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Abstract

Knowledge Graph (KG) alignment is to match
entities in different KGs, which is important
to knowledge fusion and integration. Recently,
a number of embedding-based approaches
for KG alignment have been proposed and
achieved promising results. These approaches
first embed entities in low-dimensional vec-
tor spaces, and then obtain entity alignments
by computations on their vector representa-
tions. Although continuous improvements
have been achieved by recent work, the per-
formances of existing approaches are still not
satisfactory. In this work, we present a new
approach that directly learns embeddings of
entity-pairs for KG alignment. Our approach
first generates a pair-wise connectivity graph
(PCG) of two KGs, whose nodes are entity-
pairs and edges correspond to relation-pairs; it
then learns node (entity-pair) embeddings of
the PCG, which are used to predict equivalent
relations of entities. To get desirable embed-
dings, a convolutional neural network is used
to generate similarity features of entity-pairs
from their attributes; and a graph neural net-
work is employed to propagate the similarity
features and get the final embeddings of entity-
pairs. Experiments on five real-world datasets
show that our approach can achieve the state-
of-the-art KG alignment results.

1 Introduction

Knowledge graphs (KGs) have been built and ap-
plied in several domains, including question an-
swering (Zhang et al., 2018), recommendation (Sun
et al., 2018b), and information extraction (Yang and
Mitchell, 2017). Most existing KGs are built sep-
arately by different organizations, using different
data sources and languages. Therefore, KGs are
heterogeneous that the same entity may exist in dif-
ferent KGs in different surface forms. On the other
hand, KGs can be complementary to each other;

knowledge about the same entity may distribute
in several KGs. To handle the heterogeneity prob-
lem and integrate knowledge in different KGs, it is
essential to perform KG alignment, i.e. matching
entities in separate KGs.

Recently, KG embedding models have been ex-
plored in solving the problem of KG alignment.
A number of embedding-based approaches have
been proposed, including MTransE (Chen et al.,
2017), JAPE (Sun et al., 2017), IPTransE (Zhu
et al., 2017), GCN-Align (Wang et al., 2018),
RDGCN (Wu et al., 2019), and MultiKE (Zhang
et al., 2019), etc. These approaches first em-
bed entities in low-dimensional vector spaces, and
then obtain the entity alignments by computa-
tions on their vector representations. Compar-
ing with traditional similarity-based approaches,
embedding-based ones can effectively model dif-
ferent kinds of information in KGs, which align
entities without manually designed similarity fea-
tures. Most recently, continuous improvements
have been achieved by combining multiple kinds
of information in KGs or using more sophisticated
embedding models. However, the performances of
most approaches are still not satisfactory. Accord-
ing to the results in a recent work (Zhang et al.,
2019), a traditional unsupervised alignment ap-
proach, Logmap (Jiménez-Ruiz and Cuenca Grau,
2011), outperforms most existing embedding-based
approaches. To get more accurate alignment results,
we propose an entity-pair embedding approach for
KG alignment (EPEA). Instead of learning embed-
dings of single entities, our approach directly learns
representations of entity-pairs. Similarity features
of entities’ attribute information are automatically
extracted, which are then propagated using struc-
ture information of entities. Equivalent relations of
entities can be accurately predicted based on the
learned embeddings of entity-pairs.

Specifically, our work has the following contri-



1673

butions:

• We introduce the definition of pairwise con-
nectivity graph (PCG) of KGs, whose nodes
are entity-pairs and edges correspond to
relation-pairs. We solve the KG alignment
problem via node embedding of the PCG.

• We propose a similarity feature extraction
method based on convolutional neural net-
work (CNN), which automatically generates
feature vectors of entity-pairs encoding their
attribute similarities.

• We propose a graph neural network (GNN)
with edge-aware attentions to propagate simi-
larity features in the PCG. Similarity features
are propagated among the neighbors of entity-
pairs, which incorporate structure similarity
into the embeddings of entity-pairs.

