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Abstract

We introduce a framework of Monte Carlo
Tree Search with Double-q Dueling network
(MCTS-DDU) for task-completion dialogue
policy learning. Different from the previ-
ous deep model-based reinforcement learning
methods, which uses background planning and
may suffer from low-quality simulated expe-
riences, MCTS-DDU performs decision-time
planning based on dialogue state search trees
built by Monte Carlo simulations and is robust
to the simulation errors. Such idea arises nat-
urally in human behaviors, e.g. predicting oth-
ers’ responses and then deciding our own ac-
tions. In the simulated movie-ticket booking
task, our method outperforms the background
planning approaches significantly. We demon-
strate the effectiveness of MCTS and the du-
eling network in detailed ablation studies, and
also compare the performance upper bounds of
these two planning methods.

1 Introduction

Designing a task-completion dialogue system has
become an important task due to its huge com-
mercial values. The dialogue agent aims to help
users to complete a single or multi-domain task,
e.g. booking a flight and making a hotel reservation.
The core of such a system is the dialogue policy
module, which enables the agent to respond prop-
erly and provide users with the desired information.
Early work has shown that dialogue policy learn-
ing can be designed as a Markov Decision Process
(MDP) (Singh et al., 2002; He et al., 2018; Zhao
et al., 2019; Takanobu et al., 2019). Reinforcement
learning (RL) is a common framework to solve
MDP but it requires huge amounts of interactions
with real users, which is generally infeasible in the
real world. One way to work around this problem
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is by designing a user simulator using the real hu-
man conversation data (Schatzmann et al., 2007; Li
et al., 2016).

Recently, following these ideas, many re-
searchers have applied deep model-based RL meth-
ods to task-completion dialogue policy learning
(Peng et al., 2018; Su et al., 2018; Wu et al., 2018).
In a model-based method, the agent not only up-
dates its action value or policy function through
real experiences but also learns how the environ-
ment produces the next states and rewards. The
learned environment is called a model, which can
be further used to generate simulated experiences.
Using both real and simulated experiences is re-
ferred to as background planning and can substan-
tially improve the learning efficiency (Sutton and
Barto, 2018). Peng et al. (2018) extend Dyna-Q
(Sutton, 1990; Sutton et al., 2012) to Deep Dyna-Q
(DDQ) for dialogue policy learning and achieve
appealing results. However, since model learning
cannot be perfect, some simulated experiences with
large errors may hinder policy learning (Su et al.,
2018). Su et al. (2018) propose to train a discrim-
inator to filter low-quality simulated experiences.
Wu et al. (2018) design a switcher-based mecha-
nism to automatically balance the use of real and
simulated experiences. Nevertheless, the overall
improvement is still limited.

In this paper, we first upgrade the common base-
line model of the task-completion dialogue policy
learning problem, Deep Q-network (DQN) (Mnih
et al., 2015) by adopting its two variants: Deep
Double Q-networks (DDQN) (Van Hasselt et al.,
2016) and Dueling network (Wang et al., 2015).
The purpose is to fully exploit the advanced value-
based methods that are orthogonal to planning. We
show that the new baseline can achieve compara-
ble performance with DDQ. To further boost the
performance, we propose to use Monte Carlo Tree
Search (MCTS) (Chaslot et al., 2008) as decision-
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time planning (Sutton and Barto, 2018). The dif-
ferences between background and decision-time
planning are illustrated in Figure 1 and 2. Decision-
time planning doesn’t use the model to generate
simulated experiences. In the testing stage or a real
decision time, rather than directly picking actions
based on action values, a rollout algorithm like
MCTS uses the model to build a search tree by run-
ning simulations. Performing policy evaluation on
the search tree generally yields more accurate esti-
mations of action values assuming that the model
is correct.

Due to this property, MCTS has achieved huge
success in the game of Go (Silver et al., 2016,
2017). However, its applications in the non-gaming
settings, such as dialogue systems, are still rare and
little studied. One difficulty is that the model now
has to learn the more complex dynamics of state
transitions than the deterministic game rules. Con-
sequently, MCTS may grow a erroneous search tree
and the resulting estimated action values may be
wrong.

