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Abstract

We present COMET, a neural framework for
training multilingual machine translation eval-
uation models which obtains new state-of-the-
art levels of correlation with human judge-
ments. Our framework leverages recent break-
throughs in cross-lingual pretrained language
modeling resulting in highly multilingual and
adaptable MT evaluation models that exploit
information from both the source input and a
target-language reference translation in order
to more accurately predict MT quality. To
showcase our framework, we train three mod-
els with different types of human judgements:
Direct Assessments, Human-mediated Trans-
lation Edit Rate and Multidimensional Qual-
ity Metrics. Our models achieve new state-of-
the-art performance on the WMT 2019 Met-
rics shared task and demonstrate robustness to
high-performing systems.

1 Introduction

Historically, metrics for evaluating the quality of
machine translation (MT) have relied on assessing
the similarity between an MT-generated hypothesis
and a human-generated reference translation in the
target language. Traditional metrics have focused
on basic, lexical-level features such as counting
the number of matching n-grams between the MT
hypothesis and the reference translation. Metrics
such as BLEU (Papineni et al., 2002) and METEOR

(Lavie and Denkowski, 2009) remain popular as
a means of evaluating MT systems due to their
light-weight and fast computation.

Modern neural approaches to MT result in much
higher quality of translation that often deviates
from monotonic lexical transfer between languages.
For this reason, it has become increasingly evident
that we can no longer rely on metrics such as BLEU

to provide an accurate estimate of the quality of
MT (Barrault et al., 2019).

While an increased research interest in neural
methods for training MT models and systems has
resulted in a recent, dramatic improvement in MT
quality, MT evaluation has fallen behind. The MT
research community still relies largely on outdated
metrics and no new, widely-adopted standard has
emerged. In 2019, the WMT News Translation
Shared Task received a total of 153 MT system
submissions (Barrault et al., 2019). The Metrics
Shared Task of the same year saw only 24 sub-
missions, almost half of which were entrants to the
Quality Estimation Shared Task, adapted as metrics
(Ma et al., 2019).

The findings of the above-mentioned task high-
light two major challenges to MT evaluation which
we seek to address herein (Ma et al., 2019).
Namely, that current metrics struggle to accu-
rately correlate with human judgement at seg-
ment level and fail to adequately differentiate
the highest performing MT systems.

In this paper, we present COMET1, a PyTorch-
based framework for training highly multilingual
and adaptable MT evaluation models that can func-
tion as metrics. Our framework takes advantage
of recent breakthroughs in cross-lingual language
modeling (Artetxe and Schwenk, 2019; Devlin
et al., 2019; Conneau and Lample, 2019; Conneau
et al., 2019) to generate prediction estimates of hu-
man judgments such as Direct Assessments (DA)
(Graham et al., 2013), Human-mediated Transla-
tion Edit Rate (HTER) (Snover et al., 2006) and
metrics compliant with the Multidimensional Qual-
ity Metric framework (Lommel et al., 2014).

Inspired by recent work on Quality Estimation
(QE) that demonstrated that it is possible to achieve
high levels of correlation with human judgements
even without a reference translation (Fonseca et al.,
2019), we propose a novel approach for incorporat-

1Crosslingual Optimized Metric for Evaluation of
Translation.
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ing the source-language input into our MT evalu-
ation models. Traditionally only QE models have
made use of the source input, whereas MT evalu-
ation metrics rely instead on the reference transla-
tion. As in (Takahashi et al., 2020), we show that
using a multilingual embedding space allows us
to leverage information from all three inputs and
demonstrate the value added by the source as input
to our MT evaluation models.

To illustrate the effectiveness and flexibility of
the COMET framework, we train three models that
estimate different types of human judgements and
show promising progress towards both better cor-
relation at segment level and robustness to high-
quality MT.

We will release both the COMET framework and
the trained MT evaluation models described in this
paper to the research community upon publication.

