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Abstract
Building an end-to-end conversational agent
for multi-domain task-oriented dialogues has
been an open challenge for two main reasons.
First, tracking dialogue states of multiple do-
mains is non-trivial as the dialogue agent must
obtain complete states from all relevant do-
mains, some of which might have shared slots
among domains as well as unique slots specif-
ically for one domain only. Second, the dia-
logue agent must also process various types
of information across domains, including di-
alogue context, dialogue states, and database,
to generate natural responses to users. Unlike
the existing approaches that are often designed
to train each module separately, we propose
“UniConv" — a novel unified neural architec-
ture for end-to-end conversational systems in
multi-domain task-oriented dialogues, which
is designed to jointly train (i) a Bi-level State
Tracker which tracks dialogue states by learn-
ing signals at both slot and domain level inde-
pendently, and (ii) a Joint Dialogue Act and
Response Generator which incorporates infor-
mation from various input components and
models dialogue acts and target responses si-
multaneously. We conduct comprehensive ex-
periments in dialogue state tracking, context-
to-text, and end-to-end settings on the Multi-
WOZ2.1 benchmark, achieving superior per-
formance over competitive baselines.

1 Introduction

A conventional approach to task-oriented dialogues
is to solve four distinct tasks: (1) natural language
understanding (NLU) which parses user utterance
into a semantic frame, (2) dialogue state tracking
(DST) which updates the slots and values from se-
mantic frames to the latest values for knowledge
base retrieval, (3) dialogue policy which determines
an appropriate dialogue act for the next system re-
sponse, and (4) response generation which gener-
ates a natural language sequence conditioned on

the dialogue act. This traditional pipeline modu-
lar framework has achieved remarkable successes
in task-oriented dialogues (Wen et al., 2017; Liu
and Lane, 2017; Williams et al., 2017; Zhao et al.,
2017). However, such kind of dialogue system is
not fully optimized as the modules are loosely inte-
grated and often not trained jointly in an end-to-end
manner, and thus may suffer from increasing error
propagation between the modules as the complexity
of the dialogues evolves.

A typical case of a complex dialogue setting is
when the dialogue extends over multiple domains.
A dialogue state in a multi-domain dialogue should
include slots of all applicable domains up to the
current turn (See Table 1). Each domain can have
shared slots that are common among domains or
unique slots that are not shared with any. Directly
applying single-domain DST to multi-domain dia-
logues is not straightforward because the dialogue
states extend to multiple domains. A possible ap-
proach is to process a dialogue of ND domains
multiple times, each time obtaining a dialogue state
of one domain. However, this approach does not
allow learning co-reference in dialogues in which
users can switch from one domain to another.

As the number of dialogue domains increases,
traditional pipeline approaches propagate errors
from dialogue states to dialogue policy and sub-
sequently, to natural language generator. Recent
efforts (Eric et al., 2017; Madotto et al., 2018;
Wu et al., 2019b) address this problem with an
integrated sequence-to-sequence structure. These
approaches often consider knowledge bases as
memory tuples rather than relational entity tables.
While achieving impressive performance, these ap-
proaches are not scalable to large-scale knowledge-
bases, e.g. thousands of entities, as the memory
cost to query entity attributes increases substan-
tially. Another limitation of these approaches is the
absence of dialogue act modelling. Dialogue act
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Human: hello Dialogue agent: hi ! how can i help you ?
Dialogue state: {} Dialogue acts: [greeting]
Human: i would like a place to eat in the expensive price range Dialogue agent: sure , what type of food are you interested in ?
Dialogue state: {restaurant: {pricerange: expensive}} Dialogue acts: [request-food]

Human: could you make a suggestion ? one in the centre ?
Dialogue agent: fitzbillies restaurant is an expensive british
restaurant in the centre . can i book that for you ?

Dialogue state: {restaurant: {pricerange: expensive, area: centre}} Dialogue acts: [inform-restaurant, request-booking]
... ...

Human: also , i need the number for kings hedges learner pool .
Dialogue agent: the phone number for the pool is 01234567 ,
is there something else i can help you ?

Dialogue state: {restaurant: {pricerange: expensive, area: centre,
name=fizbillies restaurant, request=[address]}, attraction:
{name: kings hedges learner pool, request=[phone]}}

Dialogue acts: [inform-phone]

Table 1: Example of a multi-domain dialogue with two domains: restaurant and attraction.

is particularly important in task-oriented dialogues
as it determines the general decision towards task
completion before a dialogue agent can materialize
it into natural language response (See Table 1).

To tackle the challenges in multi-domain task-
oriented dialogues while reducing error propaga-
tion among dialogue system modules and keeping
the models scalable, we propose UniConv, a uni-
fied neural network architecture for end-to-end dia-
logue systems. UniConv consists of a Bi-level State
Tracking (BDST) module which embeds natural
language understanding as it can directly parse dia-
logue context into a structured dialogue state rather
than relying on the semantic frame output from
an NLU module in each dialogue turn. BDST im-
plicitly models and integrates slot representations
from dialogue contextual cues to directly gener-
ate slot values in each turn and thus, remove the
need for explicit slot tagging features from an NLU.
This approach is more practical than the traditional
pipeline models as we do not need slot tagging
annotation. Furthermore, BDST tracks dialogue
states in dialogue context in both slot and domain
levels. The output representations from two levels
are combined in a late fusion approach to learn
multi-domain dialogue states. Our dialogue state
tracker disentangles slot and domain representation
learning while enabling deep learning of shared
representations of slots common among domains.

UniConv integrates BDST with a Joint Dialogue
Act and Response Generator (DARG) that simulta-
neously models dialogue acts and generates system
responses by learning a latent variable representing
dialogue acts and semantically conditioning output
response tokens on this latent variable. The multi-
task setting of DARG allows our models to model
dialogue acts and utilize the distributed represen-
tations of dialogue acts, rather than hard discrete

output values from a dialogue policy module, on
output response tokens. Our response generator
incorporates information from dialogue input com-
ponents and intermediate representations progres-
sively over multiple attention steps. The output
representations are refined after each step to obtain
high-resolution signals needed to generate appro-
priate dialogue acts and responses. We combine
both BDST and DARG for end-to-end neural di-
alogue systems, from input dialogues to output
system responses.

We evaluate our models on the large-scale Mul-
tiWOZ benchmark (Budzianowski et al., 2018),
and compare with the existing methods in DST,
context-to-text generation, and end-to-end settings.
The promising performance in all tasks validates
the efficacy of our method.

