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Abstract

We conduct a large scale empirical investiga-
tion of contextualized number prediction in
running text. Specifically, we consider two
tasks: (1) masked number prediction – predict-
ing a missing numerical value within a sen-
tence, and (2) numerical anomaly detection –
detecting an errorful numeric value within a
sentence. We experiment with novel combi-
nations of contextual encoders and output dis-
tributions over the real number line. Specifi-
cally, we introduce a suite of output distribu-
tion parameterizations that incorporate latent
variables to add expressivity and better fit the
natural distribution of numeric values in run-
ning text, and combine them with both recur-
rent and transformer-based encoder architec-
tures. We evaluate these models on two nu-
meric datasets in the financial and scientific
domain. Our findings show that output dis-
tributions that incorporate discrete latent vari-
ables and allow for multiple modes outper-
form simple flow-based counterparts on all
datasets, yielding more accurate numerical pre-
diction and anomaly detection. We also show
that our models effectively utilize textual con-
text and benefit from general-purpose unsuper-
vised pretraining.1

1 Introduction

Pretraining large neural architectures (e.g. trans-
formers (Devlin et al., 2019; Raffel et al., 2019))
on vast amounts of unlabeled data has lead to great
improvements on a variety of NLP tasks. Typi-
cally, such models are trained using a masked lan-
guage modeling (MLM) objective and the resulting
contextualized representations are finetuned for a
particular downstream task like question answer-
ing or sentence classification (Devlin et al., 2019;
Lan et al., 2020). In this paper, we focus on a

1Code available at: https://github.com/dspoka/mnm

related modeling paradigm, but a different task.
Specifically, we investigate contextualized number
prediction: predicting a real numeric value from
its textual context using an MLM-style modeling
objective. We conduct experiments on two specific
variants: (1) masked number prediction (MNM), in
which the goal is to predict the value of a masked
number token in a sentence, and (2) numerical
anomaly detection (NAD), with the goal of decid-
ing whether a specific numeric value in a sentence
is errorful or anomalous. In contrast with more
standard MLM training setups, here we specifi-
cally care about the accuracy of the trained masked
conditional distributions rather than the contextual-
ized representations they induce. While successful
models for these tasks are themselves useful in
applications like typo correction and forgery detec-
tion (Chen et al., 2019), better models of numer-
acy are essential for further improving downstream
tasks like question answering, numerical informa-
tion extraction (Mirza et al., 2017; Saha et al., 2017)
or numerical fact checking (Thorne and Vlachos,
2017), as well as for processing number-heavy do-
mains like financial news, technical specifications,
and scientific articles. Further, systems that detect
anomalous numbers in text have applications in
practical domains – for example, medicine (Thim-
bleby and Cairns, 2010) – where identification of
numerical entry errors is critical.

Our modeling approach to contextualized num-
ber prediction combines two lines of past work.
First, following Chen et al. (2019), we treat num-
ber prediction as a sentence-level MLM problem
where only numerical quantities are masked. How-
ever, Chen et al. (2019) focused on predicting the
discrete exponent of masked numbers as a clas-
sification problem. In contrast, Spithourakis and
Riedel (2018) demonstrate the utility of predicting
full numerical quantities in text, represented as real
numbers, but do so in a language modeling frame-



work, conditioned only on left context. Here, we
propose a novel setup that combines full-context
encoding (i.e. both left and right contexts) with
real-valued output distributions for modeling nu-
merical quantities in text. In Figure 1, we illustrate
an example where we aim to predict “2 trillion” as
a quantity on the real number line.