To alleviate simulation errors, we design a new
MCTS method incorporating the DDQN object and
the dueling architecture. The main idea is to fo-
cus on the more promising parts of the state-action
space and reduce the rollout depths. The dueling
network can be used as heuristic or scoring func-
tions in this case. Given dialogue states, it outputs
two streams of data: action advantages and state
values. Action advantages can be viewed as the
prior knowledge to differentiate actions. State val-
ues can be used as the approximated rollout results.
We denote an agent under this design as MCTS-
DDU. Experiments show that MCTS-DDU agent
outperforms previous methods by a wide margin in
both task success rate and learning efficiency.

Briefly, the main contributions of our work are
in the following aspects:

• For the direct reinforcement learning of dia-
logue policy, we show that an agent trained by
the extensions of DQN can perform compara-
tively with the latest deep model-based meth-
ods, which can serve as an advanced baseline
for future works.

• For the planning part, we propose to incorpo-
rate MCTS with DDQN and Dueling network
which exceeds previous approaches signifi-
cantly. To our best knowledge, we are the
first to apply decision-time planning and adapt
MCTS for this task.

Figure 1: Training and testing stages of value-based
background planning.

Figure 2: Training and testing stages of decision-time
planning.

2 Background

2.1 Reinforcement Learning for
Task-Completion Dialogue

Reinforcement learning is a framework to solve
sequential decision problems. The problem can
be formalized as a Markov Decision Process
〈S,A,P,R, γ〉, where S is a finite state space, A
is a finite action space, P is a state transition func-
tion, R is a reward function, and γ is a discount
factor. A value-based agent aims to learn an action
value function as its implicit policy, so that its ex-
pected long-term rewards are maximized. Next, we
show how to formalize a task-completion dialogue
session as a MDP.

State st is defined as the dialogue history of pre-
vious t turns, containing user intents, associated
slots, and agent responses.

Action at is defined as dialog act, (intent, slot),
representing the agent’s intent on a specific slot.
Take movie-ticket booking as an example, (request,
#tickets) means that the agent asks the user how
many tickets are needed.

Transition P represents the dialogue state up-
dates according to stochastic responses from the
user to the agent. In the case of a user simulator,
the handcrafted rules define the state transitions
implicitly.
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Figure 3: MCTS with dueling network as decision-time planning.

Reward R is the immediate feedback signal af-
ter the agent takes an action to the user, which
generally depends on the dialogue status, such as
in-process, success, or failure.

2.2 Deep Q-networks and Variants
Deep Q-networks (DQN) DQN combines q-
learning (Watkins and Dayan, 1992) with a deep
network, noted as Q(s, a; θ), to approximate state-
action values. Generally speaking, training a deep
neural network as a value function approximator
trends to be notoriously unstable and has no conver-
gence guarantee. To mitigate this problem, Mnih
et al. (2015) utilize the experience replay technique
(Lin, 1991) to reduce data correlation and improve
data efficiency. Another critical trick is to maintain
a separate target network Q(s, a; θ−), whose out-
puts serve as target values, and the parameters θ−

get soft-updated towards θ periodically. To update
Q(s, a; θ), the loss function is defined as:

L(θ) = Ee∼D[(y −Q(st, at; θ))
2] (1)

y = rt+1 + γmax
a

Q(st+1, a; θ−)

where D is the replay buffer holding experiences
e = (st, at, rt+1, st+1) and γ is the discount factor.

Double Deep Q-networks (DDQN) Q-learning
and the plain DQN have the maximization bias
problem (Sutton and Barto, 2018). Since the action
selection and evaluation are coupled via the max-
imization operator, Q(s, a; θ) trends to produce
overoptimistic estimations (Hasselt, 2010). Extend-
ing the idea of double q-learning (Hasselt, 2010) to
the deep reinforcement learning settings, DDQN
proposes an alternate loss to use:

L(θ) = Ee∼D[(y −Q(st, at; θ))
2] (2)

ât+1 = argmax
a

Q(st+1, a; θ)

y = rt+1 + γQ(st+1, ât+1; θ
−)

Dueling networks Dueling network is proposed
as a novel architecture design for DQN. The net-
work architecture is shown in Figure 3. Given a
state, the shared layers generate a compact hidden
representation. Then, instead of estimating action
values directly, the computation is separated into
two streams: state value and action advantages, ac-
cording to Q(s, a) = V (s) + A(s, a) (Baird III,
1993). This decomposition brings several benefits,
such as the improved training efficiency and the
separate access to state values and action advan-
tages.