2 Related Work

Dialogue State Tracking. Traditionally, DST
models are designed to track states of single-
domain dialogues such as WOZ (Wen et al., 2017)
and DSTC2 (Henderson et al., 2014a) benchmarks.
There have been recent efforts that aim to tackle
multi-domain DST such as (Ramadan et al., 2018;
Lee et al., 2019; Wu et al., 2019a; Goel et al.,
2019). These models can be categorized into two
main categories: Fixed vocabulary models (Zhong
et al., 2018; Ramadan et al., 2018; Lee et al., 2019),
which assume known slot ontology with a fixed
candidate set for each slot. On the other hand,
open-vocabulary models (Lei et al., 2018; Wu et al.,
2019a; Gao et al., 2019; Ren et al., 2019; Le et al.,
2020) derive the candidate set based on the source
sequence i.e. dialogue history, itself. Our approach
is more related to the open-vocabulary approach as
we aim to generate unique dialogue states depend-
ing on the input dialogue. Different from previous
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Figure 1: Our unified architecture has three components: (1) Encoders encode all text input into continuous rep-
resentations; (2) Bi-level State Tracker (BDST) includes 2 modules for slot-level and domain-level representation
learning; and (3) Joint Dialogue Act and Response Generator (DARG) obtains dependencies between the target
response representations and other dialogue components.

generation-based approaches, our state tracker can
incorporate contextual information into domain and
slot representations independently.

Context-to-Text Generation. This task was tra-
ditionally solved by two separate dialogue modules:
Dialogue Policy (Peng et al., 2017, 2018) and NLG
(Wen et al., 2016; Su et al., 2018). Recent work
attempts to combine these two modules to directly
generate system responses with or without model-
ing dialogue acts. Zhao et al. (2019) models action
space of dialogue agent as latent variables. Chen
et al. (2019) predicts dialogue acts using a hierar-
chical graph structure with each path representing
a unique act. Pei et al. (2019); Peng et al. (2019)
use multiple dialogue agents, each trained for a spe-
cific dialogue domain, and combine them through
a common dialogue agent. Mehri et al. (2019) mod-
els dialogue policy and NLG separately and fuses
feature representations at different levels to gener-
ate responses. Our models simultaneously learn
dialogue acts as a latent variable while allowing se-
mantic conditioning on distributed representations
of dialogue acts rather than hard discrete features.

End-to-End Dialogue Systems. In this task,
conventional approaches combine Natural Lan-
guage Understanding (NLU), DST, Dialogue Pol-
icy, and NLG, into a pipeline architecture (Wen

et al., 2017; Bordes et al., 2016; Liu and Lane,
2017; Li et al., 2017; Liu and Perez, 2017; Williams
et al., 2017; Zhao et al., 2017; Jhunjhunwala et al.,
2020). Another framework does not explicitly
modularize these components but incorporate them
through a sequence-to-sequence framework (Ser-
ban et al., 2016; Lei et al., 2018; Yavuz et al., 2019)
and a memory-based entity dataset of triplets (Eric
and Manning, 2017; Eric et al., 2017; Madotto
et al., 2018; Qin et al., 2019; Gangi Reddy et al.,
2019; Wu et al., 2019b). These approaches bypass
dialogue state and/or act modeling and aim to gen-
erate output responses directly. They achieve im-
pressive success in generating dialogue responses
in open-domain dialogues with unstructured knowl-
edge bases. However, in a task-oriented setting
with an entity dataset, they might suffer from an
explosion of memory size when the number of enti-
ties from multiple dialogue domains increases. Our
work is more related to the traditional pipeline strat-
egy but we integrate our dialogue models by uni-
fying two major components rather than using the
traditional four-module architecture, to alleviate er-
ror propagation from upstream to downstream com-
ponents. Different from prior work such as (Shu
et al., 2019), our model facilitates multi-domain
state tracking and allows learning dialogue acts
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during response generation.

3 Method

The input consists of dialogue context of t−1 turns,
each including a pair of user utterance U and sys-
tem response R, (U1, R1), ..., (Ut−1, Rt−1), and
the user utterance at current turn Ut. A task-
oriented dialogue system aims to generate the next
response Rt. The information for responses is typi-
cally queried from a database based on the user’s
provided information i.e. inform slots tracked by
a DST. We assume access to a database of all do-
mains with each column corresponding to a spe-
cific slot being tracked. We denote the interme-
diate output, including the dialogue state of cur-
rent turn Bt and dialogue act as At. We denote
the list of all domains D = (d1, d2, ...), all slots
S = (s1, s2, ...), and all acts A = (a1, a2, ...).
We also denote the list of all (domain, slot) pairs
as DS = (ds1, ds2, ...). Note that ‖DS‖ ≤
‖D‖×‖S‖ as some slots might not be applicable in
all domains. Given the current dialogue turn t, we
represent each text input as a sequence of tokens,
each of which is a unique token index from a vo-
cabulary set V : dialogue context Xctx, current user
utterance Xutt, and target system response Xres.
Similarly, we also represent the list of domains as
XD and the list of slots as XS .
In DST, we consider the raw text form of dialogue
state of the previous turn Bt−1, similarly as (Lei
et al., 2018; Budzianowski and Vulić, 2019). In
the context-to-text setting, we assume access to the
ground-truth dialogue states of current turn Bt. The
dialogue state of the previous and current turn can
then be represented as a sequence of tokens Xprev

st

and Xcurr
st respectively. For a fair comparison with

current approaches, during inference, we use the
model predicted dialogue states X̂prev

st and do not
use Xcurr

st in DST and end-to-end tasks. Follow-
ing (Wen et al., 2015; Budzianowski et al., 2018),
we consider the delexicalized target response Xdl

res

by replacing tokens of slot values by their corre-
sponding generic tokens to allow learning value-
independent parameters.
Our model consists of 3 major components (See
Figure 1). First, Encoders encode all text input
into continuous representations. To make it consis-
tent, we encode all input with the same embedding
dimension. Secondly, our Bi-level State Tracker
(BDST) is used to detect contextual dependencies
to generate dialogue states. The DST includes 2

modules for slot-level and domain-level represen-
tation learning. Each module comprises attention
layers to project domain or slot representations and
incorporate important information from dialogue
context, dialogue state of the previous turn, and
current user utterance. The outputs are combined
as a context-aware vector to decode the correspond-
ing inform or request slots in each domain. Lastly,
our Joint Dialogue Act and Response Generator
(DARG) projects the target system response rep-
resentations and enhances them with information
from various dialogue components. Our response
generator can also learn a latent representation to
generate dialogue acts, which condition all target
tokens during each generation step.

3.1 Encoders

An encoder encodes a text sequence X to a se-
quence of continuous representation Z ∈ RLX×d.
LX is the length of sequence X and d is the
embedding dimension. Each encoder includes a
token-level embedding layer. The embedding layer
is a trainable embedding matrix E ∈ R‖V ‖×d.
Each row represents a token in the vocabulary set
V as a d-dimensional vector. We denote E(X)
as the embedding function that transform the se-
quence X by looking up the respective token index:
Zemb = E(X) ∈ RLX×d. We inject the posi-
tional attribute of each token as similarly adopted
in (Vaswani et al., 2017). The positional encod-
ing is denoted as PE. The final embedding is the
element-wise summation between token-embedded
representations and positional encoded representa-
tions with layer normalization (Ba et al., 2016):
Z = LayerNorm(Zemb + PE(X)) ∈ RLX×d.

