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Abstract

Unlike other domains, medical texts are in-
evitably accompanied by private information,
so sharing or copying these texts is strictly
restricted. However, training a medical rela-
tion extraction model requires collecting these
privacy-sensitive texts and storing them on one
machine, which comes in conflict with privacy
protection. In this paper, we propose a privacy-
preserving medical relation extraction model
based on federated learning, which enables
training a central model with no single piece of
private local data being shared or exchanged.
Though federated learning has distinct advan-
tages in privacy protection, it suffers from the
communication bottleneck, which is mainly
caused by the need to upload cumbersome lo-
cal parameters. To overcome this bottleneck,
we leverage a strategy based on knowledge dis-
tillation. Such a strategy uses the uploaded pre-
dictions of ensemble local models to train the
central model without requiring uploading lo-
cal parameters. Experiments on three publicly
available medical relation extraction datasets
demonstrate the effectiveness of our method.

1 Introduction

Privacy - like eating and breathing - is one of life’s
basic requirements.

— Katherine Neville
Relation extraction is a task of mining factual

knowledge from the free text by labeling relations
between entity mentions and has attracted increas-
ing attention in recent years, such as Zeng et al.
(2014); Xu et al. (2015a,b); Wang et al. (2016);
Baldini Soares et al. (2019); Song et al. (2019).
Applying automatic relation extraction to medical
texts, such as electronic health records and dis-
charge summaries, can be useful for many appli-
cations, including drug repurposing and medical
knowledge graph construction.

Unlike other domains, medical texts are highly
privacy-sensitive, because these texts can include
some of the most intimate details about one’s life,
which document a patient’s physical and mental
health, and can include information on social be-
haviors, personal relationships and financial status
(Gostin and Hodge, 2002). To prevent private infor-
mation leakage, sharing or copying medical texts
is strictly restricted.

Previous relation extraction methods require cen-
tralizing the underlying training data from different
medical platforms, such as hospitals and healthcare
centers, on one server for training, while holding
the centralized privacy-sensitive data puts patients’
privacy at risk. This is one of the reasons that hin-
der the use of relation extraction in clinical practice.
As a possible solution, federated learning (McMa-
han et al., 2016) is proposed to make full use of
privacy-sensitive data. Training local models with
private data at local platforms and aggregating local
models in the central server compose the federated
learning process. In the framework of federated
learning, no single piece of private data is uploaded
to or stored on the central server, and only local
models’ parameters are sent to the server for updat-
ing the central model.

Though federated learning has distinct advan-
tages in privacy protection compared to central-
ized training, federated learning algorithms, such
as FedAvg (McMahan et al., 2016), require fre-
quent communication between local platforms and
the central server to upload and download mod-
els’ parameters. Communication is a critical bot-
tleneck of applying federated learning to relation
extraction, which is largely due to the following
reasons: First, the state-of-the-art relation extrac-
tion models (Baldini Soares et al., 2019; Li et al.,
2019b; Thillaisundaram and Togia, 2019) usually
utilize transformer-based pretrained language mod-
els (Raffel et al., 2019; Devlin et al., 2019; Liu et al.,
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2019; Yang et al., 2019b) as backbone encoders,
which have millions or even billions of parame-
ters. Second, the framework of federated learning
includes a massive number of local platforms (Li
et al., 2019a), and communication between each
platform and the central server is necessary. Third,
upload bandwidth is typically limited to 1 MB/s
or less in most situations 1. Considering the cum-
bersome model, numerous local platforms and the
limited upload bandwidth, it will take an excessive
amount of time during frequent upload processes.
For example, in a single communication, upload-
ing a BERT-Large (Devlin et al., 2019) model takes
more than 21 minutes and uploading a T5 (Raffel
et al., 2019) model takes more than 12 hours. In
order to overcome the communication bottleneck
in federated relation extraction, it is necessary to
develop a communication-efficient method that iter-
atively sends small messages as part of the training
process, as opposed to sending the entire pretrained
language encoder.