2 Model Architectures

Human judgements of MT quality usually come
in the form of segment-level scores, such as DA,
MQM and HTER. For DA, it is common practice to
convert scores into relative rankings (DARR) when
the number of annotations per segment is limited
(Bojar et al., 2017b; Ma et al., 2018, 2019). This
means that, for two MT hypotheses hi and hj of
the same source s, if the DA score assigned to hi
is higher than the score assigned to hj , hi is re-
garded as a “better” hypothesis.2 To encompass
these differences, our framework supports two dis-
tinct architectures: The Estimator model and the
Translation Ranking model. The fundamental
difference between them is the training objective.
While the Estimator is trained to regress directly on
a quality score, the Translation Ranking model is
trained to minimize the distance between a “better”
hypothesis and both its corresponding reference
and its original source. Both models are composed
of a cross-lingual encoder and a pooling layer.

2.1 Cross-lingual Encoder

The primary building block of all the models
in our framework is a pretrained, cross-lingual
model such as multilingual BERT (Devlin et al.,
2019), XLM (Conneau and Lample, 2019) or XLM-
RoBERTa (Conneau et al., 2019). These models
contain several transformer encoder layers that are

2In the WMT Metrics Shared Task, if the difference be-
tween the DA scores is not higher than 25 points, those seg-
ments are excluded from the DARR data.

trained to reconstruct masked tokens by uncover-
ing the relationship between those tokens and the
surrounding ones. When trained with data from
multiple languages this pretrained objective has
been found to be highly effective in cross-lingual
tasks such as document classification and natural
language inference (Conneau et al., 2019), gener-
alizing well to unseen languages and scripts (Pires
et al., 2019). For the experiments in this paper,
we rely on XLM-RoBERTa (base) as our encoder
model.

Given an input sequence x = [x0, x1, ..., xn],
the encoder produces an embedding e(`)j for each
token xj and each layer ` ∈ {0, 1, ..., k}. In our
framework, we apply this process to the source,
MT hypothesis, and reference in order to map them
into a shared feature space.

2.2 Pooling Layer

The embeddings generated by the last layer of the
pretrained encoders are usually used for fine-tuning
models to new tasks. However, (Tenney et al.,
2019) showed that different layers within the net-
work can capture linguistic information that is rel-
evant for different downstream tasks. In the case
of MT evaluation, (Zhang et al., 2020) showed that
different layers can achieve different levels of cor-
relation and that utilizing only the last layer often
results in inferior performance. In this work, we
used the approach described in Peters et al. (2018)
and pool information from the most important en-
coder layers into a single embedding for each to-
ken, ej , by using a layer-wise attention mechanism.
This embedding is then computed as:

exj = µE>xj
α (1)

where µ is a trainable weight coefficient, Ej =

[e
(0)
j , e

(1)
j , . . . e

(k)
j ] corresponds to the vector of

layer embeddings for token xj , and α =
softmax([α(1), α(2), . . . , α(k)]) is a vector corre-
sponding to the layer-wise trainable weights. In
order to avoid overfitting to the information con-
tained in any single layer, we used layer dropout
(Kondratyuk and Straka, 2019), in which with a
probability p the weight α(i) is set to −∞.

Finally, as in (Reimers and Gurevych, 2019),
we apply average pooling to the resulting word
embeddings to derive a sentence embedding for
each segment.
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Figure 1: Estimator model architecture. The source,
hypothesis and reference are independently encoded us-
ing a pretrained cross-lingual encoder. The resulting
word embeddings are then passed through a pooling
layer to create a sentence embedding for each segment.
Finally, the resulting sentence embeddings are com-
bined and concatenated into one single vector that is
passed to a feed-forward regressor. The entire model is
trained by minimizing the Mean Squared Error (MSE).

Figure 2: Translation Ranking model architecture.
This architecture receives 4 segments: the source, the
reference, a “better” hypothesis, and a “worse” one.
These segments are independently encoded using a pre-
trained cross-lingual encoder and a pooling layer on
top. Finally, using the triplet margin loss (Schroff et al.,
2015) we optimize the resulting embedding space to
minimize the distance between the “better” hypothesis
and the “anchors” (source and reference).