The encoder outputs include representations of
dialogue context Zctx, current user utterance Zutt,
and target response Zdl

res. We also encode the
dialogue states of the previous turn and current
turn and obtain Zprev

st and Zcurr
st respectively. We

encode XS and XD using only token-level em-
bedding layer: ZS = LayerNorm(E(XS)) and
ZD = LayerNorm(E(XD)). During training, we
shift the target response by one position to the left
side to allow auto-regressive prediction in each gen-
eration step. We share the embedding matrix E to
encode all text tokens except for tokens of target
responses as the delexicalized outputs contain dif-
ferent semantics from natural language inputs.
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3.2 Bi-level Dialogue State Tracker (BDST)

Slot-level DST. We adopt the Transformer atten-
tion (Vaswani et al., 2017), which consists of a
dot-product attention with skip connection, to in-
tegrate dialogue contextual information into each
slot representation. We denote Att(Z1, Z2) as the
attention operation from Z2 on Z1. We first enable
models to process all slot representations together
rather than separately as in previous DST models
(Ramadan et al., 2018; Wu et al., 2019a). This
strategy allows our models to explicitly learn de-
pendencies between all pairs of slots. Many pairs
of slots could exhibit correlation such as time-wise
relation (“departure_time" and “arrival_time"). We
obtain Zdst

SS = Att(ZS , ZS) ∈ R‖S‖×d.
We incorporate the dialogue information by learn-
ing dependencies between each slot representa-
tion and each token in the dialogue history. Previ-
ous approaches such as (Budzianowski and Vulić,
2019) consider all dialogue history as a single
sequence but we separate them into two inputs
because the information in Xutt is usually more
important to generate responses while Xctx in-
cludes more background information. We then
obtain Zdst

S,ctx = Att(Zctx, Z
dst
SS ) ∈ R‖S‖×d and

Zdst
S,utt = Att(Zutt, Z

dst
S,ctx) ∈ R‖S‖×d.

Following (Lei et al., 2018), we incorporate dia-
logue state of the previous turn Bt−1 which is a
more compact representation of dialogue context.
Hence, we can replace the full dialogue context
to only Rt−1 as the remaining part is represented
in Bt−1. This approach avoids taking in all dia-
logue history and is scalable as the conversation
grows longer. We add the attention layer to ob-
tain Zdst

S,st = Att(Zprev
st , Zdst

S,ctx) ∈ R‖S‖×d (See
Figure 1). We further improve the feature repre-
sentations by repeating the attention sequence over
Ndst

S times. We denote the final output Zdst
S .

Domain-level DST. We adopt a similar architec-
ture to learn domain-level representations. The rep-
resentations learned in this module exhibit global
information while slot-level representations con-
tain local dependencies to decode multi-domain
dialogue states. First, we enable the domain-level
DST to capture dependencies between all pairs of
domains. For example, some domains such as “taxi”
are typically paired with other domains such as “at-
traction”, but usually not with the “train” domain.
We then obtain Zdst

DD = Att(ZD, ZD) ∈ R‖D‖×d.
We then allow models to capture dependencies be-
tween each domain representation and each token

in dialogue context and current user utterance. By
segregating dialogue context and current utterance,
our models can potentially detect changes of dia-
logue domains from past turns to the current turn.
Especially in multi-domain dialogues, users can
switch from one domain to another and the next sys-
tem response should address the latest domain. We
then obtain Zdst

D,ctx = Att(Zctx, Z
dst
DD) ∈ R‖D‖×d

and Zdst
D,utt = Att(Zutt, Z

dst
D,ctx) ∈ R‖D‖×d se-

quentially. Similar to the slot-level module, we
refine feature representations over Ndst

D times and
denote the final output as Zdst

D .
Domain-Slot DST. We combined domain and slot
representations by expanding the tensors to iden-
tical dimensions i.e. ‖D‖ × ‖S‖ × d. We then
apply Hadamard product, resulting in domain-slot
joint features Zdst

DS ∈ R‖D‖×‖S‖×d. We then
apply a self-attention layer to allow learning of
dependencies between joint domain-slot features:
Zdst = Att(Zdst

DS , Z
dst
DS) ∈ R‖D‖×‖S‖×d. In this

attention, we mask the intermediate representations
in positions of invalid domain-slot pairs. Compared
to previous work such as (Wu et al., 2019a), we
adopt a late fusion method whereby domain and
slot representations are integrated in deeper layers.

3.2.1 State Generator
The representations Zdst are used as context-aware
representations to decode individual dialogue states.
Given a domain index i and slot index j, the feature
vector Zdst[i, j, :] ∈ Rd is used to generate value
of the corresponding (domain, slot) pair. The vec-
tor is used as an initial hidden state for an RNN
decoder to decode an inform slot value. Given
the k-th (domain, slot) pair and decoding step
l, the output hidden state in each recurrent step
hkl is passed through a linear transformation with
softmax to obtain output distribution over vocabu-
lary set V : P inf

kl = Softmax(hklWinf) ∈ R‖V ‖
where W inf

dst ∈ Rdrnn×‖V ‖. For request slot of
k-th (domain,slot) pair, we pass the correspond-
ing vector Zdst vector through a linear layer with
sigmoid activation to predict a value of 0 or 1.
P req
k = Sigmoid(Zdst

k Wreq).
Optimization. The DST is optimized by the cross-
entropy loss functions of inform and request slots:

Ldst = Linf + Lreq =

‖DS‖∑
k=1

‖Yk‖∑
l=1

− log(P inf
kl (ykl))

+

‖DS‖∑
k=1

−yk log(P req
k )− (1− yk)(1− log(P req

k ))
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3.3 Joint Dialogue Act and Response
Generator (DARG)

Database Representations. Following
(Budzianowski et al., 2018), we create a
one-hot vector for each domain d: xddb ∈ {0, 1}6
and

∑6
i x

d
db,i = 1. Each position of the vector

indicates a number or a range of entities. The
vectors of all domains are concatenated to create a
multi-domain vector Xdb ∈ R6×‖D‖. We embed
this vector as described in Section 3.1.
Response Generation. We adopt a stacked-
attention architecture that sequentially learns de-
pendencies between each token in target responses
with each dialogue component representation. First,
we obtain Zgen

res = Att(Zres, Zres) ∈ RLres×d. This
attention layer can learn semantics within the target
response to construct a more semantically struc-
tured sequence. We then use attention to capture
dependencies in background information contained
in dialogue context and user utterance. The out-
puts are Zgen

ctx = Att(Zctx, Z
gen
res ) ∈ RLres×d and

Zgen
utt = Att(Zutt, Z

gen
ctx ) ∈ RLres×d sequentially.

To incorporate information of dialogue states and
DB results, we apply attention steps to capture
dependencies between each response token repre-
sentation and state or DB representation. Specif-
ically, we first obtain Zgen

dst = Att(Zdst, Zgen
utt ) ∈

RLres×d. In the context-to-text setting, as we di-
rectly use the ground-truth dialogue states, we
simply replace Zdst with Zcurr

st . Then we obtain
Zgen
db = Att(Zdb, Z

gen
dst ) ∈ RLres×d. These atten-

tion layers capture the information needed to gen-
erate tokens that are towards task completion and
supplement the contextual cues obtained in previ-
ous attention layers. We let the models to progres-
sively capture these dependencies for Ngen times
and denote the final output as Zgen. The final out-
put is passed to a linear layer with softmax activa-
tion to decode system responses auto-regressively:
P res = Softmax(ZgenWgen) ∈ RLres×‖Vres‖

Dialogue Act Modeling. We couple response
generation with dialogue act modeling by learn-
ing a latent variable Zact ∈ Rd. We place the
vector in the first position of Zres, resulting in
Zres+act ∈ R(Lres+1)×d. We then pass this ten-
sor to the same stacked attention layers as above.
By adding the latent variable in the first position,
we allow our model to semantically condition all
downstream tokens from second position, i.e. all
tokens in the target response, on this latent variable.
The output representation of the latent vector i.e.