• In the experiments on aligning real-world
KGs, our approach outperforms the compared
approaches, and achieves the state-of-the-art
results.

The rest of this paper is organized as follows:
Section 2 formalizes the entity alignment problem,
Section 3 describes our proposed approach, Sec-
tion 4 presents the evaluation results, Section 5
discusses some related work, and Section 6 is the
conclusion.

2 Problem Formulation

2.1 KG and KG Alignment
KGs represent structural information about enti-
ties in real-world as triples having the form of
〈s, p, o〉. In this work, our KG alignment model
considers both relational and attributional triples in
KGs. The relational triples describe relations be-
tween entities, and the attributional triples describe
attributes of entities. We formally represent a KG
as G = (E,R,A,L, T ), where E, R, A and L are
sets of entities, relations, attributes, and literals;
T ⊆ (E × R × E) ∪ (E × A × L) is the sets of
triples. Given two KGs G = (E,R,A,L, T ) and
G′ = (E′, R′, A′, L′, T ′), the task of KG align-
ment is to find, for each entity in E, the equivalent
entity in E′.

2.2 Pair-wise Connectivity Graph
Pair-wise connectivity graph (PCG) can cap-
ture interactions of node-pairs of two directed
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Figure 1: Pair-wise connectivity graph.

graphs (Wang et al., 2012; Melnik et al., 2002).
In this work, we define the PCG of KGs. For two
KGs, each node in their PCG corresponds to an
entity-pair from two KGs, and each edge connect-
ing two nodes reflects the correlation between two
entity-pairs. By generating the PCG of two KGs,
the problem of KG alignment is then transformed to
node embedding and classification (i.e. equivalent
or nonequivalent) in the PCG. For two KGs G =
(E,R,A,L, T ) and G′ = (E′, R′, A′, L′, T ′), the
PCG of them is G(G,G′) = (E ,R, T ), where E ,
R and T are sets of nodes, edge types and edges.
Each element in E corresponds to an entity-pair
between G and G′, and each element in R corre-
sponds to an relation-pair. T is a set of typed edges
between nodes, each edge is established as follows:

〈a, r, b〉 ∈ T ∧ 〈a′, r′, b′〉 ∈ T ′

⇐⇒ 〈(a, a′), (r, r′), (b, b′)〉 ∈ T
(1)

Figure 1 shows an example of PCG of two KGs.
There are two KGs, each of them has three entities.
The PCG of them contains nine nodes represent-
ing all the possible entity-pairs of two KGs; and
there are four typed edges in the PCG. PCG can
represent the connections of entity-pairs between
two KGs, we use PCG to capture the interaction of
possible entity alignments between two KGs. In
our approach, the problem of KG alignment will
be solved via node embedding of the PCG. Equiva-
lent relations of entities are predicted based on the
learned embeddings.
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3 The Proposed Approach

Figure 2 shows the framework of our approach.
Given two KGs, our approach first generates the
PCG of them. Then, a CNN-based feature extrac-
tion method is used to generate node representa-
tions from the attribute information of entities. At
last, an attention-based feature propagation is per-
formed over the PCG to incorporate structure infor-
mation into the node representations. Entity align-
ments are predicted based on the learned embed-
dings of entity-pairs. In the following, we present
our approach in detail.

3.1 Generating the PCG
To generate the PCG of two KGs, we can first pair
all the entities from two KGs as nodes, and then
use Equation 1 to generate edges between nodes.
However, KGs usually contain large number of
entities, the PCG of two large-scale KGs will con-
tain huge number of nodes. To avoid pairing all
the entities from two KGs and control the size of
the PCG, our approach selects entity-pairs having
high equivalent possibilities as nodes in the PCG.
Specifically, Locality-Sensitive Hashing (LSH) is
employed in our approach to efficiently find simi-
lar entities between two KGs. LSH hashes similar
items more likely into the same bucket than dissim-
ilar items. Before using LSH, our approach first
uses one of the following methods to generate set-
representations of entities, which are used in the
hashing process.