2.3 Estimator Model
Given a d-dimensional sentence embedding for the
source, the hypothesis, and the reference, we adopt
the approach proposed in RUSE (Shimanaka et al.,
2018) and extract the following combined features:

• Element-wise source product: h� s

• Element-wise reference product: h� r

• Absolute element-wise source difference:
|h− s|

• Absolute element-wise reference difference:
|h− r|

These combined features are then concatenated
to the reference embedding r and hypothesis em-
bedding h into a single vector x = [h; r;h �
s;h � r; |h − s|; |h − r|] that serves as input to
a feed-forward regressor. The strength of these
features is in highlighting the differences between
embeddings in the semantic feature space.

The model is then trained to minimize the mean
squared error between the predicted scores and
quality assessments (DA, HTER or MQM). Fig-
ure 1 illustrates the proposed architecture.

Note that we chose not to include the raw source
embedding (s) in our concatenated input. Early
experimentation revealed that the value added by
the source embedding as extra input features to our
regressor was negligible at best. A variation on
our HTER estimator model trained with the vector
x = [h; s; r;h � s;h � r; |h − s|; |h − r|] as
input to the feed-forward only succeed in boost-
ing segment-level performance in 8 of the 18 lan-
guage pairs outlined in section 5 below and the
average improvement in Kendall’s Tau in those set-
tings was +0.0009. As noted in Zhao et al. (2020),
while cross-lingual pretrained models are adaptive
to multiple languages, the feature space between
languages is poorly aligned. On this basis we de-
cided in favor of excluding the source embedding
on the intuition that the most important information
comes from the reference embedding and reduc-
ing the feature space would allow the model to
focus more on relevant information. This does not
however negate the general value of the source to
our model; where we include combination features
such as h � s and |h − s| we do note gains in
correlation as explored further in section 5.5 below.



2688

2.4 Translation Ranking Model
Our Translation Ranking model (Figure 2) receives
as input a tuple χ = (s, h+, h−, r) where h+ de-
notes an hypothesis that was ranked higher than
another hypothesis h−. We then pass χ through
our cross-lingual encoder and pooling layer to ob-
tain a sentence embedding for each segment in the
χ. Finally, using the embeddings {s,h+,h−, r},
we compute the triplet margin loss (Schroff et al.,
2015) in relation to the source and reference:

L(χ) = L(s,h+,h−) + L(r,h+,h−) (2)

where:

L(s,h+,h−) =

max{0, d(s,h+) − d(s,h−) + ε}
(3)

L(r,h+,h−) =

max{0, d(r,h+) − d(r,h−) + ε}
(4)

d(u,v) denotes the euclidean distance between u
and v and ε is a margin. Thus, during training the
model optimizes the embedding space so the dis-
tance between the anchors (s and r) and the “worse”
hypothesis h− is greater by at least ε than the dis-
tance between the anchors and “better” hypothesis
h+.

During inference, the described model receives
a triplet (s, ĥ, r) with only one hypothesis. The
quality score assigned to ĥ is the harmonic mean
between the distance to the source d(s, ĥ) and the
distance to the reference d(r, ĥ):

f(s, ĥ, r) =
2× d(r, ĥ)× d(s, ĥ)

d(r, ĥ) + d(s, ĥ)
(5)

Finally, we convert the resulting distance into a
similarity score bounded between 0 and 1 as fol-
lows:

f̂(s, ĥ, r) =
1

1 + f(s, ĥ, r)
(6)

3 Corpora

To demonstrate the effectiveness of our described
model architectures (section 2), we train three MT
evaluation models where each model targets a dif-
ferent type of human judgment. To train these
models, we use data from three different corpora:
the QT21 corpus, the DARR from the WMT Met-
rics shared task (2017 to 2019) and a proprietary
MQM annotated corpus.

3.1 The QT21 corpus
The QT21 corpus is a publicly available3 dataset
containing industry generated sentences from either
an information technology or life sciences domains
(Specia et al., 2017). This corpus contains a total
of 173K tuples with source sentence, respective
human-generated reference, MT hypothesis (either
from a phrase-based statistical MT or from a neu-
ral MT), and post-edited MT (PE). The language
pairs represented in this corpus are: English to Ger-
man (en-de), Latvian (en-lt) and Czech (en-cs), and
German to English (de-en).