2.3 Planning

Besides directly improving the action value func-
tion, real experiences can also be used to learn
a model M = (P,R), where P and R are de-
fined in Section 2.1. Planning refers to utilizing
M to further improve the policy (Sutton and Barto,
2018). Background planning usesM to generate
simulated experiences. By doing this, more data is
available for learning. Dyna-Q, DDQ (Peng et al.,
2018), D3Q (Su et al., 2018), and Switch-DDQ
(Wu et al., 2018) all fall into this category. In
contrast, decision-time planning focuses on how
to pick an action for a specific state. Namely, it
tries to solve a sub-MDP starting from the ”cur-
rent” state. Monte Carlo Tree Search (MCTS) is a
kind of decision-time planning algorithm. It uses
the model to grow search trees and continually
simulate more promising trajectories. Appropriate
methods, like Monte Carlo and temporal-difference
learning, can be then applied on the search tree to
select the best action.

3 Methodology

For a dialogue process involving complex state dy-
namics, applying planning directly is problematic,
since the model learning cannot be perfect. This
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may result in low-quality simulated experiences for
Dyna-Q and an erroneous search tree for MCTS.
In the former case, it is inevitable that parameter
updates would be made in some wrong directions
for the action value network. While for MCTS, it
is possible to reduce the incorrect portions by trim-
ming the depths based on value function that sum-
marize the subtrees, and preferring the actions with
higher advantages for branch exploration. Since
a value-based agent picks actions based on the ac-
tion advantages, the state transitions induced by the
higher advantages are more likely to be generalized
well. Thus, branch exploration with the higher ac-
tion advantages contains fewer errors by focusing
more on the neighborhood of those well learned
state space.

Our framework for task-completion dialogue pol-
icy learning is presented in Figure 3 and Algorithm
1. In the training stage, the action value network or
Q-network Q = (A, V ) is optimized via direct re-
inforcement learning and the modelM = (P,R)
is optimized via model learning respectively. In
the testing stage, the agent take actions in a more
thoughtful way by performing MCTS with the ac-
tion advantage head A and the state value head
V .

Direct reinforcement learning In this stage, the
agent interacts with an user, receives real experi-
ences of the next states and rewards, and optimizes
Q(s, a; θ, φ) based on the DDQN objective (Eq.2).
The reward function works as follows: in each step,
the agent receives a penalty of -1. By the end of a
dialogue session with the maximal dialogue turns
L, the agent receives a reward of 2*L if the task
is completed successfully or a reward of -L if the
task fails. Note that, no planning is executed during
this stage, actions are chosen using the ε-greedy
strategy. Concretely, a∗ = argmaxaQ(s, a) with
probability 1 − ε and a∗ = uniform(A) with
probability ε.

Model learning The model M(s, a;α, β) =
(P(s, a;α),R(s, a;β)) is trained via super-
vised learning based on pairs {(st, at, st+1)},
{(st, at, rt+1)} sampled from the replay buffer. We
designM to be a sample model, whose P(s, a;α)
produces a sample of st+1 not a distribution over
all the next states. By such design, the modelings
of user behaviors and state updating are combined
in an end-to-end manner. For the transition loss,
we use the l2-norm of the representational differ-

ences between st and st+1. For the reward loss,
we use the regular regression loss, Mean-Square-
Error(MSE).

LP(α) = Ee∼D[‖P(st, at;α)− st+1‖22] (3)

LR(β) = Ee∼D[(R(st, at;β)− rt+1)
2] (4)

Monte Carlo Tree Search with Dueling network
In MCTS, each node represents a state and each
edge represents an action causing the state tran-
sition. Each edge also stores the statistics of a
cumulative action value Qc(s, a) and a visit count
N(s, a). There are four steps in one MCTS simu-
lation process, including selection, expansion, sim-
ulation and backpropagation (Chaslot et al., 2008).
To be more specific, we use the Upper Confidence
Bounds for Tree(UCT) (Kocsis and Szepesvári,
2006; Kocsis et al., 2006) among the MCTS family.