We expand upon past work by conducting a
large scale empirical investigation that seeks to
answer three questions: (1) Which encoding strate-
gies yield more effective representations for num-
bers in surrounding context? (2) Which encoding
architectures provide the best representations of
surrounding context? (3) What are the most ef-
fective real-valued output distributions to model
masked number quantities in text? To answer these
questions, we propose a suite of novel real-valued
output distributions that add flexibility through the
use of learned transformation functions and dis-
crete latent variables. We conduct experiments for
both MNM and NAD tasks on two large datasets in
different domains, combining output distributions
with both recurrent and transformer-based encoder
architectures, as well as different numeric token en-
coding schemes. Further, while Chen et al. (2019)
studied a specific type of NAD (detecting exagger-
ated numbers in financial comments), we examine
several NAD variants with different types of syn-
thetic anomalies that are found to arise in practice
across different domains of data. Finally, we fur-
ther compare results with a strong discriminative
baseline.

2 Models

Our goal is to predict numbers in their textual con-
texts. The way we approach this is similar to
masked language modeling (MLM), but instead
of masking and predicting all token types, we only
mask and predict tokens that represent numeric val-
ues. For example in Figure 1 we wish to predict
that the value of the masked number [#MASK]
should be 2 × 1012 ∈ R given the surrounding
context.

For notational simplicity, we describe our model
as predicting a single missing numeric value in a
single sentence. However, like other MLMs (see
section 4.3), during training we will mask and pre-
dict multiple numeric values simultaneously. Let
X be a sentence consisting of N tokens where the
kth token is a missing numerical value, y. The
goal of our model is to predict the value of y con-

ditioned onX . We will use common notation for
from similar setups and simply treat the kth token
in X as a masked numeric value, [#MASK].

Our models Pθ,γ(y|X) consist of three main
components: an input representation of the sen-
tence, a contextual encoder with parameters γ
which summarizes the sentence, and an output dis-
tribution with parameters θ over the real number
line. In this section we will describe our strategies
for numerical input representation, the two types
of contextual encoders we use, along with different
formulations of numerical output distributions.

2.1 Input Context Representation

We first describe the input representation for the tex-
tual contextX that will be passed into our model’s
encoder. We let xi represent the ith token in the
input sequence. Like related MLMs that leverage
transformers (which is one type of encoder we con-
sider in experiments) we separate the representa-
tion of xi into several types of embeddings. We
include a positional embedding ePOS and a word-
piece token embedding eTOK like the original BERT.
We also introduce our new numeric value embed-
ding eNUM to help us learn better numerical repre-
sentations. Finally, as shown in Figure 1, the input
representation for token xi is the sum of these three
H-dimensional embeddings.

If the token at position i represents a numeri-
cal quantity, we replace it with a special symbol
[#MASK], and represent its numerical value using
eNUM
i .2 We use the extraction rules detailed in Sec-

tion 3.1 to find the numbers in our input sequence.
In the next section we will describe two strategies
for numerical representation eNUM.

2.1.1 Digit-RNN Embedding
The large range ([1, 1e16] in our data) of numerical
values prevents them from being used directly as
inputs to neural network models as this results in
optimization problems due to the different scales
of parameters. One strategy to learn embeddings
of numerical values has been shown by Saxton
et al. (2019) which used character-based RNNs to
perform arithmetic operations such as addition and
multiplication. We conduct experiments with a sim-
ilar strategy and represent each number in scientific
notation (d.ddde+d) with 6 digits of precision as

2We exclude segment type embeddings since we do not
perform next sentence prediction. We also found it helpful to
use the zero vector as the numerical embedding for eNUM

i if
position i is not a quantity.



Figure 1: Outline of our model architecture consisting of a sentence representation X which is fed to the encoder
with parameters γ and an output distribution over the real number line with parameters θ. In this example our
masked numerical objective is to predict the masked out “2 trillion” quantity y. Note that our model is able to use
a numerical embedding of the unmasked input 3 ∗ 107 value (“thirty million”) as part of the context.

a string. We then use a digit-RNN to encode the
string and use the last output as eNUM.

2.1.2 Exponent Embedding

A simpler approach to represent numbers would
be to explicitly learn embeddings for their magni-
tudes. Magnitudes have been shown to be a key
component of the internal numerical representa-
tion of humans and animals (Ansari, 2016; Whalen
et al., 1999; Dehaene et al., 1998). We conduct
experiments with an encoding scheme that learns
embeddings for base-10 exponents.