• N-grams of Names. If entity names are avail-
able and in the same language, this method
generates a set of character-level n-grams of
entities’ names as the set-representations of
entities.

• N-grams of Attributes. This method treats
attribute values of an entity as text strings, and
generates character-level n-grams of all the at-
tribute values for each entity. All the n-grams
are then merged into a set as the representation
of the entity.

• Seeding alignments. If seeding alignments
between two KGs are available, a set of
aligned entities in an entity’s neighborhood
will be taken as the set-representation.

After being represented as sets of elements (n-
grams or neighboring entities) by one of the above
methods, all the entities in two KGs are hashed

using LSH. To select entity-pairs as nodes in the
PCG of G and G′, our approach efficiently finds,
for each entity e ∈ G, a set of entities Ce =
{e′|e′ ∈ G′, J(e, e′) > δ} as its alignment can-
didates, where J(e, e′) is the Jaccard similarity of
two entities, δ is a predefined threshold. Entity e is
then paired with all the entities in Ce to form the
nodes in the PCG.

3.2 Attribute Feature Generation
Entities having the same or similar attribute val-
ues tend to be equivalent. Therefore, comparing
attribute values of two entities are important for
discovering entity alignments. In traditional ap-
proaches, attributes have to be first matched manu-
ally, then the values of corresponding attributes can
be compared to get similarities between entities. In
some of the embedding-based approaches, attribute
types or values are utilized to generate attribute
embeddings, which are integrated with structure
embeddings of entities to get more accurate en-
tity alignments. In this work, we extract similarity
features from entities’ attributes in an automatic
way.
CNN-based Feature Extraction

We propose an attribute feature extraction
method based on Convolutional Neural Network
(CNN). Our method can automatically obtain use-
ful similarity features of entity-pairs without any
human effort. It generates a vector representation
of each entity-pair in the PCG, which captures at-
tribute similarities of two entities.

Given an entity-pair (e, e′), where e ∈ G and
e′ ∈ G′. Let A = {A1, ..., An} and A′ =
{A′1, ..., A′m} be two sets of all the attributes in G
and G′, respectively. Let Ai(e) denotes the value
of the i-th attribute of e, A′j(e

′) denotes the value
of the j-th attribute of e′. To capture various simi-
larities between two entities e and e′, a similarity
matrix Mm×n is computed by comparing values of
every attribute pair of two entities. Each element
mij in M is the similarity of Ai(e) and A′j(e

′).
Attribute values in KGs may have various types,
for example data, time, float, integer and string.
To keep simplicity and effectiveness, our approach
treats all the attribute values as strings. Similarities
of attribute values are computed as N-gram-based
Jaccard similarities of strings:

Jaccard(s, t) =
|NG(s) ∩NG(t)|
|NG(s) ∪NG(t)|

(2)

where NG(s) and NG(t) are n-grams of strings s
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Figure 2: Framework.

and t.
Usually, one entity is only described by a small

number of attributes in a KG. Therefore, for an
entity, the values of many attributes are empty. The
similarity matrix of two entities is usually a sparse
one, with a large proportion of 0s in it. Meanwhile,
similarities between some attributes may be useless
for detecting alignments. To automatically find
useful similarity patterns of attribute values, we
use a CNN model to encode the sparse similarity
matrix into a short and dense vector.

The input of the CNN is the similarity matrix
M of two entities, two convolution layers are used
to generate a dense similarity vector from M. For
the l-th convolution layer, its output is computed
as follows:

X
(l)
k = ReLU

(
W

(l)
k ⊗X(l−1) + b

(l)
k

)
(3)

where X(l−1) is the input of l-th layer; for the first
layer, X(0) = M; we use multiple filters to extract
useful similarity features from the input, W(l)

k is
the k-th filter of l-th layer, b(l)

k is the bias of the k-
th filter in l-th layer; ⊗ is the convolution operator.
There is a max pooling layer after each convolution
layer. The output features of last max pooling layer
is the similarity vector of the entity-pair.
Name Similarity Features

In this work, name or label of an entity is con-
sidered as a special attribute, which is an important
clue for determining whether two entities are equiv-
alent. If entities’ names are available in KGs, our
approach computes a name similarity vector for
each entity-pair, which will be concatenated with
the similarity vector generated by the CNN model.
To capture similarity features of entities’ names

from different aspects, we use multiple string-based
similarity metrics, which are widely used in tradi-
tional similarity-based alignment approaches. If
entities’ names are in different languages in two
KGs, machine translation tool will be used to trans-
late names in one language to the other language.
Let s and t be names of two entities, the following
similarity measures are used in our approach.

