than predicting the highest
scoring label only (τ = 1.0).

6.3 What is the effect of using gold entities?

The standard in biomedical event extraction is to
evaluate the performance of a system on gold en-

P R F1

BEESL 71.84 59.42 65.04
– gold entities 66.15 54.09 59.51

Table 8: Performance of BEESL with no gold entities.

Error type Fraction

Trigger
Under-prediction 31.43%
Over-prediction 28.57%
Wrong type 10.00%

Argument
Under-prediction 22.86%
Over-prediction 7.14%
Wrong type 0.00%

Table 9: Error analysis on a random sample of 30 doc-
uments from the development set.

tities. In real-world situations it is unlikely that
the data is annotated for entities. We believe it is
important to estimate the impact non-gold entities
have on system performance (hereafter, silver enti-
ties). The performance of the entity prediction on
the development set is 87.95 span-based F1 score.

The results on the event extraction task using
silver entities are shown in Table 8. The overall
drop in F1 amounts to around 5%, and it is well-
balanced across precision and recall. This shows
that BEESL’s performance is clearly affected, but
that the system is relatively robust to noisy, non-
gold silver entities. We believe that this perfor-
mance gap can be further minimized by using jack-
knifing (Agić and Schluter, 2017) to reduce data
mismatch, however, this requires to align the pre-
dicted entities with the existing events in the train-
ing data, which is non-trivial, and we leave this for
future work.

6.4 What are the sources of errors?

We randomly sampled 30 documents (comprising
168 gold events) from the development set for a
manual scrutiny for sources of errors. We classified
errors into two broad categories, namely trigger
and argument errors. Further, we classify them
in fine-grained categories based on the type of er-
ror, namely under-prediction, over-prediction, and
wrong type. Table 9 summarizes the results.

We notice the largest fraction of errors is due to
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trigger errors. From a closer look, under-predicted
triggers account for 31.43% of the total, whereas
over-predicted triggers for 28.57%. We investi-
gated the reason for these errors, finding that over-
predicted triggers are often due to generic words
used very frequently to indicate specific trigger
types. For instance, BEESL identifies the +REG-
ULATION event anchored at “activated” in the fol-
lowing sentence: “Tax [...] maximally activated
HTLV-I-LTR-CAT and kappa B-fos-CA” albeit the
gold standard does not contain the event in this
instance. However, from a semantic point of view
we believe these errors are acceptable. Other cases
include the words such as “detected” and “influ-
ences”, which are often used as EXPRESSION and
REGULATION event triggers, respectively.

Under-prediction of triggers is instead due to a
variety of reasons. Both rare words (e.g., a +REG-
ULATION event centered on “co-transfected”) and
uncertain events account for a large fraction of this
error type. An example of uncertain event is repre-
sented by the +REGULATION trigger “importance”
in the sentence “[...] importance of NF-kappa B in
LT gene expression”, that BEESL does not predict.

Wrongly typed triggers represent only 10% of
the errors. An example is represented by ambigu-
ous trigger types. In the sentence “T cells upregu-
lates A3G mRNA levels”, BEESL classifies “levels”
as an EXPRESSION trigger, while the gold annota-
tion indicates it is a TRANSCRIPTION trigger. By a
closer look, we found some triggers in the corpora
are annotated as EXPRESSION and TRANSCRIP-
TION types interchangeably. This is due to the fact
a TRANSCRIPTION is a gene EXPRESSION.

Regarding the identification of arguments, over-
predictions are quite uncommon. If erroneous, the
main error we found may benefit from syntactic
information, which we aim to integrate in a multi-
task setup in future work. We found no misclas-
sification of arguments in our document samples.
Under-prediction of arguments are instead mostly
due to under-predicted events.

7 Related Work

Biomedical event extraction has a long-standing
tradition (Riedel et al., 2011; Miwa et al., 2012;
Vlachos and Craven, 2012; Venugopal et al., 2014;
Majumder et al., 2016). Current work has ex-
plored neural methods and uses multiple classi-
fication stages. Namely, first identifying trigger
mentions, and then evaluating all entity pairs (Li

et al., 2019; Björne and Salakoski, 2018). They
come with the shortcomings of traditional pipeline
methods. Many studies use dependency parsers to
obtain features or for guidance of Tree-LSTMs (Li
et al., 2019; Björne and Salakoski, 2018).