In this paper, we introduce a privacy-preserving
medical relation extraction model, named FedED.
To prevent private information leakage, we lever-
age federated learning without sharing raw privacy-
sensitive medical texts. To overcome the communi-
cation bottleneck in federated relation extraction,
we focus on reducing the size of transmitted mes-
sages at each communication round. To this end,
we formulate the central aggregation process in
federated learning as learning a compact central
model (student) from the ensemble (Dietterich,
2000; Breiman, 2001) of multiple local models
(teacher). From this perspective, only the predicted
labels on a small dataset need to be uploaded to the
central server, because learning from a “teacher”
model only requires the behavior of the “teacher”
rather than the entire“teacher” network (Hinton
et al., 2015). Besides, the ensemble model (teacher)
is powerful, which defines the upper extreme of ag-
gregating when limited to a single communication
in federated learning (Yurochkin et al., 2019). To
transfer the knowledge in the ensemble model to
the central model, we leverage a strategy based on
knowledge distillation (Hinton et al., 2015), which
trains the central model by forcing it to have a
similar prediction with the ensemble model. To
demonstrate the effectiveness of our method, we
conduct extensive experiments on three different

1the bandwidth and bitrate of the download are much
greater than the upload, so we only consider the upload pro-
cess.(en.wikipedia.org/wiki/ADSL).

medical relation extraction datasets. The results
show that our method not only outperforms the
baselines but also is communication-efficient.

We summarize our contributions as follows:

• To protect patients’ privacy, we propose the
first (to the best of our knowledge) privacy-
preserving medical relation extraction model
based on federated learning, which decouples
the model training from the need for direct
access to the highly privacy-sensitive data.

• To overcome the communication bottleneck in
federated learning, we leverage a knowledge
distillation based strategy that utilizes the up-
loaded predictions of ensemble local models
to train the central model without requiring
uploading the entire local models’ parameters.

• The method yields promising results on three
different medical relation extraction datasets,
and we perform various experiments to verify
the effectiveness of the proposed method.

2 Related Work

Our work builds on a rich line of recent efforts on
relation extraction models and federated learning.

2.1 Relation Extraction

Relation extraction is a long-standing NLP task of
mining factual knowledge from free texts by la-
beling relations between entity mentions. There
are a number of recent neural network approaches
applied to relation extraction, such as Zeng et al.
(2014); Nguyen and Grishman (2015); dos Santos
et al. (2015); Zhang and Wang (2015); Zhang et al.
(2017). Recently, the NLP community has seen ex-
citement around neural models that make heavy use
of pretraining based on language modeling (Rad-
ford et al.; Devlin et al., 2019; Liu et al., 2019;
Yang et al., 2019b). Baldini Soares et al. (2019);
Shi and Lin (2019) and Alt et al. (2019) achieved
the state-of-the-art performance in relation extrac-
tion by fine-tuning the pretrained language models.
In this paper, we also adopt a pretrained language
model as the backbone encoder.

Applying relation extraction models to the med-
ical field has great practical value, and there is a
rich literature on medical relation extraction. Some
studies focused on clinical relation extraction (Sahu
et al., 2016; Munkhdalai et al., 2018; Ningthou-
jam et al., 2019) and some studies concentrated on

en.wikipedia.org/wiki/ADSL
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biomedical relation extraction (Peng et al., 2017;
Song et al., 2018, 2019). Compared with previous
studies, we develop a federated relation extraction
system to protect patients’ privacy in medical rela-
tion extraction.