• String equality. It measures whether two
strings are the same:

z1(s, t) =

{
1 if s = t,
0 else.

(4)

• Edit Distance. It evaluates the minimal cost
of operations which have to applied to one of
the strings to obtain the other string:

z2(s, t) = 1− |{ops}|
max(len(s), len(t))

, (5)

where {ops} denotes the set of operations,
len(·) is the string length.

• Jaccard Similarity. It computes the Jaccard
Similarity of the character-level n-grams of
two strings, as defined in Equation 2, we de-
note this similarity as z4(s, t).

• Substring Similarity. It is computed by find-
ing the longest common substring of two
strings.

z4(s, t) =
2|LCS(s, t)|
|s|+ |t|

, (6)

where LCS(s, t) is the longest common sub-
string of s and t.
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Let z = [z1, z2, z3, z4] denote name similarities
of an entity-pair, it will be concatenated with the
similarity vector x generated by CNN to form the
initial feature vector of the entity-pair. The feature
vectors of all the entity-pairs will be passed to an
attention-based propagation process, to generate
the final embeddings.

3.3 Attention-based Feature Propagation

Equivalent entities in two KGs are usually neigh-
bored by some other equivalent entities. Therefore,
structure information in KGs are very important
for discovering entity alignments. In our work,
edges between nodes in the PCG reflect the neigh-
boring information of entity-pairs. To obtain fea-
ture representations of entity-pairs containing their
neighbors’ information, our approach propagates
attribute features of entity-pairs following these
edges. Specifically, our approach uses a Graph
Neural Network (GNN) to propagate the attribute
features of entity-pairs over the PCG. GNNs learn
node representations in a graph by recursively ag-
gregating the feature vectors of its neighbors, which
are able to combine the node features and structure
information in the graph. Several approaches have
exploited GNNs for embedding-based KG align-
ment, which achieved promising results. In the
previous approaches, GNNs are used for learning
representations of entities. While in this work, we
design a new GNN model for learning vector rep-
resentations of entity-pairs.

Our model is a residual GNN with edge-aware
attentions, which is built by modifying the attention
mechanism of the GAT model (Velickovic et al.,
2017). Our GNN model has two layers, each layer
takes a set of node features H = {h1,h2, ...,hN}
as inputs, where hi ∈ RF and N is the number of
nodes in the PCG, F is the dimension of the input
features. Each layer generates a new set of node
representations H′ = {h′1,h′2, ...,h′N}, h′i ∈ RF ′

and it is computed as:

h′i = σ

∑
j∈Ni

αijWhj

 , (7)

where Ni is the set of neighboring nodes of the
i-th node (ignoring the edge directions in the PCG),
W ∈ RF×F ′ is a shared matrix, αij is a learnable
attention indicating the importance of the j-th node
to the i-th node.
Edge-aware Attention Mechanism

In the GAT model, the attention αij is computed
based on the features of node i and j. In the task
of KG alignment, we consider that the type of edge
between two nodes is important and should not be
ignored. Therefore, we use an edge-aware attention
mechanism to compute the attention αij . A shared
attentional mechanism RF ′ × RF ′ × RF ′ → R is
used to computes attention coefficients:

eij = LeakyReLU
(
a>
[
Whi‖Whj‖t(i→j)