The HTER score is obtained by computing the
translation edit rate (TER) (Snover et al., 2006) be-
tween the MT hypothesis and the corresponding PE.
Finally, after computing the HTER for each MT,
we built a training dataset D = {si, hi, ri, yi}Nn=1,
where si denotes the source text, hi denotes the MT
hypothesis, ri the reference translation, and yi the
HTER score for the hypothesis hi. In this manner
we seek to learn a regression f(s, h, r) → y that
predicts the human-effort required to correct the
hypothesis by looking at the source, hypothesis,
and reference (but not the post-edited hypothesis).

3.2 The WMT DARR corpus
Since 2017, the organizers of the WMT News
Translation Shared Task (Barrault et al., 2019) have
collected human judgements in the form of ad-
equacy DAs (Graham et al., 2013, 2014, 2017).
These DAs are then mapped into relative rank-
ings (DARR) (Ma et al., 2019). The resulting
data for each year (2017-19) form a dataset D =
{si, h+i , h

−
i , ri}Nn=1 where h+i denotes a “better”

hypothesis and h−i denotes a “worse” one. Here
we seek to learn a function r(s, h, r) such that the
score assigned to h+i is strictly higher than the score
assigned to h−i (r(si, h+i , ri) > r(si, h

−
i , ri)).

This data4 contains a total of 24 high and low-
resource language pairs such as Chinese to English
(zh-en) and English to Gujarati (en-gu).

3.3 The MQM corpus
The MQM corpus is a proprietary internal database
of MT-generated translations of customer support

3QT21 data: https://lindat.mff.cuni.cz/
repository/xmlui/handle/11372/LRT-2390

4The raw data for each year of the WMT Metrics shared
task is publicly available in the results page (2019 ex-
ample: http://www.statmt.org/wmt19/results.
html). Note, however, that in the README files it is high-
lighted that this data is not well documented and the scripts
occasionally require custom utilities that are not available.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390
https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390
http://www.statmt.org/wmt19/results.html
http://www.statmt.org/wmt19/results.html
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chat messages that were annotated according to the
guidelines set out in Burchardt and Lommel (2014).
This data contains a total of 12K tuples, cover-
ing 12 language pairs from English to: German
(en-de), Spanish (en-es), Latin-American Span-
ish (en-es-latam), French (en-fr), Italian (en-it),
Japanese (en-ja), Dutch (en-nl), Portuguese (en-pt),
Brazilian Portuguese (en-pt-br), Russian (en-ru),
Swedish (en-sv), and Turkish (en-tr). Note that in
this corpus English is always seen as the source lan-
guage, but never as the target language. Each tuple
consists of a source sentence, a human-generated
reference, a MT hypothesis, and its MQM score,
derived from error annotations by one (or more)
trained annotators. The MQM metric referred to
throughout this paper is an internal metric defined
in accordance with the MQM framework (Lommel
et al., 2014) (MQM). Errors are annotated under
an internal typology defined under three main er-
ror types; ‘Style’, ‘Fluency’ and ‘Accuracy’. Our
MQM scores range from −∞ to 100 and are de-
fined as:

MQM = 100− IMinor + 5× IMajor + 10× ICrit.

Sentence Length× 100
(7)

where IMinor denotes the number of minor errors,
IMajor the number of major errors and ICrit. the num-
ber of critical errors.

Our MQM metric takes into account the sever-
ity of the errors identified in the MT hypothesis,
leading to a more fine-grained metric than HTER
or DA. When used in our experiments, these val-
ues were divided by 100 and truncated at 0. As
in section 3.1, we constructed a training dataset
D = {si, hi, ri, yi}Nn=1, where si denotes the
source text, hi denotes the MT hypothesis, ri the
reference translation, and yi the MQM score for
the hypothesis hi.

4 Experiments

We train two versions of the Estimator model de-
scribed in section 2.3: one that regresses on HTER
(COMET-HTER) trained with the QT21 corpus, and
another that regresses on our proprietary implemen-
tation of MQM (COMET-MQM) trained with our
internal MQM corpus. For the Translation Ranking
model, described in section 2.4, we train with the
WMT DARR corpus from 2017 and 2018 (COMET-
RANK). In this section, we introduce the training

setup for these models and corresponding evalua-
tion setup.