2.2 Federated Learning

Recently, McMahan et al. (2016), Konečnỳ et al.
(2016a) and Konečnỳ et al. (2016b) proposed the
concept of federated learning. The main idea of fed-
erated learning is to build machine learning models
based on data sets that are distributed across multi-
ple local platforms while preventing data leakage.
Federated learning can be divided into three cate-
gories, i.e., horizontal federated learning, vertical
federated learning and federated transfer learning,
based on the distribution characteristics of the data
(Yang et al., 2019a). This work focuses on horizon-
tal federated learning, where local datasets share
the same feature space but different in samples.
There are a number of studies about horizontal fed-
erated learning, such as McMahan et al. (2016);
Sahu et al. (2018); Ji et al. (2019); Wang et al.
(2020).

Federated learning has the advantage of protect-
ing privacy, so it is widely used in various fields.
Chen et al. (2018) combined federated learning
with meta learning for the recommendation. Kim
et al. (2017) proposed federated tensor factoriza-
tion for computational phenotyping without sharing
patient-level data. Liu and Miller (2020) proposed
federated pretraining of BERT model using clinical
notes from multiple silos. Ge et al. (2020) proposed
a privacy-preserving medical NER method based
on federated learning.

3 Method

3.1 Task Definition

Relation Extraction devotes to extracting relational
facts from sentences. Given a sentence with an
entity pair e1 and e2, this task aims to identify
the relation between e1and e1. In this paper, we
focus on applying relation extraction to the medi-
cal domain. Define K medical platforms {P1, P2,
..., PK}, each with a private relation extraction
dataset Di, and a central server that has a small
valid dataset Dv. Since the medical data is usually
private and sensitive, the goal is to obtain a medi-
cal relation extraction model on the central server
under the condition that any local platform Pi does
not expose its private data Di to others.

To solve this task, we propose a privacy-
preserving medical relation extraction model based
on federated learning. In the following sections,
we introduce the basic medical relation extraction
model at first. Then, we present how to conduct
privacy-preserving training in a communication-
efficient way.

3.2 Medical Relation Extraction Model
Given the impressive performance of recent deep
transformers (Vaswani et al., 2017) trained on vari-
ants of language modeling, we utilize the BERT
model (Devlin et al., 2019) as the backbone en-
coder. In this section, we explore a simple way of
representing relations with the deep transformers
model. The model architecture is shown in Figure
1 and the details are as follows:

Firstly, we construct the input sequence s =
{w0, w1, ..., wn}, where w0 = [CLS] and wn =
[SEP] are special start and end markers. Next, to
ensure generalization of the model, we follow pre-
vious studies (He et al., 2013; Kim et al., 2015; Liu
et al., 2016; Chauhan et al., 2019) to perform entity
blinding on the sequence, where the words in the
sequence matching the entity are replaced with the
target entity label. Then, in order to highlight entity
mentions, we augment the sequence with four re-
served word pieces, i.e., 〈e1〉,〈/e1〉,〈e2〉 and 〈/e2〉,
to mark the begin and end of each entity mention.
After that, we get the prepared sequence ŝ.

ŝ ={[CLS], w1, ..., wi−2, 〈e1〉, wi, ..., wj , 〈/e1〉,
..., 〈e2〉, wk, ..., wl, 〈/e2〉, ..., wm−2, [SEP]}

Given the prepared sequence ŝ as input, the out-
put of BERT is expressed as H ∈ Rm×d, where m
is the prepared sequence length and d is the output
dimension of the BERT encoder. We use the first
token of the sequence (the [CLS] token) as the se-
quence representation, which is denoted as h0 ∈
Rd. In addition, we obtain entity mention represen-
tations by summing the final hidden layers corre-
sponding to the word pieces in each entity mention,
and get two vectors he1 = sum([hi...hj ]) ∈ Rd

and he2 = sum([hk...hl]) ∈ Rd representing the
two entity mentions. Finally, the sequence repre-
sentation and these two entity mention represen-
tations are concatenated to be the input of a fully
connected layer:

h = h0 ⊕ he1 ⊕ he2 ∈ R3d (1)

p(y|ŝ,Θ) = softmax(Wh + b) (2)

where W and b are trainable model parameters.