])
(8)

where (i → j) denotes the index of edge-type
linking the i-th node to the j-th node, t(i→j) ∈
RF ′ is the vector representation of the edge-type;
a ∈ R3F ′ is a weight vector of a single-layer feed-
forward neural network for computing the attention
coefficients; ‖ represents concatenation of vectors.
Here the vector of an edge-type is computed based
on the nodes’ vectors connected by it. For an edge-
type tk, let Sk and Tk be the sets of nodes’ indices
having outgoing edges and incoming edges of the
type in the PCG respectively, the vector representa-
tion of tk is computed as:

tk = | 1

|Sk|
∑
i∈Sk

Whi −
1

|Tk|
∑
j∈Tk

Whj|, (9)

which is the element-wise absolute difference be-
tween the mean vectors of source and target nodes
connected by tk.

When the attention coefficients are obtained fol-
lowing Equation 8, normalized attentions are then
computed using a softmax function over all the
coefficients of its neighboring nodes:

aij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(10)

whereNi is the set of neighboring nodes of the i-th
node.
Residual Connections in GNN

To let the entity-pair embeddings memorize the
original attribute features, we add residual connec-
tions from the input features to the output layer of
the GNN model. We let F = F ′, i.e. the sizes of
input and output node vectors of each GNN layer
are the same. A shortcut connection between the
input and output layers is added, and the final rep-
resentation of a node is computed by element-wise
addition of h0

i and hL
i , where h0

i = [xi||zi] and hL
i

are the input and output features of the i-th node.
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3.4 Model Training
There are two neural network models in our ap-
proach, i.e. the CNN model for attribute feature
extraction and the GNN model for feature propaga-
tion. These two separate models are trained sequen-
tially, using the same training data. For two KGs G
and G′, let A = {(ei, vi)|ei ∈ G, vi ∈ G′}Ki=1 be a
set of known entity alignments, they will be used
as training data for both models.

For the CNN model, let xi be the attribute feature
vector of entity-pair (ei, vi) generated by the model.
We use one fully-connected layer to generate a
score for each entity-pair, taking xi as the input:

SCNN (ei, vi) = σ(c>xi + α) (11)

where c ∈ Rd and α ∈ R are parameters, σ is the
Sigmoid function.

For the GNN model, let hi be the feature vector
of entity-pair (ei, vi) after the feature propagation
with the model. A similar score function is also
defined as:

SGNN (ei, vi) = σ(g>hi + β) (12)

where g ∈ Rd and β ∈ R are parameters, σ is also
the Sigmoid function.

For both models, we want the aligned entity-
pairs having higher scores than the non-aligned
entity-pairs. Therefore, two models are both
trained by minimizing the following margin-based
ranking loss function:

L =
∑

(e,v)∈A

∑
(e′,v′)∈A′

(e,v)

[γ−S(e, v)+S((e′, v′))]+

(13)
where [x]+ = max{0, x}, γ > 0 is a margin hyper-
parameter, A′(e,v) denotes the set of non-aligned
entity-pairs in the PCG containing entity e or v.
The score S is either SCNN or SGNN , depending
on which model is trained.

4 Experiments

4.1 Datasets
Five datasets are used to evaluate our approach,
each dataset contains two knowledge graphs to be
aligned. Table 1 outlines the detail information of
these datasets. DBP15KZH−EN, DBP15KJA−EN
and DBP15KFR−EN were built by (Sun et al.,
2017). They are generated from DBpedia and
each dataset contains 15 thousand aligned entity

pairs in two language versions of DBpedia. DBP-
WD and DBP-YG were first used in (Sun et al.,
2018a), which are generated from DBpedia, Wiki-
data and YAGO3. Each dataset contains 100 thou-
sand aligned entity pairs. For all the datasets, we
use the same training/testing split of aligned entity
pairs with previous work (Sun et al., 2017, 2018a),
30% for training and 70% for testing.