4.1 Training Setup
The two versions of the Estimators (COMET-
HTER/MQM) share the same training setup and
hyper-parameters (details are included in the Ap-
pendices). For training, we load the pretrained
encoder and initialize both the pooling layer and
the feed-forward regressor. Whereas the layer-wise
scalars α from the pooling layer are initially set
to zero, the weights from the feed-forward are ini-
tialized randomly. During training, we divide the
model parameters into two groups: the encoder pa-
rameters, that include the encoder model and the
scalars from α; and the regressor parameters, that
include the parameters from the top feed-forward
network. We apply gradual unfreezing and discrim-
inative learning rates (Howard and Ruder, 2018),
meaning that the encoder model is frozen for one
epoch while the feed-forward is optimized with a
learning rate of 3e−5. After the first epoch, the
entire model is fine-tuned but the learning rate for
the encoder parameters is set to 1e−5 in order to
avoid catastrophic forgetting.

In contrast with the two Estimators, for the
COMET-RANK model we fine-tune from the outset.
Furthermore, since this model does not add any
new parameters on top of XLM-RoBERTa (base)
other than the layer scalars α, we use one single
learning rate of 1e−5 for the entire model.

4.2 Evaluation Setup
We use the test data and setup of the WMT 2019
Metrics Shared Task (Ma et al., 2019) in order to
compare the COMET models with the top perform-
ing submissions of the shared task and other recent
state-of-the-art metrics such as BERTSCORE and
BLEURT.5 The evaluation method used is the of-
ficial Kendall’s Tau-like formulation, τ , from the
WMT 2019 Metrics Shared Task (Ma et al., 2019)
defined as:

τ =
Concordant− Discordant
Concordant + Discordant

(8)

where Concordant is the number of times a metric
assigns a higher score to the “better” hypothesis
h+ and Discordant is the number of times a metric
assigns a higher score to the “worse” hypothesis

5To ease future research we will also provide, within our
framework, detailed instructions and scripts to run other met-
rics such as CHRF, BLEU, BERTSCORE, and BLEURT
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Table 1: Kendall’s Tau (τ ) correlations on language pairs with English as source for the WMT19 Metrics DARR
corpus. For BERTSCORE we report results with the default encoder model for a complete comparison, but also
with XLM-RoBERTa (base) for fairness with our models. The values reported for YiSi-1 are taken directly from
the shared task paper (Ma et al., 2019).

Metric en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh
BLEU 0.364 0.248 0.395 0.463 0.363 0.333 0.469 0.235
CHRF 0.444 0.321 0.518 0.548 0.510 0.438 0.548 0.241
YISI-1 0.475 0.351 0.537 0.551 0.546 0.470 0.585 0.355
BERTSCORE (default) 0.500 0.363 0.527 0.568 0.540 0.464 0.585 0.356
BERTSCORE (xlmr-base) 0.503 0.369 0.553 0.584 0.536 0.514 0.599 0.317
COMET-HTER 0.524 0.383 0.560 0.552 0.508 0.577 0.539 0.380
COMET-MQM 0.537 0.398 0.567 0.564 0.534 0.574 0.615 0.378
COMET-RANK 0.603 0.427 0.664 0.611 0.693 0.665 0.580 0.449

h− or the scores assigned to both hypotheses is the
same.

As mentioned in the findings of (Ma et al., 2019),
segment-level correlations of all submitted metrics
were frustratingly low. Furthermore, all submit-
ted metrics exhibited a dramatic lack of ability to
correctly rank strong MT systems. To evaluate
whether our new MT evaluation models better ad-
dress this issue, we followed the described evalu-
ation setup used in the analysis presented in (Ma
et al., 2019), where correlation levels are examined
for portions of the DARR data that include only the
top 10, 8, 6 and 4 MT systems.

5 Results

5.1 From English into X

Table 1 shows results for all eight language pairs
with English as source. We contrast our three
COMET models against baseline metrics such as
BLEU and CHRF, the 2019 task winning metric
YISI-1, as well as the more recent BERTSCORE.
We observe that across the board our three models
trained with the COMET framework outperform,
often by significant margins, all other metrics. Our
DARR Ranker model outperforms the two Estima-
tors in seven out of eight language pairs. Also, even
though the MQM Estimator is trained on only 12K
annotated segments, it performs roughly on par
with the HTER Estimator for most language-pairs,
and outperforms all the other metrics in en-ru.