As mentioned, using an approximated complex
environment to simulate with large branch factors
and depths may lead to both high bias and high
variances problems. To address these issues, the
dueling network can assist the plain MCTS by pro-
viding 1) normalized action advantages as breadth-
wise priorities for exploration and 2) state value
estimation as depth-wise early stop, both of which
essentially prune the enormous state-action space.
Formally, we incorporate UCT with dueling archi-
tecture and propose a new upper confidence bound
called UCTD:

UCTD(s, a) =
Qc(s, a)

N(s, a)
+c·A(s, a)·

√
2 lnN(s)

N(s, a)

where N(s) =
∑

aN(s, a) is the sum of visit
counts of all available actions. The first term helps
to track the action with the highest empirical action
value. The second term encourages the search pro-
cess to explore the actions with higher normalized
advantages or lower visit counts. The constant c is
the hyperparameter balancing exploitation and ex-
ploration. Silver et al. (2016) use a policy network
to produce a prior probability and formulate the
second term as P (s,a)

1+N(s,a) . The key difference from
our method is that: policy network is trained by a
policy gradient method (Sutton et al., 2000), which
trends to concentrate on the right action given a
state but neglects the differences among the rest ac-
tions. Next, we will describe the simulation process
in detail.
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Selection Given a state as the root, the action
with the highest UCTD score is chosen on each
tree level. This selection process runs recursively
until a not fully expanded node, whose children
nodes haven’t been expanded all.

Expansion Once such node is reached and the
action is again picked by UCTD, the model M
would produce a leaf node sL that represents the
next state. The reward is stored for that edge and
would be used in the backpropagation step.

Simulation In this step, unlike the conventional
rollout strategies , we simply use the value head
V (s; θ) of Q(s, a; θ, φ) to estimate the state value
of sL as v(sL). This approach has proved to be
effective due to using a deep network as the value
function and also efficient since no single rollout is
played (Silver et al., 2017).

Backpropagation When the simulation step is
finished, v(sL) is backpropagated upwards through
all the ancestor edges and updates the correspond-
ing statistics Qc(s, a) and N(s, a). The update
rules are as follows:

N(s, a)← N(s, a) + 1 (5)

∆Qc(s, a)← r(s, a) + γ∆Qc(s
′, a′) (6)

where (s′, a′) is the child edge of (s, a). The update
value for the last edge (sL−1, aL−1) is defined as:
∆Qc(sL−1, aL−1)← r(sL−1, aL−1) + γV (sL).

4 Experiments

In this section, we first introduce the experimental
setup and baseline models. We also propose a new
model-free baseline based on the recent extensions
of DQN. The effectiveness of MCTS, advantage
function, and DDQN objective are demonstrated
via thorough ablation studies. We also explore the
tradeoff between exploitation and exploration in
MCTS. Lastly, we compare the performance upper
bounds of background and decision-time planning
with a perfect model.

4.1 Setup and Baselines
We consider the movie-ticket booking task that has
been studied in Peng et al. (2018), Su et al. (2018)
and Wu et al. (2018). Li et al. (2016) convert 280
real dialogues from Amazon Mechanical Turk to a
user goal set G and a dialogue schema containing
11 intents and 16 slots, which defines the feasible
actions for both users and the agent. Evaluation

Algorithm 1 MCTS with Double-q and Dueling
Network for Task-Completion Dialogue Policy
Learning

1: Initialize q-network Q = (V (s; θ), A(s, a;φ))
2: Initialize target network: θ− = θ, φ− = φ
3: Initialize modelM = (P(s, a;α),R(s, a;β))
4: Initialize user goals set G
5: while True do
6: Sample a user goal from G . Training
7: Initialize s1 from user first utterance
8: for t = 1, T do
9: at ← ε-greedy(Q(st, ·; θ, φ))

10: Execute at and observe st+1, rt+1

11: Store experience (st, at, st+1, rt+1)
12: end for
13: Optimize Q(s, a; θ, φ) based on Eq.(2)
14: OptimizeM(s, a;α, β) based on Eq.(3-4)
15: Update θ− = τ ∗ θ− + (1− τ) ∗ θ,
16: φ− = τ ∗ φ− + (1− τ) ∗ φ
17:

18: Sample a user goal from G . Testing
19: Initialize s1 as the root
20: for t = 1, T do
21: for Simulation = 1,M do . MCTS
22: s← st
23: while s is fully expanded do
24: a′ ← argmaxa UCTD(s, a)
25: s← P(s, a′;α)
26: end while
27: a′ ← argmaxa UCTD(s, a)
28: Expand leaf state sL ← P(s, a′;α)
29: Estimate v(sL)← V (sL; θ)
30: while the root st is not reached do
31: Update statistics Qc(s, a) and
32: N(s, a) based on Eq.(5-6)
33: end while
34: end for
35: at ← argmaxa

Qc(st,a)
N(st,a)

36: Execute at and observe st+1, rt+1

37: end for
38: end while
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Figure 4: The learning curves of DDQ(K).

metric is the task success rate. The task is con-
sidered as completed successfully only when the
agent manages to provide all of the users’ desired
information, propose appropriate suggestions, and
finally inform the booking.

In the training stage, we use the user simulator
implemented by Li et al. (2016) as the environ-
ment. For a dialogue session, the simulator first
samples a goal from the goal set G and generate the
first utterance. Once the conversation begins, the
user simulator would make responses based on the
predefined rules and agent’s replies. Rewards are
provided to the agent based on the dialogue status
(as described in the part of Direct reinforcement
learning).

We also use the strategy called Replay Buffer
Spiking proposed in Lipton et al. (2018), to prefill
the experience replay buffer by allowing a rule-
based agent to interact with the user simulator. The
successful experiences executed by the rule-based
agent could considerably speed up the following
training stage. Otherwise, it may take thousands
of episodes for the agent to get the first positive
reward due to the large state-action space.

We compare our method MCTS-DDU with re-
cently proposed methods shown as follows. More-
over, we propose a stronger baseline called DDU.

• DQN: Agent is trained by DQN (Eq.1) using
real experiences only.

• Deep Dyna-Q (DDQ(K)): Agent is trained
by DQN (Eq.1) with background planning.
The ratio between simulated experiences and
real experiences is K − 1 (Peng et al., 2018).

• Switch-based Active Deep Dyna-Q
(Switch-DDQ): Agent is trained by DQN

Figure 5: The learning curves of MCTS-DDU, DDU,
DDQ(20) and DQN.

(Eq.1) with background planning. The
switcher automatically controls the ratio
between simulated experiences and real
experiences (Wu et al., 2018).

• DDU: Agent uses dueling architecture as Q-
network and is trained by DDQN (Eq.2) using
real experiences only.

• MCTS-DDU Agent is trained in the same
way as DDU. While in the decision time,
actions are picked based on MCTS with Q-
network.

For all agents, the main components of Q-
networks and models are implemented as two-layer
neural networks with the hidden size being 80 and
ReLU activation.

4.2 Evaluation with User Simulator
In this part, agents are evaluated by interacting with
the same user simulator used in the training stage.
However, a reserved part of the goal set is used
for testing here. We evaluate the performances of
each agent on the test goal set by the end of every
training episode. The evaluation process runs 50
trials and averages the success rates. The evaluation
results of all agents are summarized in Table 1. To
align with the settings of Wu et al. (2018), we
sample the success rates at episode 100, 200 and
300. MCTS-DDU has the highest performance
at all times. Note that, MCTS-DDU continues to
learn even after episode300. Detailed numerical
comparisons are presented in the following parts.

DDQ(K) is an important group of baselines as
the first proposed deep planning method in dia-
logue tasks, but its performances are reported with
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Agent
Episodes100 Episodes200 Episodes300