2121

[CLS] Rule out <e2> Problem </e2> with <e1> Treament </e1> [SEP]

Deep Transformers (BERT)

TrAP

Figure 1: The architecture of our medical relation ex-
traction model.

3.3 Federated Training

To protect patients’ privacy, we utilize federated
learning to train the medical relation extraction
model. In the federated framework, two types of
models are needed, i.e., the local model and the
central model, which share the same network struc-
ture but have different permissions to access private
data. Local models are deployed in local platforms,
such as hospitals, and can access their respective
private local data. In contrast, the central model
is deployed in a central server, such as a cloud
server, which is strictly prohibited from accessing
to patients’ private data. Here, following previ-
ous studies (McMahan et al., 2016; Bonawitz et al.,
2019; Ge et al., 2020), we assume the central server
belongs to one trusted third party, which means it
will not make any vicious attack to local platforms.
In this section, we present how to train the relation
extraction model in the federated way, including
secure local model update and the ensemble distil-
lation based central model update.

3.3.1 Secure Local Model Update
The local model in each medical platform is trained
on its own private data. We assume that the local
platform Pi is selected to perform local computa-
tion in a round. The local platform Pi computes
the gradients of loss over all the data Di held by
it to update the parameters of the local model. We
adopt the cross-entropy as the local loss function,
which is defined as follows:

Llocal(Θ) = − 1

|Di|

|Di|∑
i=1

log p(yi|ŝi,Θ) (3)

where |Di| represents the number of sentences in
this local private dataDi and Θ indicates all param-
eters of the local model. After local model training,
the local model in Pi accesses to valid data Dv in

the central server, makes a prediction on it based
on the trained parameters and uploads the predicted
labels to the central server. Compared with cen-
tralized training, the local model is only trained on
its own data, and only the predicted labels are up-
loaded rather than directly sharing raw data, which
generally contains less privacy-sensitive informa-
tion.

3.3.2 Central Model Update via Ensemble
Distillation

The central server coordinates massive local mod-
els to collaboratively train the central model. To
this end, there are a coordinator and an aggregator
in the central server.

Coordinator controls the entire training process
and is responsible for accepting and forwarding
local platform connections. At the beginning of
each communication round, the coordinator builds
the medical relation extraction model in the cen-
tral server and initializes the model. Then, the
coordinator randomly selects a C-fraction of local
medical platforms, since we cannot require that all
local platforms are always online in the real-world
scenario. After that, the coordinator distributes the
parameters of central model to all selected local
platforms, and the selected local models are ini-
tialized based on these parameters, which ensures
that all selected local models are trained from the
same initial condition at this round. Then, the se-
lected local models are trained on their respective
private data at each local platform. The coordinator
monitors each selected platform for any possible
uploads. Once it receives uploads from one plat-
form, the coordinator will store them for future
aggregation. When all selected platforms finish
local training, the stored uploads are sent to the
aggregator to inference new central model parame-
ters.

Aggregator is the most critical part of feder-
ated training, which optimizes the central model
based on massive trained local models. To trans-
fer the knowledge in the massive trained local
models to the central model, we resort to teacher-
student framework. The ensemble of local models
is viewed as the teacher, while the central model
is regarded as the student. The knowledge in the
teacher is transferred to the central model by forc-
ing them to have a similar prediction for any input
instance. To this end, the central model is trained
to minimize a distillation loss function where the
target is the distribution of class probabilities pre-
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dicted by the ensemble model. The typical choice
of the distillation loss function is the Kullback-
Leibler (KL) divergence between the distributions,
DKL(q||p), where p and q are the output label dis-
tributions of the student and the teacher respec-
tively. The distribution of the teacher can be at-
tained as follows:

q(yi|s) =
exp (z(yi|s)/τ)∑
r exp (z(yr|s)/τ)