2.2 Context Encoder

The encoder’s goal is to summarize the surrounding
text, along with other numbers that appear therein.
We define H = fγ(X) where the encoder fγ is
a function of the context X , and H is the hidden
representation of the encoder’s last layer. Next, we
describe two encoder architectures: a transformer
and a recurrent approach.

2.2.1 Transformer Encoder

Transformer architectures pretrained on vast
amounts of data have led to breakthroughs in tex-
tual representation learning (Yang et al., 2019; Liu
et al., 2019; Lan et al., 2020; Raffel et al., 2019).
We use the 12-layer BERT-base architecture (De-
vlin et al., 2019) with the implementation pro-
vided by Huggingface (Wolf et al., 2019). We use
the original BERT’s word-piece vocabulary with
30,000 tokens and add a new [#MASK] token.

2.2.2 BiGru Encoder
Previous methods focusing on the related task of
predicting the order of magnitude of a missing num-
ber in text showed that RNNs were strong models
for this task (Chen et al., 2019). In our real-valued
output task we use a bidirectional Gated Recurrent
Unit (BiGRU), the best performing model from
Chen et al. (2019). We use a one-layer BiGRU
with a 64-dimensional hidden state and a dropout
layer with a 0.3 dropout rate. We use the same pre-
trained word-piece embeddings from BERT as this
allows us to directly compare the two encoders.

2.3 Real-valued Output Distributions

In early experiments, we observed that simple con-
tinuous distributions (e.g. Gaussian or Laplace)
performed poorly. Since numbers can have am-
biguous or underspecified units, and further, since
numbers in text are heavy-tailed, asymmetric or
multi-modal output distributions may be desirable.
For this reason, we propose several more flexible
output distributions, some which include learned
transforms and others which include latent vari-
ables (both well-known methods for adding capac-
ity to real-valued distributions), to parameterize
P (y|X).

2.3.1 Log Laplace
A common method for constructing expressive
probability density functions is to pass a simple
density through a transformation (e.g. a flow or
invertible mapping function). As an initial example
(and our first output distribution), we describe the
log Laplace distribution as a type of flow. Since



Figure 2: Left (a): We depict our LogLP and FlowLP graphical models along with the latent and output distribu-
tions. Right (b): Probabilistic graphical model of our latent DExp model.

numbers in text are not distributed evenly on the
number line due to a long tail of high magnitudes,
a simple trick is to instead model the log of nu-
meric values. If the base distribution is Laplace,
this yields a log Laplace distribution, which we
describe next as an exponential transformation.

In Figure 2, we illustrate our LogLP model with
a continuous intermediate variable z, encoder fγ ,
with exp as the transformation, gθ , and conse-
quently log as g−1

θ . In equation 1 we show our
generative process and training objective where
both gθ and g−1

θ are deterministic functions with
no parameters. We let µθ(H) denote a single layer
MLP that outputs the location parameter of the base
Laplace distribution on z, which is transformed to
produce the output variable, y. More precisely:

(1)

2.3.2 Flow-transformed Laplace
The exp transformation may not be the ideal choice
for our data. For this reason we consider a parame-
terized transform (flow) to add further capacity to
the model. For our purposes, we are restricted to
1-dimensional transformations g : R→ R. Further,
by restricting the class of functions, we ensure an
efficient way of computing the log-derivative of the
inverse flow, which allows us to efficiently com-
pute likelihood. We conduct experiments with the

simple parameterized flow described in Equation 2.
We use a single layer MLP to independently predict
each parameter a,b,c fromH , the output of fγ(X).
We also scale the range of b, c to be between [0.1,
10] using a Sigmoid activation. Similarly to the
LogLP setting, µθ(H) is a single layer MLP which
predicts the location parameter of the Laplace.