Recent work in syntactic parsing has shown that
reducing parsing to sequence labeling is a viable
alternative for both constituent and dependency
parsing (Spoustová and Spousta, 2010; Gómez-
Rodrı́guez and Vilares, 2018; Strzyz et al., 2019),
which we took as inspiration. Moreover, earlier
work framed biomedical event extraction as syntac-
tic and semantic tree- or graph-parsing (McClosky
et al., 2011; Rao et al., 2017). In particular, Mc-
Closky et al. (2011) do dependency parsing, fol-
lowed by a second-stage parse reranker model for
event extraction, and Rao et al. (2017) cast the
problem as subgraph identification problem.

Joint learning for biomedical event extraction
was explored in early work (Riedel and McCallum,
2011; Venugopal et al., 2014; Vlachos and Craven,
2012). Contemporary to our work, a very recent
study proposes oneIE, a joint learning model for
event extraction (Lin et al., 2020). It proposes a sin-
gle end-to-end model for event extraction using 4
stages, paired with a beam search, obtaining good
results on ACE data. Processing multiple heads
has previously been done for relation extraction us-
ing multi-head selection (Bekoulis et al., 2018a,b),
and sequence labeling has been employed for joint
entity and relation classification (Dai et al., 2019)
with inter-token attention. We employ it at the
token-level for multi-label sequence labeling.

8 Conclusion

This paper proposes BEESL, a new end-to-end
biomedical event extraction system which is both
efficient and accurate. BEESL is broadly applica-
ble to event extraction and other tasks that can be
recast as sequence labeling. The system’s strength
comes from the joint multi-task modeling paired
with multi-label decoding, which aids interdepen-
dencies between the tasks and is superior to alterna-
tive decoders based on strong contextualized BERT
embeddings. BEESL is fast, and achieves state-
of-the-art performance on the Genia 2011 event
extraction benchmark without the need of external
tools for features and resources such as knowledge
bases. Our analysis shows that BEESL works very
well across event types.

We release the code freely, to foster research
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on using BEESL for other NLP tasks as well, e.g.,
enhanced dependency parsing, fine-grained named
entity recognition, and semantic parsing.
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Christoph Alt, Marc Hübner, and Leonhard Hennig.
2019. Improving relation extraction by pre-trained
language representations. In Proceedings of AKBC
2019.

Sophia Ananiadou, Sampo Pyysalo, Jun’ichi Tsujii,
and Douglas Kell. 2010. Event extraction for sys-
tems biology by text mining the literature. Trends in
biotechnology, 28(7):381–390.

Giannis Bekoulis, Johannes Deleu, Thomas Demeester,
and Chris Develder. 2018a. Adversarial training
for multi-context joint entity and relation extrac-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2830–2836, Brussels, Belgium. Association
for Computational Linguistics.

Giannis Bekoulis, Johannes Deleu, Thomas Demeester,
and Chris Develder. 2018b. Joint entity recogni-
tion and relation extraction as a multi-head selection
problem. Expert Systems with Applications, 114:34–
45.

Jari Björne and Tapio Salakoski. 2011. Generaliz-
ing biomedical event extraction. In Proceedings of
BioNLP Shared Task 2011 Workshop, pages 183–
191, Portland, Oregon, USA. Association for Com-
putational Linguistics.

Jari Björne and Tapio Salakoski. 2018. Biomedi-
cal event extraction using convolutional neural net-
works and dependency parsing. In Proceedings of
the BioNLP 2018 workshop, pages 98–108, Mel-
bourne, Australia. Association for Computational
Linguistics.

K Bretonnel Cohen, Helen L Johnson, Karin Verspoor,
Christophe Roeder, and Lawrence E Hunter. 2010.

The structural and content aspects of abstracts versus
bodies of full text journal articles are different. BMC
bioinformatics, 11(1):492.