Success Return Turns Success Return Turns Success Return Turns
DQN2 .2867 -17.35 25.51 .6733 32.48 18.64 .7667 46.87 12.27
DDQ(5)1 .6056 20.35 26.65 .7128 36.76 19.55 .7372 39.97 18.99
DDQ(5)2 .6200 25.42 19.96 .7733 45.45 16.69 .7467 43.22 14.76
DDQ(5)3 .6456 28.48 21.83 .6394 29.96 17.28 .6344 28.34 18.92
DDQ(10)1 .6624 28.18 24.62 .7664 42.46 21.01 .7840 45.11 19.94
DDQ(10)2 .6800 34.42 16.36 .6000 24.20 17.60 .3733 -2.11 15.81
DDQ(10)3 .6254 25.71 22.59 .6759 31.99 19.61 .7209 39.24 17.92
DDQ(20)2 .3333 -13.88 29.76 .4467 5.39 18.41 .3800 -1.75 16.69
DDQ(20)3 .7076 45.73 16.15 .8182 51.33 16.15 .7968 48.37 15.65
Switch-DDQ2 .5200 15.48 15.84 .8533 56.63 13.53 .7800 48.49 12.21
DDU .4675 14.15 24.01 .7611 33.89 17.41 .8562 43.07 15.69
MCTS-DDU .7312 46.63 19.77 .9090 57.26 12.79 .9314 55.87 12.13

Table 1: The performance summary of MCTS-DDU and baselines in terms of success rate and discounted cumu-
lative return. (K) stands for K planning steps. MCTS-DDU uses c = 4 in UCTD and runs 50 simulations per
dialogue turn. The results are sampled at Episode 100, 200, and 300 and are averaged over three random seeds.
All model parameters are initialized randomly without extra human conversational data pre-training. Superscripts
indicate the data sources, 1 for (Peng et al., 2018), 2 for (Wu et al., 2018), and 3 for our own implementations based
on open-sourced codes.

Figure 6: Ablation of advantages function.

large differences in Peng et al. (2018) and Wu et al.
(2018). We reproduce it on our own and present
the results in Table 1 and Figure 4. We then study
the effectness of planning step K and select the
best K that results in the highest average success
rate in long term as the representative of the group
DDQ(K) for the latter studies. The learning curves
of K = (2, 5, 10, 20) are shown in Figure 4. We
have the similar results to Peng et al. (2018) that
larger values of K make the learning process faster
and success rate higher.

Then we compare DQN, DDQ(20), and MCTS-
DDU. The result is shown in Figure 5. Methods
incorporated with planning outperform than DQN
both in training efficiency and success rate signifi-

Figure 7: Effects of the balancing coefficient c.

cantly, which proves the effectiveness of planning.
MCTS-DDU achieves the highest task performance
and data efficiency. Technically, MCTS-DDU ex-
ceeds DDQ(20) by absolute 12.65% and relative
14.79%. And it exceeds DQN by absolute 28.77%
and relative 41.44%.

We define the number of episodes taken for
achieving 60% success rate as a metric for com-
paring training efficiency. With this setting, MCTS-
DDU is relatively 45.31% faster than DDQ(20)
and 78.26% faster than DQN. Moreover, MCTS-
DDU can reach over 50% success rate within 10
episodes.
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Figure 8: The highest success rates under different c.

4.3 Ablation studies

Effectiveness of MCTS We compare the perfor-
mances between MCTS-DDU and DDU that ex-
ploits Q-network directly. The result is shown in
the Table 1 and Figure 5. Based on the metric
defined above, MCTS-DDU exceeds DDU by ab-
solute 8.9% and relative 9.8% with 73.3% faster
efficiency.

One interesting observation is that DDU could
achieve slightly higher performance than DDQ(20)
in spite of the lower training efficiency. It shows
that the direct reinforcement learning part has not
been investigated enough in the dialogue policy
learning scenario. Solely using the advanced value-
based learning methods can actually bring consid-
erable improvement. Thus, we consider DDU to
be a stronger baseline model than DQN for future
study, based on which more complex mechanisms
like planning can be added on.

Effectiveness of advantages and double-q
Next, we investigate the effectiveness of the ad-
vantages function A(s, a;φ) and DDQN objective
incorporated in UCTD. The result is shown in the
Figure 6. Without advantages as prior knowledge
for exploration, the performance of plain MCTS
is much worse than that of MCTS-DDU. The suc-
cess rate fluctuates drastically due to the fact that
more simulations are needed to make the action
value estimations converged. We observe a slow
and unstable learning process, implying merely
using V (s; θ) is insufficient. Therefore, the con-
clusion can be reached that the advantages func-
tion A(s, a;φ) indeed improves the efficiency of
simulations and is also critical for the high perfor-
mance guarantee. We also perform the experiment
in which the DDQN objective(Eq. 2) is replaced

Figure 9: Performance comparison between back-
ground /decision-time planning with a perfect model.

with the original DQN objective(Eq. 1). Even
though the learning processes are quite commen-
surate in the early stage, MCTS-DU runs into a
performance bottleneck after 200 episodes.