(2)

This parameterization of flow is designed to allow
for (1) re-centering of the input variable (via param-
eter a), (2) re-scaling of the input (via parameter b),
and (3) re-scaling of the output (via parameter c).
Together, this leads to a family of inverse flows that
are all log-shaped (i.e. they compress higher val-
ues), yet have some flexibility to change intercept
and range.

2.3.3 Discrete Latent Exponent
While FlowLP adds flexibility over the LogLP
model, both have the drawback of only being
able to produce unimodal output distributions.3 A
well-established approach to parameterizing multi-
modal densities is to use a mixture model. The mix-
ture component is determined by a discrete latent

3In principle, more complicated flows could also have mul-
tiple modes – though they are more challenging to construct
and optimize.



variable in contrast with the continuous intermedi-
ate variable introduced in the flow-based models.
In Figure 2 we show our DExp model where e rep-
resents an exponent sampled from a multinomial
distribution, and m is the mantissa sampled from a
truncated Gaussian.

Prior work has shown the effectiveness of cross-
entropy losses on numerical training (Saxton et al.,
2019; Chen et al., 2019). For this reason we use a
truncated Gaussian on the range of [0.1,1] to gener-
ate m, which effectively restricts back-propagation
to a single mixture component for a given observa-
tion. The combination of exponent and mantissa
prediction allows us to benefit from the effective-
ness of cross-entropy losses, while at the same time
getting more fine-grained signal from the mantissa
loss. In Equation 3 we show the DExp genera-
tive process and training objective. We let πθ(H)
denote a single layer MLP that outputs the multi-
nomial parameters of P (e|X). Similarly, we let
µθ(H, e) denote a two layer MLP with a [.1,1]
scaled Sigmoid that outputs the mean parameter of
the mantissa normal distribution.

(3)

2.3.4 Gaussian Mixture Model
Inspired by the best performing model from Sp-
ithourakis and Riedel (2018) we also compare with
a Gaussian mixture model (GMM). This model as-
sumes that numbers are sampled from a weighted
mixture of K independent Gaussians. During train-
ing the mixture from which a particular point was
sampled from is not observed and so it is treated as
a latent variable. We can optimize the marginal log-
likelihood objective by summing over the K mix-
tures. In equation 4, GMM has K mixtures param-
eterized by K means and variances µ,σ, respec-
tively. Following Spithourakis and Riedel (2018),
we pre-train the parameters µ,σ on all the num-
bers in our training data D using EM. The means
and variances are then fixed and our masked num-
ber prediction model only predicts mixture weights
during training and inference. We let πθ(H) de-
note a single layer MLP that outputs the mixture

weights P (e|X).

(4)

3 Data

Financial news Financial news documents are
filled with many different ratios, quantities and
percentages which make this domain an ideal test-
bed for MNM. The FinNews is a collection of
306,065 financial news and blog articles from web-
sites like Reuters4. We randomly break the docu-
ments into [train, valid, test] splits with [246065,
30000, 30000] respectively.

Since FinNews has many occurrences of dates
and years, we also evaluate on a subset corpus,
FinNews-$ , to measure effectiveness at model-
ing only dollar quantities in text. FinNews-$ is
constructed exactly as FinNews , with the added
requirement that the number is preceded by a dol-
lar sign token ($). For all training and testing on
FinNews-$ , we only predict dollar values.

Academic papers Academic papers have diverse
semantic quantities and measurements that make
them an interesting challenge numeracy model-
ing. For this reason, we also use S2ORC, a newly
constructed dataset of academic papers (Lo et al.,
2020). We use the first 24,000 full text articles,
randomly splitting into [20000, 2000, 2000] [train,
valid, test] splits. 5 We refer to this dataset as Sci.
All three datasets follow the same preprocessing
discussed below and summary statistics are pro-
vided in Table 1.