Domain #dialogues

train val test
Restaurant 3,817 438 437
Hotel 3,387 416 394
Attraction 2,718 401 396
Train 3,117 484 495
Taxi 1,655 207 195
Police 245 0 0
Hospital 287 0 0

Table 2: Summary of MultiWOZ dataset
(Budzianowski et al., 2018) by domain

first row in Zgen, incorporates contextual signals
accumulated from all attention layers and is used
to predict dialogue acts. We denote this represen-
tation as Zgen

act and pass it through a linear layer to
obtain a multi-hot encoded tensor. We apply Sig-
moid on this tensor to classify each dialogue act as
0 or 1: P act = Sigmoid(Zgen

act Wact) ∈ R‖A‖.
Optimization. The response generator is jointly
trained by the cross-entropy loss functions of gen-
erated responses and dialogue acts:

Lgen = Lres + Lact =
‖Yres‖∑
l=1

− log(P res
l (yl))

+

‖A‖∑
a=1

−ya log(P act
a )− (1− ya)(1− log(P act

a ))

4 Experiments

4.1 Dataset

We evaluate our models with the multi-domain dia-
logue corpus MultiWOZ 2.0 (Budzianowski et al.,
2018) and 2.1 (Eric et al., 2019) (The latter includes
corrected state labels for the DST task). From the
dialogue state annotation of the training data, we
identified all possible domains and slots. We iden-
tified ‖D‖ = 7 domains and ‖S‖ = 30 slots, in-
cluding 19 inform slots and 11 request slots. We
also identified ‖A‖ = 32 acts. The corpus includes
8,438 dialogues in the training set and 1,000 in
each validation and test set. We present a summary
of the dataset in Table 2. For additional informa-
tion of data pre-processing procedures, domains,
slots, and entity DBs, please refer to Appendix A.

4.2 Experiment Setup

We select d = 256, hatt = 8, Ndst
S = Ndst

D =
Ngen = 3. We employed dropout (Srivastava et al.,
2014) of 0.3 and label smoothing (Szegedy et al.,
2016) on target system responses during training.
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Model Joint Acc.
HJST (Eric et al., 2019) 35.55%
DST Reader (Gao et al., 2019) 36.40%
TSCP (Lei et al., 2018) 37.12%
FJST (Eric et al., 2019) 38.00%
HyST (Goel et al., 2019) 38.10%
TRADE (Wu et al., 2019a) 45.60%
NADST (Le et al., 2020) 49.04%
DSTQA (Zhou and Small, 2019) 51.17%
SOM-DST (Kim et al., 2020) 53.01%
BDST (Ours) 49.55%

Table 3: Evaluation of DST on MultiWOZ2.1

Model Inform Success BLEU
Baseline Budzianowski et al. (2018) 71.29% 60.96% 18.80
TokenMoE (Pei et al., 2019) 75.30% 59.70% 16.81
HDSA (Chen et al., 2019) 82.90% 68.90% 23.60
Structured Fusion (Mehri et al., 2019) 82.70% 72.10% 16.34
LaRL (Zhao et al., 2019) 82.78% 79.20% 12.80
GPT2 (Budzianowski and Vulić, 2019) 70.96% 61.36% 19.05
DAMD (Zhang et al., 2019) 89.50% 75.80% 18.30
DARG (Ours) 87.80% 73.60% 18.80

Table 4: Evaluation of context-to-text task on MultiWOZ2.0.

We adopt a teacher-forcing training strategy by sim-
ply using the ground-truth inputs of dialogue state
of the previous turn and the gold DB representa-
tions. During inference in DST and end-to-end
tasks, we decode system responses sequentially
turn by turn, using the previously decoded state as
input in the current turn, and at each turn, using
the new predicted state to query DBs. We train all
networks with Adam optimizer (Kingma and Ba,
2015) and a decaying learning rate schedule. All
models are trained up to 30 epochs and the best
models are selected based on validation loss. We
used a greedy approach to decode all slots and a
beam search with beam size 5. To evaluate the
models, we use the following metrics: Joint Accu-
racy and Slot Accuracy (Henderson et al., 2014b),
Inform and Success (Wen et al., 2017), and BLEU
score (Papineni et al., 2002). As suggested by Liu
et al. (2016), human evaluation, even though popu-
lar in dialogue research, might not be necessary in
tasks with domain constraints such as MultiWOZ.
We implemented all models using Pytorch and will
release our code on github1.

4.3 Results

DST. We test our state tracker (i.e. using only
Ldst) and compare the performance with the base-
line models in Table 3 (Refer to Appendix B for
description of DST baselines). Our model can out-
perform fixed-vocabulary approaches such as HJST
and FJST, showing the advantage of generating
unique slot values rather than relying on a slot on-
tology with a fixed set of candidates. DST Reader
model (Gao et al., 2019) does not perform well
and we note that many slot values are not easily
expressed as a text span in source text inputs. DST
approaches that separate domain and slot represen-
tations such as TRADE (Wu et al., 2019a) reveal

1https://github.com/henryhungle/
UniConv

competitive performance. However, our approach
has better performance as we adopt a late fusion
strategy to explicitly obtain more fine-grained con-
textual dependencies in each domain and slot rep-
resentation. In this aspect, our model is related
to TSCP (Lei et al., 2018) which decodes output
state sequence auto-regressively. However, TSCP
attempts to learn domain and slot dependencies
implicitly and the model is limited by selecting
the maximum output state length (which can vary
significantly in multi-domain dialogues).

Context-to-Text Generation. We compare with
existing baselines in Table 4 (Refer to Appendix B
for description of the baseline models). Our model
achieves very competitive Inform, Success, and
BLEU scores. Compared to TokenMOE (Pei et al.,
2019), our single model can outperform multiple
domain-specific dialogue agents as each attention
module can sufficiently learn contextual features
of multiple domains. Compared to HDSA (Chen
et al., 2019) which uses a graph structure to repre-
sent acts, our approach is simpler yet able to outper-
form HDSA in Inform score. Our work is related to
Structured Fusion (Mehri et al., 2019) as we incor-
porate intermediate representations during decod-
ing. However, our approach does not rely on pre-
training individual sub-modules but simultaneously
learning both act representations and predicting
output tokens. Similarly, our stacked attention ar-
chitecture can achieve good performance in BLEU
score, competitively with a GPT-2 based model
(Budzianowski and Vulić, 2019), while consistently
improve other metrics. For completion, we tested
our models on MultiWOZ2.1 and achieved simi-
lar results: 87.90% Inform, 72.70% Success, and
18.52 BLEU score. Future work may further im-
prove Success by optimizing the models towards a
higher success rate using strategies such as LaRL
(Zhao et al., 2019). Another direction is a data aug-
mentation approach such as DAMD (Zhang et al.,

https://github.com/henryhungle/UniConv
https://github.com/henryhungle/UniConv
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Model Joint Acc Slot Acc Inform Success BLEU
TSCP (L=8) (Lei et al., 2018) 31.64% 95.53% 45.31% 38.12% 11.63
TSCP (L=20) (Lei et al., 2018) 37.53% 96.23% 66.41% 45.32% 15.54
HRED-TS (Peng et al., 2019) - - 70.00% 58.00% 17.50
Structured Fusion (Mehri et al., 2019) - - 73.80% 58.60% 16.90
DAMD (Zhang et al., 2019) - - 76.30% 60.40% 16.60
UniConv (Ours) 50.14% 97.30% 72.60% 62.90% 19.80

Table 5: Evaluation on MultiWOZ2.1 in the end-to-end setting.