5.2 From X into English

Table 2 shows results for the seven to-English lan-
guage pairs. Again, we contrast our three COMET

models against baseline metrics such as BLEU and
CHRF, the 2019 task winning metric YISI-1, as

well as the recently published metrics BERTSCORE

and BLEURT. As in Table 1 the DARR model shows
strong correlations with human judgements out-
performing the recently proposed English-specific
BLEURT metric in five out of seven language pairs.
Again, the MQM Estimator shows surprising strong
results despite the fact that this model was trained
with data that did not include English as a target.
Although the encoder used in our trained models is
highly multilingual, we hypothesise that this pow-
erful “zero-shot” result is due to the inclusion of
the source in our models.

5.3 Language pairs not involving English
All three of our COMET models were trained on
data involving English (either as a source or as a
target). Nevertheless, to demonstrate that our met-
rics generalize well we test them on the three WMT
2019 language pairs that do not include English in
either source or target. As can be seen in Table
3, our results are consistent with observations in
Tables 1 and 2.

5.4 Robustness to High-Quality MT
For analysis, we use the DARR corpus from the
2019 Shared Task and evaluate on the subset of
the data from the top performing MT systems for
each language pair. We included language pairs
for which we could retrieve data for at least ten
different MT systems (i.e. all but kk-en and gu-en).
We contrast against the strong recently proposed
BERTSCORE and BLEURT, with BLEU as a base-
line. Results are presented in Figure 3. For lan-
guage pairs where English is the target, our three
models are either better or competitive with all oth-
ers; where English is the source we note that in
general our metrics exceed the performance of oth-
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Table 2: Kendall’s Tau (τ ) correlations on language pairs with English as a target for the WMT19 Metrics DARR
corpus. As for BERTSCORE, for BLEURT we report results for two models: the base model, which is comparable
in size with the encoder we used and the large model that is twice the size.

Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en
BLEU 0.053 0.236 0.194 0.276 0.249 0.177 0.321
CHRF 0.123 0.292 0.240 0.323 0.304 0.115 0.371
YISI-1 0.164 0.347 0.312 0.440 0.376 0.217 0.426
BERTSCORE (default) 0.190 0.354 0.292 0.351 0.381 0.221 0.432
BERTSCORE (xlmr-base) 0.171 0.335 0.295 0.354 0.356 0.202 0.412
BLEURT (base-128) 0.171 0.372 0.302 0.383 0.387 0.218 0.417
BLEURT (large-512) 0.174 0.374 0.313 0.372 0.388 0.220 0.436
COMET-HTER 0.185 0.333 0.274 0.297 0.364 0.163 0.391
COMET-MQM 0.207 0.343 0.282 0.339 0.368 0.187 0.422
COMET-RANK 0.202 0.399 0.341 0.358 0.407 0.180 0.445

Table 3: Kendall’s Tau (τ ) correlations on language
pairs not involving English for the WMT19 Metrics
DARR corpus.

Metric de-cs de-fr fr-de
BLEU 0.222 0.226 0.173
CHRF 0.341 0.287 0.274
YISI-1 0.376 0.349 0.310
BERTSCORE (default) 0.358 0.329 0.300
BERTSCORE (xlmr-base) 0.386 0.336 0.309
COMET-HTER 0.358 0.397 0.315
COMET-MQM 0.386 0.367 0.296
COMET-RANK 0.389 0.444 0.331

ers. Even the MQM Estimator, trained with only
12K segments, is competitive, which highlights the
power of our proposed framework.

5.5 The Importance of the Source

To shed some light on the actual value and contri-
bution of the source language input in our models’
ability to learn accurate predictions, we trained two
versions of our DARR Ranker model: one that uses
only the reference, and another that uses both refer-
ence and source. Both models were trained using
the WMT 2017 corpus that only includes language
pairs from English (en-de, en-cs, en-fi, en-tr). In
other words, while English was never observed as
a target language during training for both variants
of the model, the training of the second variant in-
cludes English source embeddings. We then tested
these two model variants on the WMT 2018 corpus
for these language pairs and for the reversed di-
rections (with the exception of en-cs because cs-en
does not exist for WMT 2018). The results in Table
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Figure 3: Metrics performance over all and the top (10,
8, 6, and 4) MT systems.