3.1 Preprocessing

Financial news, academic papers, and Wikipedia
articles all have different style-guides that dictate
how many digits of precision to use or whether
certain quantities should be written out as words.
While such stylistic queues might aid models in
better predicting masked number strings, we are

4www.kaggle.com/jeet2016/us-financial-news-articles
5We also filter articles from only these categories

{Geology, Medicine, Biology, Chemistry, Engineering,
Physics, Computer science, Materials science, Economics,
Business, Environmental science}.



specifically focused on modeling actual numeric
values for two reasons: (1) reduced dependence
on stylistic features of the text domain leads to
better generalization to new domains, and (2) the
numerical value of a numeric token conveys its
underlying meaning and provides a finer-grained
learning signal. For example currencies are usually
written as a number and magnitude like $32 million
however, many quantities can be written out as
cardinals sixty thousand trucks. We normalize our
input numbers so that changing the style from five
to 5 does not change our output predictions.

As exemplified in Figure 1, the aim of our ap-
proach is to incorporate both numbers as context
and numbers as predictions (i.e. 2 trillion and thirty
million in the example). For this reason, before
tokenization we employ heuristics to combine nu-
merals, cardinals and magnitudes into numerical
values, whilst removing their string components.
We also use heuristics to change ordinals into num-
bers. By following this normalization preprocess-
ing procedure we get higher diversity of naturally
occurring quantitative data and mitigate the bias
towards some particular style guide.

For both FinNews and Sci we lowercase the
text and ignore signs (+,−), so all numbers are
positive and restrict magnitudes to be in [1, 1e16].
We discard sentences that do not have numbers
or where the numbers are outside of our specified
range. We also filter out sentences that have less
than eight words and break up sentences longer
than 50 words.6 We do not use the special token
[SEP] and all examples are truncated to a maxi-
mum length of 128 tokens.

4 Experiments

In this section we explain our experimental setup,
starting with our evaluation metrics, implementa-
tion details, results, and ablation analyses. We use
the following naming convention for models: we
specify the encoder (BiGRU, BERT) first, followed
by one of our four output distributions (LogLP,
FlowLP, DExp, GMM).

4.1 Evaluation

For the MNM task on Dvalid and Dtest splits we
randomly select a single number to mask out from
the input and predict. We let ŷ denote the model’s
argmax prediction from P (y|X) and y as the ac-

6Sentences under eight words in length tended to be titles
of articles with the date as the only numeric quantity.

tual observed number. In equation 5 and 6 we show
how we calculate log-MAE (LMAE) and exponent
accuracy (E-Acc), both of which use log base 10.

LMAE =
1

|Dtest|
∑
Dtest

| log y − log ŷ| (5)

E-Acc =
1

|Dtest|
∑
Dtest

1[blog yc = blog ŷc] (6)

4.2 Numerical Anomaly Detection

Both LMAE and E-Acc metrics test the model’s
argmax prediction and not the entire P (y|X) dis-
tribution. We next consider the NAD task where
our models need to discern the true number ver-
sus some anomaly. We let ỹ denote an anomaly
and describe two different ways, [string, random],
we construct an anomalous example. For string
we use the true y and randomly perform one of
three operations [add, del, swap]: inserting a new
digit, deleting an existing digit, and swapping the
first two digits respectively. For random, we ran-
domly sample a number from the training data D
as our anomaly. We choose these string functions
as they constitute a large part of numerical entry er-
rors (Thimbleby and Cairns, 2010; Wiseman et al.,
2011). Further, random mimics a copy-paste error.
We report the AUC of a ROC curve for both types
as random-anomaly (R-AUC) and string-anomaly
(S-AUC) respectively, using the model’s output den-
sity to rank the true value against the anomaly.

4.3 Implementation Details

We train all models with stochastic gradient de-
scent using a batch-size of 32 for 10 epochs. We
use early stopping with a patience of three on the
validation loss. For pretrained BERT encoder ex-
periments, we use two learning rates {3e−5, 1e−2}
for all pretrained parameters and newly added pa-
rameters respectively. For all non-pretrained BERT
experiments and all BiGRU encoders we use a sin-
gle learning rate of 2e−2.