2019) which achieves significant performance gain
in this task.
End-to-End. From Table 5, our model outper-
forms existing baselines in all metrics except the
Inform score (See Appendix B for a description of
baseline models). In TSCP (Lei et al., 2018), in-
creasing the maximum dialogue state span L from
8 to 20 tokens helps to improve the DST perfor-
mance, but also increases the training time signif-
icantly. Compared with HRED-TS (Peng et al.,
2019), our single model generates better responses
in all domains without relying on multiple domain-
specific teacher models. We also noted that the
performance of DST improves in contrast to the
previous DST task. This can be explained as addi-
tional supervision from system responses not only
contributes to learn a natural response but also pos-
itively impact the DST component. Other baseline
models such as (Eric and Manning, 2017; Wu et al.,
2019b) present challenges in the MultiWOZ bench-
mark as the models could not fully optimize due
to the large scale entity memory. For example, fol-
lowing GLMP (Wu et al., 2019b), the restaurant
domain alone has over 1,000 memory tuples of
(Subject, Relation, Object).
Ablation. We conduct a comprehensive ablation
analysis with several model variants in Table 6 and
have the following observations:

• The model variant with a single-level DST (by
considering S = DS and Ndst

D = 0) (Row
A2) performs worse than the Bi-level DST
(Row A1). In addition, using the dual archi-
tecture also improves the latency in each atten-
tion layers as typically ‖D‖+ ‖S‖ � ‖DS‖.
The performance gap also indicates the po-
tential of separating global and local dialogue
state dependencies by domain and slot level.

• Using Bt−1 and only the last user utterance
as the dialogue context (Row A1 and B1) per-
forms as well as using Bt−1 and a full-length
dialogue history (Row A5 and B3). This
demonstrates that the information from the

last dialogue state is sufficient to represent the
dialogue history up to the last user utterance.
One benefit from not using the full dialogue
history is that it reduces the memory cost as
the number of tokens in a full-length dialogue
history is much larger than that of a dialogue
state (particularly as the conversation evolves
over many turns).

• We note that removing the loss function to
learn the dialogue act latent variable (Row
B2) can hurt the generation performance, es-
pecially by the task completion metrics In-
form and Success. This is interesting as we
expect dialogue acts affect the general seman-
tics of output sentences, indicated by BLEU
score, rather than the model ability to retrieve
correct entities. This reveals the benefit of
our approach. By enforcing a semantic condi-
tion on each token of the target response, the
model can facility the dialogue flow towards
successful task completion.

• In both state tracker and response generator
modules, we note that learning feature repre-
sentations through deeper attention networks
can improve the quality of predicted states
and system responses. This is consistent with
our DST performance as compared to baseline
models of shallow networks.

• Lastly, in the end-to-end task, our model
achieves better performance as the number
of attention heads increases, by learning more
high-resolution dependencies.

5 Domain-dependent Results

DST. For state tracking, the metrics are calculated
for domain-specific slots of the corresponding do-
main at each dialogue turn. We also report the DST
separately for multi-domain and single-domain di-
alogues to evaluate the challenges in multi-domain
dialogues and our DST performance gap as com-
pared to single-domain dialogues. From Table 7,
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# Xctx Bt−1 Ndst
S Ndst

D Ngen Lact d hatt Joint Acc. Slot Acc. Inform Success BLEU
A1 Rt−1 X 3 3 0 256 8 49.55% 97.32% - - -
A2 Rt−1 X 3 0 0 256 8 47.91% 97.25% - - -
A3 Rt−1 X 2 2 0 256 8 47.80% 97.22% - - -
A4 Rt−1 X 1 1 0 256 8 46.20% 97.08% - - -
A5 (U,R)1:t−1 X 3 3 0 256 8 49.20% 97.34% - - -
B1 Rt−1 0 0 3 X 256 8 - - 87.90% 72.70% 18.52
B2 Rt−1 0 0 3 256 8 - - 82.70% 70.60% 18.51
B3 (U,R)1:t−1 0 0 3 X 256 8 - - 87.14% 71.52% 18.90
B4 Rt−1 0 0 2 X 256 8 - - 81.60% 66.40% 18.48
B5 Rt−1 0 0 1 X 256 8 - - 77.70% 62.80% 18.50
C1 Rt−1 X 3 3 3 X 256 8 50.14% 97.30% 72.60% 62.90% 19.80
C2 Rt−1 X 3 3 3 X 128 8 45.70% 97.00% 67.40% 58.30% 19.90
C3 Rt−1 X 3 3 3 X 256 4 47.30% 97.10% 68.70% 57.10% 19.60
C4 Rt−1 X 3 3 3 X 256 2 45.90% 97.00% 66.10% 55.60% 19.80
C5 Rt−1 X 3 3 3 X 256 1 43.30% 96.70% 62.30% 52.60% 19.90

Table 6: Ablation analysis on the MultiWOZ2.1 in DST (top), context-to-text (middle), and end-to-end (bottom).

our DST performs consistently well in the 3 do-
mains attraction, restaurant, and train domains.
However, the performance drops in the taxi and
hotel domain, significantly in the taxi domain. We
note that dialogues with the taxi domain is usu-
ally not single-domain but typically entangled with
other domains. Secondly, we observe that there is a
significant performance gap of about 10 points ab-
solute score between DST performances in single-
domain and multi-domain dialogues. State tracking
in multi-domain dialogues is, hence, could be fur-
ther improved to boost the overall performance.

Domain Joint Acc Slot Acc
Multi-domain 48.40% 97.14%
Single-domain 59.63% 98.36%
Attraction 66.76% 98.94%
Hotel 47.86% 97.54%
Restaurant 65.11% 98.68%
Taxi 30.84% 96.86%
Train 63.77% 98.53%

Table 7: DST results on MultiWOZ2.1 by domains.