(4)

z(yi|s) =
1

|J |
∑
j∈J

p(yi|s,Θ(j)) (5)

where z(yi|s) is the logit of ensemble model
(teacher) for class i, which is represented as the
mean of selected local models’ logits for this class,
and τ is a temperature parameter that controls the
shape of the distribution for distilling richer knowl-
edge from the ensemble model. In addition to the
distillation loss, it is also beneficial to train the
central model to predict the ground truth labels us-
ing the standard cross-entropy loss. The overall
objective is defined as follows:

L = 1
|Dv |

|Dv |∑
i=1

(− log p(yi|ŝi) +DKL(q(y|ŝi)||p(y|ŝi)))

(6)
The overall training procedure of FedED is illus-
trated in Algorithm 1.

4 Experiments

In this section, we carry out an extensive set of ex-
periments with the aim of answering the following
research questions:

• RQ1: Does our model outperform the base-
line methods? (see Section 4.4)

• RQ2: Is federated learning effective in medi-
cal relation extraction? (see Section 4.5)

• RQ3: Is our approach communication-
efficient? (see Section 4.6)

• RQ4: What is the impact of increasing paral-
lelism on our model? (see Section 4.7)

• RQ5: What is the impact of increasing com-
putation per local platform on our model? (see
Section 4.8)

In the remainder of the section, we describe the
datasets, experimental setting, and all baselines.

Algorithm 1 FedED. The K local platforms are in-
dexed by k. C is the fraction of local platforms that
perform computation on each round. B is the local
minibatch size. E is the number of local epochs,
and η is the learning rate.

Initialize Θ0 on the central server
for each communication round t = 0,1,2,... do

m← max(C× K, 1)
Jt ← (random set of m local platforms)
The server distributes Θt to Jt.
for each platform k ∈ Jt in parallel do

Perform LocalUpdate(k, Θt)
end for
// The procedure of Aggregator
V ← (split Dv into batches)
for batch v in V do

Θt ← Θt − η∇L(Θt; v)
// L is defined in Equation 6

end for
Θt+1 ← Θt

end for

function LocalUpdate(k, Θ):
// Run on local platform k
B ← (split Dk into batches of size B)
// Dk is the private data of local platform k
for each local epoch i from 1 to E do

for batch b in B do
Θ← Θ− η∇Llocal(Θ; b)
// Llocal is defined in Equation 3

end for
end for
Access to Dv

return {p(y|s,Θ)|s ∈ Dv} to server

4.1 Datasets

We conduct experiments on three publicly avail-
able medical relation extraction datasets: 2010
i2b2/VA challenge dataset (Uzuner et al., 2011)2,
GAD(Bravo et al., 2015) and EU-ADR (Van Mul-
ligen et al., 2012) 3. The 2010 i2b2/VA challenge
dataset is collected from three different hospitals
viz, Partners Healthcare, Beth Israel Deaconess
Medical Center, and the University of Pittsburgh
Medical Center. It consists of discharge-summary
and progress notes of the patients, and is manu-
ally annotated by medical practitioners. The EU-
ADR dataset is annotated on a part of Medline

2https://portal.dbmi.hms.harvard.ed
3https://github.com/dmis-lab/biobert

https://portal.dbmi.hms.harvard.ed
https://github.com/dmis-lab/biobert
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Dataset Entiy Type #Train #Test Relation

2010
i2b2/VA

Test, Treatment
and Problem

10231 19114
TrIP, TrWP, TrCP,

TrAP, TrNAP,
TeRP, TeCP, PIP

GAD Gene and Disease 4797 533
True/False

Associations

EU-ADR Gene and Disease 320 35
True/False

Associations

Table 1: Statistics of the medical relation extraction
datasets

Relation Type Number Instances
TeRP 3053
TrAP 2617
TrCP 526
PIP 2203

TeCP 504
TrIP 203

TrWP 133
TrNAP 174
None 19932

Table 2: Relation types and number of instances of i2b2
dataset

abstracts from 2007 to 2008, and the GAD dataset
is collected form Genetic Association Database,
an archive of human genetic association studies
of complex diseases and disorders. The detailed
statistics of these three datasets are listed in Table 1
and 2. We random sample 20% of training data for
validation. To evaluate our method, we use the stan-
dard evaluation metric for each dataset: Micro-F1
for 2010 i2b2/VA challenge dataset and F1-score
for GAD and EU-ADR.