Dai Dai, Xinyan Xiao, Yajuan Lyu, Shan Dou, Qiao-
qiao She, and Haifeng Wang. 2019. Joint ex-
traction of entities and overlapping relations using
position-attentive sequence labeling. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 6300–6308.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.
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A Appendix

A.1 Data and formal event definitions

Events on the Genia 2011 benchmark follow the
formal specification detailed in Table 10. The full
data can be downloaded from the official portal.6

Event type Arguments

Simple events
Gene expression Theme(P)
Transcription Theme(P)
Protein catabolism Theme(P)
Phosphorylation Theme(P)
Localization Theme(P)

Binding Theme(P)+

Complex events
Regulation Theme(P/E), Cause(P/E)
Positive regulation Theme(P/E), Cause(P/E)
Negative regulation Theme(P/E), Cause(P/E)

Table 10: Formal definition of events. P: PROTEIN, E:
any event type, +: 1 or more arguments.

A.2 Hyper-parameters

The list of hyper-parameter values and the search
space are presented in Table 11, whereas the num-
ber of trainable parameters in BEESL is ≈ 110M .
For tuning, we started from the values reported
in previous works on multi-task learning for NLP
evaluation benchmarks, e.g., UDify (Kondratyuk
and Straka, 2019). We performed 32 search trials
via grid search, in which “batch size” and “base
learning rate” have been coupled – (32, 1e−3) and
(64, 1e−2). Additional 9 search trials have been
performed for threshold τ selection for the BEESL
multi-task multi-label model. We used the offi-
cial approximate recursive span matching based
F1 score for model selection, whereas the sum of
span-based F1 scores of the tasks was employed to
determine early stopping of the training process.

A.3 Miscellaneous

Technical details Texts have been tokenized and
segmented using scispaCy 0.2.4 (Neumann et al.,
2019). In our data it is uncommon that multiple
contiguous triggers have the same type, so BIO
encoding is not needed. In the rare case of overlap-
ping event triggers of different types, we create a
single label d concatenating their types. Similarly

6http://bionlp-st.dbcls.jp/GE/2011/
downloads/

Hyper-parameter Value Space

Optimizer Adam
β1, β2 0.9,0.99
Weight decay 0.01
Gradient clipping 10
Dropout 0.5 0.1, 0.3, 0.5
BERT dropout 0.1 0.1, 0.2
Mask probability 0.1 0.1, 0.15, 0.2
Layer dropout 0.1
Batch size 64 32, 64
Base learning rate 1e−2 1e−3, 1e−2
BERT learning rate 5e−5

Epochs 50
Patience 5

Multi-label threshold 0.5 0.1, 0.2, ..., 1.0

Table 11: Hyper-parameter values and search space.

to previous work, for BINDING events with multi-
ple THEME arguments we employ a simple heuris-
tic to convert them into the BioNLP-ST standoff
format (Vlachos and Craven, 2012). For speed ex-
periments with TEES (Björne and Salakoski, 2018),
we removed extra modules for a fair comparison.

Detailed per-event scores We present in Ta-
ble 12 a complementary view of scores (i.e., with
precision and recall) of BEESL and the previous
state of the art (Li et al., 2019) on a per-event level.

BEESL KBTL
Event type P R F1 P R F1

Simple events 84.17 74.98 79.31 85.95 72.62 78.73
Gene expression 84.55 77.54 80.90 87.24 74.35 80.28
Transcription 72.50 66.67 69.46 82.31 69.54 75.39
Protein catabolism 83.33 66.67 74.07 87.50 46.67 60.87
Phosphorylation 94.05 85.41 89.52 87.28 81.62 84.36
Localization 83.21 59.69 69.51 80.28 59.69 68.47

Binding 65.36 40.73 50.19 53.16 37.68 44.10

Complex events 58.54 41.14 48.32 55.73 41.73 47.72
Regulation 62.22 36.36 45.90 53.61 36.62 43.52
Positive regulation 60.14 41.93 49.41 57.90 41.37 48.26
Negative regulation 53.19 42.38 47.17 52.39 46.06 49.02

All events 69.72 53.00 60.22 67.01 52.14 58.65

Table 12: Detailed per-event performance of BEESL
and KBTL (KB-driven TreeLSTM) on the test set.

Upper bound of the encoding We quantified the
upper bound of our encoding strategy by directly
evaluating the performance of the encoded devel-
opment set. Results (P: 95.76%, R: 91.30%, F1:
93.48%) indicate the goodness of our strategy, and
that the ≈ 6% missing is due to cross-sentence ar-
guments we disregard, similarly to previous work.

http://bionlp-st.dbcls.jp/GE/2011/downloads/
http://bionlp-st.dbcls.jp/GE/2011/downloads/