Devlin et al. (2019) propose a two step process
to generate masked tokens. First, select tokens for
masking with an independent probability of 15%.
Second, for a selected token: With 80% probability
replace it with a [MASK], 10% replace it with a
random token, and 10% leave it unchanged. Since
there are fewer numbers than text tokens, we use a
higher probability of 50% for selection. We follow
a similar strategy for masking numbers: 80% of
the time masking out the number, 10% of the time



FinNews FinNews-$ Sci
train valid test train valid test train valid test

#instances 522996 58095 64433 188286 22338 23281 360514 36523 36104
avg-length 102.5 108.3 108.9 115.2 115.4 116.1 125.6 126.4 126.5
%numbers 8.8 9.3 9.6 13.0 12.7 13.2 7.1 7.2 7.1
min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
median 50 313.0 250.0 329.0 2016.0 2016.0 2016.0 9.0 8.0 9.0
median 75 3141.0 2558.0 3500.0 ∼ 104 ∼ 104 ∼ 104 42.0 40.0 43.0
median 90 ∼ 106 ∼ 106 ∼ 106 ∼ 107 ∼ 107 ∼ 107 1959.0 1948.0 1972.1
max ∼ 1015 ∼ 1014 ∼ 1015 ∼ 1015 ∼ 1014 ∼ 1015 ∼ 1015 ∼ 1014 ∼ 1015

Table 1: Statistics on our datasets. The top half of the table reveals the number of examples per data split, the
average length of sentences, and the fraction of tokens that are numbers. The bottom half shows summary statistics
for number values in both datasets.

randomly substituting it with a number from train,
and 10% of the time leaving it unchanged.

Baselines: We also consider a fully discrimina-
tive baseline trained to predict real vs. fake num-
bers with binary cross entropy loss. The nega-
tive numerical samples are randomly drawn from
training set numbers to match exactly the random-
anomaly task. During training each positive datum
has one negative example and is trained in the same
batch-wise fashion. When this model uses expo-
nent embeddings for output numbers, embexp , we
can also calculate the exponent accuracy by select-
ing the exponent embedding with highest model
score as a predicted value. We include this ap-
proach in experiments as a non-probabilistic alter-
native to our four output distributions.

4.4 Results

We ran all combinations of encoders and output
distributions using input exponent embeddings on
FinNews and show the results in Table 2. We train
the GMM model with four different settings of K
∈ {31, 63, 127, 255} and report results for the
highest-performing setting.

Comparing the two encoders, we find that BERT
results in stronger performance across all metrics
and all output distributions. Although both set-
tings share the same pretrained embedding layers,
the pretrained transformer architecture has higher
capacity and is able to extract more relevant numer-
ical information for both MNM and NAD.

We find that the parameterized FlowLP model
was generally better across all metrics under both
encoders compared to the LogLP model. With the
weaker BiGRU encoder, the LogLP model’s S-AUC
is only 0.04 better than random guessing.

The DExp model was the best performing output
distribution across all metrics and both encoders,
yielding on average 10% higher E-Acc and a gain
of 0.13 on AUC. This means that DExp had the best
overall fit in terms of the predicted mode (argmax)
as well as the overall density P (y|X).

In contrast, GMM , which is also a discrete la-
tent variable model capable of outputting a multi-
modal distribution, underperformed across all met-
rics. There was little effect from adjusting the num-
ber of mixture components, with slight improve-
ments using more mixtures. One possible reason
for the GMM model’s worse performance is that the
mixtures are fit and fixed before training without
any of the surrounding textual information. Quan-
tities such as dates and years have many textual
clues, but the model’s initial clustering may group
them together with other quantities. We also found
that, empirically, optimization for this model was
somewhat unstable.

Finally the Disc baseline was the second best
performing model on NAD , though on MNM it
showed worse E-Acc than LogLP and FlowLP mod-
els. This baseline benefited from being directly
trained for NAD , which may explain it’s under-
performance on MNM metrics. Due to the com-
paratively worse performance of both the BiGRU
encoder and the GMM output distribution, we ex-
clude them from the remainder of our experiments.