Context-to-Text Generation For this task, we cal-
culated the metrics for single-domain dialogues of
the corresponding domain (as Inform and Success
are computed per dialogue rather than per turn). We
do not report the Inform metric of the taxi domain
because no DB was available for this domain. From
Table 8, we observe some performance gap be-
tween Inform and Success scores on multi-domain
dialogues and single-domain dialogues. However,
in terms of BLEU score, our model performs bet-
ter with multi-domain dialogues. This could be
caused by the data bias in MultiWOZ corpus as
the majority of dialogues in this corpus is multi-
domain. Hence, our models capture the seman-
tics of multi-domain dialogue responses better than
single-domain responses. For domain-specific re-

sults, we note that our models perform not as well
as other domains in attraction and taxi domains in
terms of Success score.

Domain Inform Success BLEU
Multi-domain 85.01% 68.86% 18.68
Single-domain 97.79% 85.84% 17.62
Attraction 91.67% 66.67% 19.17
Hotel 97.01% 91.04% 16.55
Restaurant 96.77% 88.71% 19.88
Taxi - 78.85% 13.85
Train 99.10% 87.88% 18.14

Table 8: Context-to-text generation results on Multi-
WOZ2.1. by domains.

Additionally, we report qualitative analysis and the
insights can be seen in Appendix C.

6 Conclusion

We proposed UniConv, a novel unified neural archi-
tecture of conversational agents for Multi-domain
Task-oriented Dialogues, which jointly trains (1)
a Bi-level State Tracker to capture dependencies
in both domain and slot levels simultaneously, and
(2) a Joint Dialogue Act and Response Generator
to model dialogue act latent variable and semanti-
cally conditions output responses with contextual
cues. The promising performance of UniConv on
the MultiWOZ benchmark (including three tasks:
DST, context-to-text generation, and end-to-end
dialogues) validates the efficacy of our method.

Acknowledgments

We thank all reviewers for their insightful feedback
to the manuscript of this paper. The first author of
this paper is supported by the Agency for Science,
Technology and Research (A*STAR) Computing
and Information Science scholarship.



1869

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2016. Learning end-to-end goal-oriented dialog.
arXiv preprint arXiv:1605.07683.

Paweł Budzianowski and Ivan Vulić. 2019. Hello, it’s
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A Data Pre-processing

First, we delexicalize each target system response
sequence by replacing the matched entity attribute
that appears in the sequence to the canonical tag
〈domain_slot〉. For example, the original target
response ‘the train id is tr8259 departing from cam-
bridge’ is delexicalized into ‘the train id is train_id
departing from train_departure’. We use the pro-
vided entity databases (DBs) to match potential
attributes in all target system responses. To con-
struct dialogue history, we keep the original version
of all text, including system responses of previous
turns, rather than the delexicalized form. We split
all sequences of dialogue history, user utterances
of the current turn, dialogue states, and delexical-
ized target responses, into case-insensitive tokens.
We share the embedding weights of all source se-
quences, including dialogue history, user utterance,
and dialogue states, but use a separate embedding
matrix to encode the target system responses.
We summarize the number of dialogues in each
domain in Table 2. For each domain, a dialogue is
selected as long as the whole dialogue (i.e. single-
domain dialogue) or parts of the dialogue (i.e. in
multi-domain dialogue) is involved with the do-
main. For each domain, we also build a set of pos-
sible inform and request slots using the dialogue
state annotation in the training data. The details of
slots and database in each domain can be seen in
Table 9. The DBs of 3 domains taxi, police, and
hospital are not available as part of the benchmark.
On average, each dialogue has 1.8 domains and
extends over 13 turns.

B Baselines

We describe our baseline models in DST, context-
to-text generation, and end-to-end dialogue tasks.

B.1 DST
FJST and HJST (Eric et al., 2019). These models
adopt a fixed-vocabulary DST approach. Both mod-
els include encoder modules (either bidirectional
LSTM or hierarchical LSTM) to encode the dia-
logue history. The models pass the context hidden
states to separate linear transformation to obtain
final vectors to predict individual slots separately.
The output vector is used to measure a score of
each candidate from a predefined candidate set.
DST Reader (Gao et al., 2019). This model consid-
ers the DST task as a reading comprehension task
and predicts each slot as a span over tokens within

dialogue history. DST Reader utilizes attention-
based neural networks with additional modules to
predict slot type and carryover probability.
TSCP (Lei et al., 2018). The model adopts a
sequence-to-sequence framework with a pointer
network to generate dialogue states. The source
sequence is a combination of the last user utterance,
dialogue state of the previous turn, and user utter-
ance. To compare with TSCP in a multi-domain
task-oriented dialogue setting, we adapt the model
to multi-domain dialogues by formulating the di-
alogue state of the previous turn similarly as our
models. We reported the performance when the
maximum length of the output dialogue state se-
quence L is set to 20 tokens (original default param-
eter is 8 tokens but we expect longer dialogue state
in MultiWOZ benchmark and selected 20 tokens).
HyST (Goel et al., 2019). This model com-
bines the advantage of fixed-vocabulary and open-
vocabulary approaches. The model uses an open-
vocabulary approach in which the set of candidates
of each slot is constructed based on all word n-
grams in the dialogue history. Both approaches are
applied in all slots and depending on their perfor-
mance in the validation set, the better approach is
used to predict individual slots during test time.
TRADE (Wu et al., 2019a). The model adopts a
sequence-to-sequence framework with a pointer
network to generate individual slot token-by-token.
The prediction is additionally supported by a slot
gating component that decides whether the slot is
“none", “dontcare", or “generate". When the gate
of a slot is predicted as “generate", the model will
generate value as a natural output sequence for that
slot.
NADST (Le et al., 2020). The model proposes
a non-autoregressive approach for dialogue state
tracking which enables learning dependencies be-
tween domain-level and slot-level representations
as well as token-level representations of slot values.
DSTQA (Zhou and Small, 2019). The model treats
dialogue state tracking as a question answering
problem in which state values can be predicted
through lexical spans or unique generated values.
It is enhanced with a knowledge graph where each
node represent a slot and edges are based on over-
laps of their value sets.
SOM-DST (Kim et al., 2020). This is the current
state-of-the-art model on the MultiWOZ2.1 dataset.
The model exploits a selectively overwriting mech-
anism on a fixed-sized memory of dialogue states.
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Domain Slots #entities DB attributes
Restaurant inf_area, inf_food, inf_name, inf_pricerange,

inf_bookday, inf_bookpeople, inf_booktime,
req_address, req_area, req_food, req_phone,
req_postcode

110 id, address, area, food, introduction,
name, phone, postcode, pricerange, sig-
nature, type

Hotel inf_area, inf_internet, inf_name, inf_parking,
inf_pricerange, inf_stars, inf_type, inf_bookday,
inf_bookpeople, inf_bookstay, req_address,
req_area, req_internet, req_parking, req_phone,
req_postcode, req_stars, req_type

33 id, address, area, internet, parking, sin-
gle, double, family, name, phone, post-
code, pricerange’, takesbookings, stars,
type

Attraction inf_area, inf_name, inf_type, req_address,
req_area, req_phone, req_postcode, req_type

79 id, address, area, entrance, name, phone,
postcode, pricerange, openhours, type

Train inf_arriveBy, inform_day, inf_departure,
inf_destination, inf_leaveAt, inf_bookpeople,
req_duration, req_price

2,828 trainID, arriveBy, day, departure, desti-
nation, duration, leaveAt, price

Taxi inf_arriveBy, inf_departure, inf_destination,
inf_leaveAt, req_phone

- -

Police inf_department, req_address, req_phone,
req_postcode

- -

Hospital req_address, req_phone, req_postcode - -

Table 9: Summary of slots and DB details by domain in the MultiWOZ dataset (Budzianowski et al., 2018)

At each dialogue turn, the mechanism involve deci-
sion making on whether to update or carryover the
state values from previous turns.