4.2 Experimental Settings

We use a controlled environment that is suitable
for experiments and assume a synchronous update
scheme that proceeds in rounds of communication.
For 2010 i2b2/VA challenge dataset, we set the
number of local platforms (K) to 100. For EU-
ADR and GAD datasets, the number of local plat-
forms (K) is set to 50, since these datasets are
small. The training data is randomly shuffled and
then partitioned into K local platforms each receiv-
ing 1/K of the training data. This data partition-
ing simulates the scenario where each hospital is
treated as a local platform and the central server is
located in a trusted third party.

In our experiments, we use hugginface’s imple-
mentation (Wolf et al., 2019) of BERT (base ver-
sion) and initialize parameters of the BERT encod-
ing layer with pretrained clinical BERT (Alsentzer

et al., 2019) models. The learning rate is set to 2.5e-
05. We use the dropout strategy to mitigate overfit-
ting, which is set to 0.1. To conduct a fair compari-
son (presented in Section 4.4), we set all federated
methods hyper-parameters as follows. The random
fraction of local platforms C is 0.1, and we also
study adding more local platforms at each round
of communication in Section 4.7. Since the batch
size and the number of local epochs are related to
the number of secure local updates per round, the
batch size B is fixed to 4 and the number of local
epochs E is set to 2. We independently repeat each
experiment 9 times and report the median F-score.
All experiments are run with an NVIDIA GeForce
RTX 2080 Ti.

4.3 Baselines
Under centralized training settings, we compare
our medical relation extraction model (depicted in
Section 3.2) with the following studies: (1) Sahu
et al. (2016) leverage convolutional neural network
(CNN) to extract relations in clinical texts; (2)
Chauhan et al. (2019) build CNN upon the embed-
dings generated by the BERT model and train the
models with a ranking loss; (3) Bravo et al. (2015)
combine the shallow linguistic kernel with the de-
pendency kernel to mine the syntactic features of
text; (4) Bhasuran and Natarajan (2018) employ an
ensemble SVM with a rich feature set covering con-
ceptual, syntax and semantic information; (5) Lee
et al. (2020) propose a domain-specific language
representation model, called BioBERT, pre-trained
on large-scale biomedical corpora.

In the federated training manner, We compare
our federated framework (depicted in Section 3.3)
with the following baselines: (1) FedAvg (McMa-
han et al., 2016) averages element-wise parame-
ters of local models with weights proportional to
sizes of the local datasets; (2) FedAtt (Ji et al.,
2019) leverages a layer-wise attention mechanism
for model aggregation. which can automatically
attend to the weights of the relation between the
central model and different local models.

4.4 Results
Table 3, 4 and 5 answer RQ1 by showing the results
of our model against baselines on the real-world
medical datasets. In overall, our model signifi-
cantly outperforms baselines on these datasets.

In the centralized training manner, our method
outperforms REflex (Chauhan et al., 2019) on i2b2
dataset, which builds CNN upon the embeddings
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Method P R F1
Centralized Training

Bravo et al. (2015) 77.80 87.20 82.20
Bhasuran and Natarajan (2018) 79.21 89.25 83.93

Lee et al. (2020) 77.32 82.68 79.83
Our 77.58 91.1 83.8

Federated Training
FedAvg 69.89 87.54 77.73
FedAtt 72.14 87.54 79.1

Our 74.77 88.61 81.11

Table 3: Results on GAD

Method P R F1
Centralized Training

Bravo et al. (2015) 75.1 97.7 84.6
Bhasuran and Natarajan (2018) 76.43 98.01 85.34