4.5 Ablations
Ablations on Numerical Embedding We select
our best performing model, BERT-DExp, and ablate
the numerical input representation on FinNews.
We compare using embdig, embexp , and a version
of ExpBert which has no numerical input represen-
tation. The top half of Table 3 displays the results.



Model LMAE↓ E-Acc ↑ r-AUC↑ s-AUC↑
Train-Mean 7.69 1.03 - -
Train-Median 1.88 5.52 - -
BiGRU-Disc - 55.8 0.756 0.646
BiGRU-LogLP 0.671 58.8 0.675 0.548
BiGRU-FlowLP 0.622 61.8 0.694 0.591
BiGRU-DExp 0.576 71.5 0.843 0.821
BERT-Disc - 62.7 0.762 0.656
BERT-GMM K=255 1.18 21.3 0.585 0.440
BERT-LogLP 0.5666 64.9 0.686 0.557
BERT-FlowLP 0.5732 65.5 0.717 0.609
BERT-DExp 0.500 74.6 0.861 0.828

Table 2: Results on FinNews where all models use input exponent embeddings embexp and all BERT encoders are
pretrained. We also include the mean and median number from training D as simple baselines.

Ablation Type LMAE↓ E-Acc ↑ r-AUC↑ s-AUC↑ all-LMAE↓ all-E-Acc ↑
Numerical Input Embedding
BERT-DExp (All #’s Masked) 0.656 66.5 0.831 0.809 0.656 66.5
BERT-DExp + embexp 0.500 74.6 0.861 0.828 0.888 62.2
BERT-DExp + embdig 0.506 74.4 0.858 0.826 0.920 62.1
BERT-DExp + embexp + embdig 0.498 74.9 0.861 0.828 0.899 62.3
No Pretraining
BERT-DExp + embexp 0.615 68.8 0.840 0.810 0.889 60.6
BERT-FlowLP + embexp 0.769 57.9 0.670 0.563 0.861 54.4
BERT-Disc + embexp - 26.9 0.632 0.599 - -
BERT-LogLP + embexp 0.630 63.2 0.678 0.550 0.850 57.1

Table 3: Ablation on FinNews dataset. The top half of the table shows the effect of the numerical input represen-
tation. The bottom half shows performance for models trained from scratch, without leveraging pretrained BERT
parameters.

We see that embdig and embexp perform equally
well. Using no input number embeddings reduces
performance by 8% on E-Acc and 0.03 AUC on
both anomaly metrics. We also see that there is no
benefit from combining both of these input repre-
sentations, which implies that the model is able to
extract similar information from each.

Ablations One-vs-All To measure our model’s
effectiveness at using the other numbers in the input
we construct an ablated evaluation All , where all
input numbers are masked out.7 In Table 3 we see
that all models that have a numerical embedding
suffer a performance drop of around 12% E-Acc
and an increase of 0.4 on LMAE. This suggests that
the model is in fact using the other quantities for
its predictions. We also find that the model with
no input number embeddings does better on the All
setting since it was effectively trained with fully
masked input numbers.

Ablations on Pretraining In the bottom half of
Table 3, we compare the effect of starting from a
pretrained transformer versus training from scratch.
We see that training from scratch hurts all models

7To make comparisons exact, every test example has at
least 2 numerical values so that we can perform this ablation.

by around 6% on E-Acc and 0.02 on R-AUC. We
also note that BERT-LogLP seems least affected,
dropping only 1% on E-Acc.

Modeling Additional Domains In this section
we explore how different models behave on the
alternative domain of academic papers, and how
modeling is affected by focusing only dollar quan-
tities in financial news. In Table 4, we show results
for pretrained BERT encoder models with input
exponent embeddings, trained and evaluated on Sci
and FinNews-$ datasets.