B.2 Context-to-Text Generation

Baseline. (Budzianowski et al., 2018) provides a
baseline for this setting by following the sequence-
to-sequence model (Sutskever et al., 2014). The
source sequence is all past dialogue turns and the
target sequence is the system response. The initial
hidden state of the RNN decoder is incorporated
with additional signals from the dialogue states and
database representations.
TokenMoE (Pei et al., 2019). TokenMoE refers to
Token-level Mixture-of-Expert model. The model
follows a modularized approach by separating dif-
ferent components known as expert bots for differ-
ent dialogue scenarios. A dialogue scenario can be
dependent on a domain, a type of dialogue act, etc.
A chair bot is responsible for controlling expert
bots to dynamically generate dialogue responses.
HDSA (Chen et al., 2019). This is the current state-
of-the-art in terms of Inform and BLEU score in the
context-to-text generation setting in MultiWOZ2.0.
HDSA leverages the structure of dialogue acts to
build a multi-layer hierarchical graph. The graph is
incorporated as an inductive bias in a self-attention
network to improve the semantic quality of gener-
ated dialogue responses.
Structured Fusion (Mehri et al., 2019). This
approach follows a traditional modularized dia-
logue system architecture, including separate com-
ponents for NLU, DM, and NLG. These compo-

nents are pre-trained and combined into an end-to-
end system. Each component output is used as a
structured input to other components.

LaRL (Zhao et al., 2019). This model uses a latent
dialogue action framework instead of handcrafted
dialogue acts. The latent variables are learned using
unsupervised learning with stochastic variational
inference. The model is trained in a reinforcement
learning framework whereby the parameters are
trained to yield a better Success rate. The model
is the current state-of-the-art in terms of Success
metric.

GPT2 (Budzianowski and Vulić, 2019). Unsuper-
vised pre-training language models have signifi-
cantly improved machine learning performance in
many NLP tasks. This baseline model leverages
the power of a pre-trained model (Radford et al.,
2019) and adapts to the context-to-text generation
setting in task-oriented dialogues. All input compo-
nents, including dialogue state and database state,
are transformed into raw text format and concate-
nated as a single sequence. The sequence is used as
input to a pre-trained GPT-2 model which is then
fine-tuned with MultiWOZ data.

DAMD (Zhang et al., 2019). This is the current
state-of-the-art model for context-to-text genera-
tion task in MultiWOZ 2.1. This approach aug-
ments training data with multiple responses of sim-
ilar context. Each dialogue state is mapped to multi-
ple valid dialogue acts to create additional state-act
pairs.
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B.3 End-to-End

TSCP (Lei et al., 2018). In addition to the DST
task, we evaluate TSCP as an end-to-end dialogue
system that can do both DST and NLG. We adapt
the models to the multi-domain DST setting as
described in Section B.1 and keep the original re-
sponse decoder. Similar to the DST component, the
response generator of TSCP also adopts a pointer
network to generate tokens of the target system re-
sponses by copying tokens from source sequences.
In this setting, we test TSCP with two settings of
the maximum length of the output dialogue state
sequence: L = 8 and L = 20.
HRED-TS (Peng et al., 2019). This model adopts
a teacher-student framework to address multi-
domain task-oriented dialogues. Multiple teacher
networks are trained for different domains and in-
termediate representations of dialogue acts and out-
put responses are used to guide a universal student
network. The student network uses these represen-
tations to directly generate responses from dialogue
context without predicting dialogue states.

C Qualitative Analysis

We examine an example of dialogue in the test
data and compare our predicted outputs with the
baseline TSCP (L = 20) (Lei et al., 2018) and the
ground truth. From Figure 4, we observe that both
our predicted dialogue state and system response
are more correct than the baseline. Specifically, our
dialogue state can detect the correct type slot in
the attraction domain. As our dialogue state is cor-
rectly predicted, the queried results from DB is also
more correct, resulting in better response with the
right information (i.e. ‘no attraction available’). In
Figure 5, we show the visualization of domain-level
and slot-level attention on the user utterance. We
notice important tokens of the text sequences, i.e.
‘entertainment’ and ‘close to’, are attended with
higher attention scores. Besides, at domain-level
attention, we find a potential additional signal from
the token ‘restaurant’, which is also the domain
from the previous dialogue turn. We also observe
that attention is more refined throughout the neural
network layers. For example, in the domain-level
processing, compared to the 2nd layer, the 4th layer
attention is more clustered around specific tokens
of the user utterance.

In Table 10 and 11, we reported the complete
output of this example dialogue. Overall, our dia-
logue agent can carry a proper dialogue with the

user throughout the dialogue steps. Specifically, we
observed that our model can detect new domains at
dialogue steps where the domains are introduced
e.g. attraction domain at the 5th turn and taxi do-
main at the 8th turn. The dialogue agent can also
detect some of the co-references among the do-
mains. For example, at the 5th turn, the dialogue
agent can infer the slot area for the new domain
attraction as the user mentioned ‘close the restau-
rant’. We noticed that that at later dialogue steps
such as the 6th turn, our decoded dialogue state is
not correct possibly due to the incorrect decoded
dialogue state in the previous turn, i.e. 5th turn.

In Figure 2 and 3, we plotted the Joint Goal Ac-
curacy and BLEU metrics of our model by dialogue
turn. As we expected, the Joint Accuracy metric
tends to decrease as the dialogue history extends
over time. The dialogue agent achieves the high-
est accuracy in state tracking at the 1st turn and
gradually reduces to zero accuracy at later dialogue
steps, i.e. 15th to 18th turns. For response genera-
tion performance, the trend of BLEU score is less
obvious. The dialogue agent obtains the highest
BLEU scores at the 3rd turn and fluctuates between
the 2nd and 13th turn.
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Figure 2: Joint Accuracy metric by dialogue turn in the
test data.
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Figure 3: BLEU4 metric by dialogue turn in the test
data.
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R4: all set . your reference number is k2bo09vq . 
U5: thanks . i am also looking for some entertainment close to 
the restaurant . any suggestions ? 

B5: {restaurant: {area: center, name: dojo noodle bar, 
pricerange: cheap}, attraction: { area: center, type: 
entertainment}}
R5: i am sorry i do not have any attractions meeting the 
criteria you listed . is there another type of attraction or area 
you would like me to search ?

B5
tscp: {restaurant: {area: center, pricerange: cheap}, 

attraction: { area: center}}
R5

tscp: there are many attractions in the restaurant_area . do 
you have a preference?

B5
ours: {restaurant: {area: center, pricerange: cheap}, 

attraction: { area: center, type: entertainment}}
R5

ours: there are no attraction_type attractions in the 
restaurant_area of town . would you like to try another area ?