Lee et al. (2020) 77.86 83.55 79.74
Our 78.79 96.3 86.67

Federated Training
FedAvg 71.43 92.59 80.65
FedAtt 72.22 96.3 82.54

Our 74.29 96.3 83.87

Table 4: Results on EU-ADR

Method P R F1
Centralized Training

Sahu et al. (2016) 76.34 67.35 71.16
Raj et al. (2017) 67.91 61.98 64.38

Chauhan et al. (2019) – – 71.01
Our 74.78 80.1 77.35

Federated Training
FedAvg 74.75 70.48 72.55
FedAtt 74.48 71.32 72.86

Our 75.4 74.78 75.09

Table 5: Results on 2010 i2b2/VA challenge dataset

generated by the BERT model. We conjecture this
is largely due to that our model adopts the fine-
tuning strategy on the relation extraction tasks in-
stead of leveraging fixed embeddings generated
by BERT. Previous studies (Peters et al., 2019) on
BERT show that fine-tuning significantly outper-
forms the frozen pretrained weights strategy. Our
method outperforms BioBERT (Lee et al., 2020) on
EU-ADR and GAD datasets. The BioBERT only
uses sequence representation, while our method
use both sequence representations and entity men-
tion representations. Moreover, we introduce four
entity markers to highlight entity mention. Previ-
ous research (Baldini Soares et al., 2019) on rela-
tion extraction shows that entity markers and entity
mention representation has a positive impact on the
result.

In the federated training manner, our federated
framework outperforms FedAvg (McMahan et al.,
2016) and FedAtt (Ji et al., 2019). There are two
possible reasons: (1) The performance of the en-
semble model defines the upper extreme of aggre-
gating when limited to a single communication in
federated learning (Yurochkin et al., 2019), and the
central model benefits from learning from the en-
semble model. (2) FedAvg and FedAtt only model
the simple process of central optimization by av-
eraging or weighted averaging local model param-
eters, which overlook complicated relationships
between local model parameters. FedED forces
the central model to mimic the behavior of the en-
semble model rather than modeling the complex
relationship between parameters.

Comparing the federated training manner to the
centralized training manner, we find that applying
the centralized training manner achieves better per-
formance. There are three reasons: (1) In federated
learning, a 10% fraction of local platforms are se-
lected in each epoch. In other words, only 10%
of the training examples are used in each epoch.
However, all training examples are used at each
epoch in centralized training. (2) As the size of
each local private data is small, the local model is
prone to overfitting on it. (3) The local platforms
are independent of each other; therefore, compared
with centralized training, federated training lack
the ability to model the overall data distribution.
Although federated training does not perform as
well as centralized learning, federated training is
uniquely positioned to protect privacy. Moreover,
our approach narrows the gap between federated
training and centralized training in terms of perfor-
mance.

4.5 Effectiveness Test of Federated Learning

To test the effectiveness of federated learning, we
simulate a real-world scenario where a third party
only has a small data, i.e., validation set, and copy-
ing data from hospitals is prohibited. The results
are shown in Table 6, which answers the RQ2.
From this table, we find that: (1) Due to data
scarcity, the model trained only on the validation
set can not achieve satisfactory performance; (2)
FedAvg and FedAtt can effectively improve the per-
formance of relation types with abundant examples,
such as “TeRP”, “TrAP” and ”PIP”, but perform
poorly in relation types with few examples (The
distribution of relation types is shown in Table 2);
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Relation
Types

Trained on
Validation Set

FedAvg FedAtt FedED

TeRP 79.74 84.96 85.24 85.3
TrAP 67.75 72.68 71.55 76.05
TrCP 43.11 50.41 47.73 54.9
PIP 66.98 71.07 75.16 73.69

TeCP 27.36 49.41 51.46 58.02
TrIP 24.24 23.08 1.3 48.03

TrWP 0 0 0 11.97
TrNAP 22.54 21.79 18.79 56.16

Table 6: The classwise performance on the 2010
i2b2/VA challenge dataset

(3) Our proposed FedED is able to improve per-
formance in all relation types. We conjecture that
ensemble distillation can capture the rich similarity
structure between relation types, which boosts the
performance.