Exploitation v.s. Exploration We also explore
how the coefficient c, balancing exploitation and
exploration in UCTD, effects task performances.
We set the testing range to be roughly from 2−1

to 24 and the results are shown in Figure 7 and
8. As c increases from 0.5 to 4, the final success
rate gets improved, emphasizing the importance of
exploration. However, the performance starts to
degenerate when c continues to increase. But it is
still higher than those of the cases where c is small.
Empirically, we believe a well-guided exploration,
such as guided by an advantage function, is more
influential in this task. In short, this experiment
result is a clear illustration of the tradeoff between
exploitation and exploration when using MCTS.

From a practical perspective, the coefficient c
needs to be searched carefully for the optimal value.
We present the highest success rates under different
settings of c within 400 episodes in Figure 8.

Performance upper bound comparisons
Lastly, we compare the performances of DDQ(10)
and MCTS-DDU under perfect modeling learning.
By ”perfect”, we mean there is no error in learned
transition and reward functions. Our goal is to
investigate the performance upper bounds of
background and decision-time planning. The result
in Figure 9 shows that DDQ(10) still stucks in
a local optimal whereas MCTS-DDU can solve
the task perfectly. We argue that the bottleneck of
DDQ(10) comes from the use of a value function
approximator. Contrastly, decision-time planning
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is able to build a true sub-MDP with a perfect
model and solves it exactly. In addition, we test
the plain MCTS in this setting. It almost perfectly
solves the task but is less stable than MCTS-DDU,
which again demonstrates the effectiveness of the
advantage function.

5 Conclusions

Our work introduces a novel way to apply deep
model-based RL to task-completion dialogue pol-
icy learning. We combine the advanced value-
based methods with MCTS as decision-time plan-
ning. In the movie-ticket booking task, MCTS-
DDU agent exceeds recent background planning
approaches by a wide margin with extraordinary
data efficiency.

In this paper, one main focus is to demonstrate
the differences between background and decision-
time planning. However, it is reasonable and
straightforward to combine them together. This
might be an interesting topic for future work.
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A Appendices

A.1 User goal set

The user goal set consists of 280 goals from real
human conversation in the movie domain. We split
it into 70%, 15%, and 15% for training, valida-
tion(hyperparameter tuning), and testing respec-
tively. A sample user goal is shown as follows,
where constraint slots are the determined parts
of a user goal and request slots are the slots that
need to be recommended by the agent.

{
constraint slots :

moviename: star wars

#people: 2

state: illinois

city: du quoin

request slots :

date: ?

theater: ?

starttime: ?

}

The feasible action sets of the user simulator and
the agent are defined by the schema of intent and
slot.

Intent

request, inform, deny, greeting,
confirm answer, confirm question,
closing, not sure, multiple choice,

thanks, welcome

Slot

city, closing, distance, date
greeting, moviename, #people,

price, starttime, state, taskcomplete,
theater chain, theater, zip

ticket, video format

Table 2: The schema of intent and slot.

A.2 Hyperparameters
The main hyperparameters used in our method are
listed in Table 3.
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Hyperparameter Search range Optimal value
Max dialogue turns (Horizon) None 32
Replay buffer capacity None 5000
Batch size {16, 32, 64, 128} 16
Optimizer {SGD, RMSprop, Adam, AdamW} AdamW
Epochs [1, 15] (Step=5) 10
Learning rate [1e-5, 1e-3] (Step=5e-5) 5e-3
ε-greedy (ε) [0.05, 0.3] (Step=0.05) 0.2
Discount (γ) [0.4, 0.9] (Step=0.1) 0.5
Exploitation v.s. Exploration (c) [1,20] (Step=1) 4

Table 3: Hyperparameters for MCTS-DDU. {·} indicates the exact value range. [·] indicates the lower and upper
bound for searching. Hyperparameter tunings are based on task success rates and performed over three random
seeds. We use one NVIDIA V100 GPU as computing infrastructure and average runtime is about 2 hours per trial.