Figure 4: Example dialogue with the input system response Rt−1 and current user utterance Ut, and the output
state BSt and system response Rt. Compared with TSCP, our dialogue state and response are more correct and
closer to the ground truth.

2nd Layer 4th Layer3rd Layer

Domain
-level 
DST

Slot
-level
DST

Figure 5: Visualization of attention to the user utterance sequence at slot-level (lower right) and domain-level
(upper right) is also included. More red denotes higher attention score between domain or slot representation and
token representation. Best viewed in color.
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Turn Input Dialogue Ground-truth State and Response Our Predicted State and Response
R0: <blank> B1: {restaurant: {area: centre,

pricerange: cheap}}
B1: {restaurant: {area: centre,
pricerange: cheap}}

1 U1: i am looking for a cheap
restaurant in the center of the
city

R1: do you have any specific type of food
you would like ?

R1: there are 15 restaurant_pricerange
restaurant_type s in the restaurant_area
of town . do you have a preference ?

U1: do you have any specific
type of food you would like ?

B2: {restaurant: {area: centre,
pricerange: cheap}}

B2: {restaurant: {area: centre,
pricerange: cheap}}

2 U2: no , i am not picky as long
as the price -s are low .

R2: there is a restaurant_pricerange
restaurant_food restaurant_type called
the restaurant_name located in the restau-
rant_area of town . would you like to
book a table ?

R2: how about restaurant_name ? it s
an restaurant_pricerange restaurant_food
restaurant_type located in the restau-
rant_area of town .

R2: there is a cheap chinese
restaurant called the dojo noo-
dle bar located in the centre of
town . would you like to book a
table ?

B3: {restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}}

B2: {restaurant: {area: centre,
pricerange: cheap}}

3 U3: yes please , for 8 people at
1830 on thursday .

R3: i am sorry but restaurant_name is
solidly booked at that time . i can try a
different time or day for you .

R3: booking was successful . the table
will be reserved for 15 minutes . refer-
ence number is restaurant_reference .

R3: i am sorry but dojo noodle
bar is solidly booked at that time
. i can try a different time or day
for you

B4: {restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}}

B4: {restaurant: {area: centre,
pricerange: cheap}}

4 U4: can you try to book it at
1730 .

R4: all set . your reference number is
restaurant_reference .

R4: booking was successful . the table
will be reserved for 15 minutes . refer-
ence number is restaurant_reference .

R4: all set . your reference num-
ber is k2bo09vq .

B5: {restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}, attraction: {area: centre, type: en-
tertainment}}

B5: {restaurant: {area: centre,
pricerange: cheap}, attraction: {area:
centre, type: entertainment}}

5 U5: thanks . i am also looking
for some entertainment close to
the restaurant . any suggestions
?

R5: i am sorry i do not have any attrac-
tions meeting the criteria you listed . is
there another type of attraction or area
you would like me to search ?

R5: there are no attraction_type attrac-
tions in the restaurant_area of town .
would you like to try another area ?

R5: i am sorry i do not have any
attractions meeting the criteria
you listed . is there another type
of attraction or area you would
like me to search ?

B6:{restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}, attraction: {area: centre, type:
architecture}}

B6:{restaurant: {area: centre,
pricerange: cheap}, attraction: {area:
centre, type: architecture}}

6 U6: why do not you try an archi-
tectural attraction , instead .

R6: attraction_name looks good , would
you like to head there ?

R6: attraction_name is a great attrac-
tion_type in the center of town . would
you like more information ?

R6: all saints church looks good
, would you like to head there ?

B7:{restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}, attraction: {area: centre, type:
architecture}}

B7:{restaurant: {area: centre,
pricerange: cheap}, attraction: {area:
centre, type: architecture}}

7 U7: yes please . can you let me
know what the entrance fee is
too ?

R7: its entrance fee is attrac-
tion_pricerange .

R7: the entrance fee is attrac-
tion_pricerange . is there anything
else i can help you with ?

R7: its entrance fee is free . B8:{restaurant: {area: centre,
pricerange: cheap, name: dojo
noodle bar}, attraction: {area: centre,
type: architecture}, taxi: {departure:
dojo noodle bar, destination: all saints
church}}

B8:{restaurant: {area: centre,
pricerange: cheap}, attraction: {area:
centre, type: architecture}, taxi:
{destination: dojo noodle bar}}

8 U8: i also need to book a taxi
between the restaurant and the
church .

R8: what time would you like the taxi to
pick you up from restaurant_name ?

R8: what time would you like to leave or
arrive by ?

Table 10: Complete turns of an example multi-domain dialogue with each turn including the input of past system
response Rt−1 and current user utterance Ut, and the predicted dialogue state Bt and system response Ut. The
dialogue consists of 11 turns in total and extends across 3 domains sequentially: restaurant, attraction, and taxi.
Dialogue continues in Table 11.
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Turn Input Dialogue Ground-truth State and Response Our Predicted State and Response
R8: what time would you like
the taxi to pick you up from dojo
noodle bar ?

B9: {restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}, attraction: {area: centre, type: ar-
chitecture}, taxi: {departure: dojo noo-
dle bar, destination: all saints church,
leaveAt: 1830}}

B9:{restaurant: {area: centre,
pricerange: cheap}, attraction: {area:
centre, type: architecture}, taxi:
{destination: dojo noodle bar}}

9 U9: 1830 , please . R9: your taxi is booked . the car is
a taxi_type and the contact number is
taxi_phone . is there anything else i can
help you with ?

R9: booking completed ! booked
car type taxi_type contact number
taxi_phone can i help you with anything
else ?

R9: your taxi is booked . the
car is a blue bmw and the con-
tact number is 07239644669 . is
there anything else i can help
you with ?

B10: {restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}, attraction: {area: centre, type: ar-
chitecture}, taxi: {departure: dojo noo-
dle bar, destination: all saints church,
leaveAt: 1830}}

B10: {restaurant: {area: centre,
pricerange: cheap}, attraction: {area:
centre, type: architecture}, taxi: {des-
tination: dojo noodle bar}}

10 U10: that s it . thanks . R10: awesome , enjoy your trip ! R10: you are welcome . have a great day
!

R10: awesome , enjoy your trip
!

B11: {restaurant: {area: centre,
pricerange: cheap, name: dojo noodle
bar}, attraction: {area: centre, type: ar-
chitecture}, taxi: {departure: dojo noo-
dle bar, destination: all saints church,
leaveAt: 1830}}

B11: {restaurant: {area: centre,
pricerange: cheap}, attraction: {area:
centre, type: architecture}, taxi: {des-
tination: dojo noodle bar}}

11 U11: thanks ! i will definitely
try to .

R11: great ! goodbye and have a nice
day .

R11: thank you for using our services .
have a great day .

Table 11: Dialogue continues from Table 10. Each turn includes the input of past system response St−1 and current
user utterance Ut, and the predicted dialogue dialogue state BSt and system response St. The dialogue consists of
11 turns in total and extends across 3 domains sequentially: restaurant, attraction, and taxi.