4.6 Communication Efficiency Test

We turn to RQ3 in this section. Table 7 presents
the message size uploaded by each local platform
at each communication round. From this table, we
notice that our proposed method is communication-
efficient and the amount of data uploaded by our
method is much smaller than the others. The reason
is that FedAvg and FedAtt require each selected
local platform to upload the entire medical relation
extraction model at each communication round,
while only the predicted labels on a small dataset
are uploaded to the central server in FedED. Con-
sidering numerous local platforms and the limited
upload bandwidth, our proposed method can save
a lot of time in communication.

Method i2b2 GAD EU-ADR
FedAvg 423MB 423MB 423MB
FedAtt 423MB 423MB 423MB
FedED 42KB 5KB 323B

Table 7: The message size uploaded by each local plat-
form at each communication round.

4.7 Increasing Parallelism

Figure 2 answers RQ4 by showing the impact of
varying the fraction of local platforms for all ap-
proaches on the 2010 i2b2/VA challenge dataset.
The fraction of local platforms C controls the
amount of local platforms selected by the coordina-
tor in each round. In Figure 2, we report the number
of communication rounds necessary to achieve an
F1 value of 72% on the test set. We find that: (1)
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Figure 2: The number of communication rounds nec-
essary to achieve an F1 value of 72% on the test set,
fixing local epoch E to 2 and the batch size B to 4.

Increasing parallelism will speed up convergence
for all methods. When all local platforms are se-
lected (C = 1), all methods reach the target F1
value with minimal communication cost. This is
mainly due to the fact that the increased parallelism
leads to more data used in each round of training;
(2) Our method requires a much smaller number
of communication rounds to reach the target F1
value than the other methods. We conjecture that
this is due to that the central model (student) learns
much faster and more reliably when trained with
the outputs of the ensemble model (teacher) as soft
labels (Phuong and Lampert, 2019).

4.8 Increasing Computation Per Platform

Finally, we address RQ5. The number of local
computation per round is given by |Dk|

B E, where
B is the local batch size, E is the number of lo-
cal training epoch and |Dk| is the size of private
data in local platform k. Decreasing B, increasing
E, or both will add more computation per local
platform per round. Table 8 lists the number of
communication rounds necessary to achieve an F1

B E FedAvg FedAtt FedED
2 1 27 28 9
8 1 48 48 20
16 1 – – 34
2 3 20 20 7
8 3 34 30 11
16 3 47 46 15

Table 8: The number of communication rounds neces-
sary to achieve an F1 value of 72% on the test set, fixing
C to 0.1. “–” means that the run did not reach the target
F1 value in the allowed time.
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value of 72% with different E and B. From this
Table, we see that increasing computation per local
platform by varying both B and E is effective for
all methods, and our method converges to the target
F1 value faster than baselines.

5 Conclusion and Future Work

In this paper, we propose a privacy-preserving med-
ical relation extraction model based on federated
learning, namely FedED. The main obstacle of ap-
plying federated learning to medical relation extrac-
tion is communication bottleneck, which is caused
by the need to upload cumbersome parameters. To
overcome this bottleneck, we leverage a knowledge
distillation based strategy, which uses the uploaded
predictions of ensemble local models to train the
central model without requiring uploading cum-
bersome parameters. Our experiments on three
benchmark datasets illustrate the advantages of our
approach over previous federated algorithms. As
to future work, we plan to explore how to jointly
extract entities and relations in federated settings.
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