4 clearly show that for the translation ranking archi-
tecture, including the source improves the overall
correlation with human judgments. Furthermore,
the inclusion of the source exposed the second vari-
ant of the model to English embeddings which is
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Table 4: Comparison between COMET-RANK (section 2.4) and a reference-only version thereof on WMT18 data.
Both models were trained with WMT17 which means that the reference-only model is never exposed to English
during training.

Metric en-cs en-de en-fi en-tr cs-en de-en fi-en tr-en
COMET-RANK (ref. only) 0.660 0.764 0.630 0.539 0.249 0.390 0.159 0.128
COMET-RANK 0.711 0.799 0.671 0.563 0.356 0.542 0.278 0.260
∆τ 0.051 0.035 0.041 0.024 0.107 0.155 0.119 0.132

reflected in a higher ∆τ for the language pairs with
English as a target.

6 Reproducibility

We will release both the code-base of the COMET

framework and the trained MT evaluation models
described in this paper to the research community
upon publication, along with the detailed scripts
required in order to run all reported baselines.6 All
the models reported in this paper were trained on a
single Tesla T4 (16GB) GPU. Moreover, our frame-
work builds on top of PyTorch Lightning (Falcon,
2019), a lightweight PyTorch wrapper, that was
created for maximal flexibility and reproducibility.

7 Related Work

Classic MT evaluation metrics are commonly char-
acterized as n-gram matching metrics because,
using hand-crafted features, they estimate MT qual-
ity by counting the number and fraction of n-
grams that appear simultaneous in a candidate
translation hypothesis and one or more human-
references. Metrics such as BLEU (Papineni et al.,
2002), METEOR (Lavie and Denkowski, 2009),
and CHRF (Popović, 2015) have been widely stud-
ied and improved (Koehn et al., 2007; Popović,
2017; Denkowski and Lavie, 2011; Guo and Hu,
2019), but, by design, they usually fail to recognize
and capture semantic similarity beyond the lexical
level.

In recent years, word embeddings (Mikolov
et al., 2013; Pennington et al., 2014; Peters et al.,
2018; Devlin et al., 2019) have emerged as a com-
monly used alternative to n-gram matching for
capturing word semantics similarity. Embedding-
based metrics like METEOR-VECTOR (Servan
et al., 2016), BLEU2VEC (Tättar and Fishel, 2017),
YISI-1 (Lo, 2019), MOVERSCORE (Zhao et al.,
2019), and BERTSCORE (Zhang et al., 2020) create
soft-alignments between reference and hypothesis

6These will be hosted at: https://github.com/
Unbabel/COMET

in an embedding space and then compute a score
that reflects the semantic similarity between those
segments. However, human judgements such as
DA and MQM, capture much more than just se-
mantic similarity, resulting in a correlation upper-
bound between human judgements and the scores
produced by such metrics.

Learnable metrics (Shimanaka et al., 2018;
Mathur et al., 2019; Shimanaka et al., 2019) at-
tempt to directly optimize the correlation with hu-
man judgments, and have recently shown promis-
ing results. BLEURT (Sellam et al., 2020), a learn-
able metric based on BERT (Devlin et al., 2019),
claims state-of-the-art performance for the last 3
years of the WMT Metrics Shared task. Because
BLEURT builds on top of English-BERT (Devlin
et al., 2019), it can only be used when English is the
target language which limits its applicability. Also,
to the best of our knowledge, all the previously
proposed learnable metrics have focused on opti-
mizing DA which, due to a scarcity of annotators,
can prove inherently noisy (Ma et al., 2019).