On the Sci data, the generative models have sim-
ilar performance on LMAE and E-Acc . We fur-
ther find that BERT-DExp is still the best perform-
ing model across most metrics on both Sci and
FinNews-$ data. The BERT-Disc baseline, which
is directly trained to predict anomalies, is consis-
tently the second best across all datasets on NAD.
Finally, we find that the FinNews-$ is the most
challenging of the three datasets, with BERT-DExp
dropping on E-Acc by 20% compared to FinNews
data. This supports our initial reasoning that the
distribution of dollar amounts is more difficult to
characterize than other quantities, such as dates,
which tend to cluster to smaller ranges.



FinNews-$ Sci
Model LMAE↓ E-Acc ↑ r-AUC↑ s-AUC↑ LMAE↓ E-Acc ↑ r-AUC↑ s-AUC↑
BERT-Disc - 46.9 0.828 0.588 - 68.8 0.722 0.657
BERT-LogLP 1.04 43.6 0.641 0.528 0.374 78.2 0.624 0.609
BERT-DExp 0.91 56.9 0.867 0.678 0.385 81.0 0.786 0.836
BERT-FlowLP 1.11 39.3 0.538 0.518 0.374 77.6 0.658 0.672

Table 4: Results on FinNews-$ and Sci where all models use input exponent embeddings embexp and all BERT
encoders are pretrained.

5 Related Work

Math & Algebraic Word Problems: There is a
wide literature on using machine learning to solve
algebraic word problems (Ling et al., 2017; Roy
and Roth, 2016; Zhang et al., 2019), building novel
neural modules to directly learn numerical oper-
ations (Trask et al., 2018; Madsen and Johansen,
2020) and solving a variety of challenging mathe-
matical problems (Saxton et al., 2019; Lee et al.,
2020; Lample and Charton, 2020). In these tasks,
numbers can be treated as symbolic variables and
computation based on these values leverages a la-
tent tree of arithmetic operations. This differs from
our task setting since there is no “true” latent com-
putation that generates all the quantities in our text
given the available context.

Numerical Question Answering The DROP
dataset (Dua et al., 2019) is a new dataset that
requires performing discrete numerical reasoning
within a traditional question answering framework.
Andor et al. (2019) treat DROP as a supervised clas-
sification problem, while recent work by Geva et al.
(2020) show how synthetic mathematical training
data can build better numerical representations for
DROP. Unlike work on DROP, our primary focus
is on the task of contextualized number prediction
and numerical anomaly detection in text, which in-
volve correlative predictions based on lexical con-
text rather than concrete computation.

String Embeddings Recently, word and token
embeddings have been analyzed to see if they
record numerical properties (for example, magni-
tude or sorting order) (Wallace et al., 2019; Naik
et al., 2019). This work finds evidence that com-
mon embedding approaches are unable to gener-
alize to large numeric ranges, but that character-
based embeddings fare better than the rest. How-
ever, this line of work also found mixed results on
overall numeracy of existing embedding methods
and further investigation is required.

Numerical Prediction Spithourakis and Riedel
(2018) trained left-to-right language models for
modeling quantities in text as tokens, digits, and
real numbers using a GMM. Our empirical inves-
tigation focuses on MNM and considers both left
and right contexts of numbers, along with a broader
class of generative output distributions. Chen et al.
(2019) predict magnitudes of numbers in text and
also consider a type of NAD to detect numerical
exaggerations on financial data. However, this mod-
eling approach is restricted: it can only distinguish
anomalies that result in a change of exponent. In
contrast, our real-valued distributions allow us to
focus on a broader suite of harder anomaly detec-
tion tasks, such as random substitutions and string
input error.

6 Conclusion

In this work we carried out a large scale empiri-
cal investigation of masked number prediction and
numerical anomaly detection in text. We showed
that using the base-10 exponent as a discrete latent
variable outperformed all other competitive models.
Specifically, we found that learning the exponent
representation using pretrained transformers that
can incorporate left and right contexts, combined
with discrete latent variable output distributions,
results is the most effective way to model masked
number quantities in text. Future work might ex-
plore combining more expressive flows with dis-
crete latent variables.
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