Reference-less MT evaluation, also known as
Quality Estimation (QE), has historically often re-
gressed on HTER for segment-level evaluation (Bo-
jar et al., 2013, 2014, 2015, 2016, 2017a). More
recently, MQM has been used for document-level
evaluation (Specia et al., 2018; Fonseca et al.,
2019). By leveraging highly multilingual pre-
trained encoders such as multilingual BERT (De-
vlin et al., 2019) and XLM (Conneau and Lam-
ple, 2019), QE systems have been showing aus-
picious correlations with human judgements (Ke-
pler et al., 2019a). Concurrently, the OpenKiwi
framework (Kepler et al., 2019b) has made it easier
for researchers to push the field forward and build
stronger QE models.

8 Conclusions and Future Work

In this paper we present COMET, a novel neu-
ral framework for training MT evaluation models
that can serve as automatic metrics and easily be

https://github.com/Unbabel/COMET
https://github.com/Unbabel/COMET
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adapted and optimized to different types of human
judgements of MT quality.

To showcase the effectiveness of our framework,
we sought to address the challenges reported in the
2019 WMT Metrics Shared Task (Ma et al., 2019).
We trained three distinct models which achieve new
state-of-the-art results for segment-level correlation
with human judgments, and show promising ability
to better differentiate high-performing systems.

One of the challenges of leveraging the power of
pretrained models is the burdensome weight of pa-
rameters and inference time. A primary avenue for
future work on COMET will look at the impact of
more compact solutions such as DistilBERT (Sanh
et al., 2019).

Additionally, whilst we outline the potential im-
portance of the source text above, we note that our
COMET-RANK model weighs source and reference
differently during inference but equally in its train-
ing loss function. Future work will investigate the
optimality of this formulation and further examine
the interdependence of the different inputs.
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E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 7059–
7069. Curran Associates, Inc.

Michael Denkowski and Alon Lavie. 2011. Meteor 1.3:
Automatic metric for reliable optimization and eval-
uation of machine translation systems. In Proceed-
ings of the Sixth Workshop on Statistical Machine
Translation, pages 85–91, Edinburgh, Scotland. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

WA Falcon. 2019. PyTorch Lightning: The lightweight
PyTorch wrapper for high-performance AI research.
GitHub.

Erick Fonseca, Lisa Yankovskaya, André F. T. Martins,
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A Appendices

In Table 5 we list the hyper-parameters used to train
our models. Before initializing these models a ran-
dom seed was set to 3 in all libraries that perform
“random” operations (torch, numpy, random
and cuda).
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Table 5: Hyper-parameters used in our COMET framework to train the presented models.

Hyper-parameter COMET(Est-HTER/MQM) COMET-RANK

Encoder Model XLM-RoBERTa (base) XLM-RoBERTa (base)
Optimizer Adam (default parameters) Adam (default parameters)
n frozen epochs 1 0
Learning rate 3e-05 and 1e-05 1e-05
Batch size 16 16
Loss function MSE Triplet Margin (ε = 1.0)
Layer-wise dropout 0.1 0.1
FP precision 32 32
Feed-Forward hidden units 2304,1152 –
Feed-Forward activations Tanh –
Feed-Forward dropout 0.1 –

Table 6: Statistics for the QT21 corpus.

en-de en-cs en-lv de-en
Total tuples 54000 42000 35474 41998
Avg. tokens (reference) 17.80 15.56 16.42 17.71
Avg. tokens (source) 16.70 17.37 18.39 17.18
Avg. tokens (MT) 17.65 15.64 16.42 17.78

Table 7: Statistics for the WMT 2017 DARR corpus.

en-cs en-de en-fi en-lv en-tr
Total tuples 32810 6454 3270 3456 247
Avg. tokens (reference) 19.70 22.15 15.59 21.42 17.57
Avg. tokens (source) 22.37 23.41 21.73 26.08 22.51
Avg. tokens (MT) 19.45 22.58 16.06 22.18 17.25
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Table 12: Metrics performance over all and the top (10,8, 6, and 4) MT systems for all from-English language
pairs. The color scheme is as follows: COMET-RANK, COMET-HTER, COMET-MQM, BLEU,
BERTSCORE
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Table 13: Metrics performance over all and the top (10,8, 6, and 4) MT systems for all into-English language
pairs. The color scheme is as follows: COMET-RANK, COMET-HTER, COMET-MQM, BLEU,
BERTSCORE , BLEURT