Table 1: Details of the datasets

Datasets # Entities # Relations # Attributes

DBPZH−EN Chinese 66,469 2,830 8,113
English 98,125 2,317 7,173

DBPJA−EN Japanese 65,744 2,043 5,882
English 95,680 2,096 6,066

DBPFR−EN French 66,858 1,379 4,547
English 105,889 2,209 6,422

DBP-WD DBpedia 100,000 330 351
Wikidata 100,000 220 729

DBP-YG DBpedia 100,000 302 334
YAGO3 100,000 31 23

4.2 Experiment Settings
We implement our approach by using TensorFlow1,
and run experiments on a workstation with In-
tel Xeon 2.1GHz CPU, an NVIDIA Tesla P100
GPU and 64 GB memory. We use Hits@k and
MRR(Mean reciprocal ranking) as the evaluation
metrics, which are popular and widely used in other
KG alignment work. Hits@k measures the percent-
age of correctly alignments ranked in the top k
candidates. MRR is the average of the reciprocal
ranks of the results. The higher Hits@k and MRR,
the better is the performance. The dimensions of
similarity features and final embeddings of entity-
pairs are set to the same value, which is among
{30, 60, 100, 120}, we consider the learning rate
in two models among {0.1, 0.01, 0.002, 0.001},
the margin γ in loss functions among {1, 2, 4, 10}.
Best configurations for two models in our approach
are selected based on the MRR.

We compare our approach EPEA with recent
KG alignment models, which can be divided
into two groups. Models in the first group
only use structure information in KGs, including
MTransE (Chen et al., 2017), IPTransE (Zhu et al.,
2017), BootEA (Sun et al., 2018a), MuGNN (Cao
et al., 2019), RDGCN (Wu et al., 2019), AliNet (Ze-
qun Sun, 2020), and NAEA (Zhu et al., 2019). The

1https://www.tensorflow.org/
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Table 2: Results of KG alignment

Approaches DBPZH−EN DBPJA−EN DBPFR−EN DBP−WD DBP−YG

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE 0.308 0.614 0.364 0.279 0.575 0.349 0.244 0.556 0.335 0.281 0.520 0.363 0.252 0.493 0.334
IPTransE 0.406 0.735 0.516 0.367 0.693 0.474 0.333 0.685 0.451 0.349 0.638 0.447 0.297 0.558 0.386
BootEA 0.629 0.848 0.703 0.622 0.854 0.701 0.653 0.874 0.731 0.748 0.898 0.801 0.761 0.894 0.808
MuGNN 0.494 0.844 0.611 0.501 0.857 0.621 0.495 0.870 0.621 0.616 0.897 0.714 0.741 0.937 0.810
RDGCN 0.708 0.846 0.746 0.767 0.895 0.812 0.886 0.957 0.911 - - - - - -
AliNet 0.539 0.826 0.628 0.549 0.831 0.645 0.552 0.852 0.657 0.690 0.908 0.766 0.786 0.943 0.841
NAEA 0.650 0.867 0.720 0.641 0.872 0.718 0.673 0.894 0.752 0.767 0.917 0.817 0.778 0.912 0.821

JAPE 0.412 0.745 0.490 0.363 0.685 0.476 0.324 0.667 0.430 0.318 0.589 0.411 0.236 0.484 0.320
GCN-Align 0.413 0.744 0.549 0.399 0.745 0.546 0.375 0.745 0.532 0.506 0.772 0.600 0.597 0.838 0.682
MultiKE - - - - - - - - - 0.914 0.951 0.928 0.880 0.953 0.906
CEA 0.787 - - 0.863 - - 0.972 - - 0.998 - - 0.999 - -

CNN 0.612 0.840 0.694 0.569 0.820 0.657 0.777 0.930 0.833 0.840 0.986 0.897 0.780 0.975 0.854
CNN+GAT 0.726 0.916 0.803 0.764 0.936 0.836 0.758 0.960 0.839 0.945 0.967 0.955 0.980 0.999 0.988
EPEA 0.885 0.953 0.911 0.924 0.969 0.942 0.955 0.986 0.967 0.975 0.981 0.977 1.000 1.000 1.000

other group of models use attribute or name infor-
mation in KGs, including JAPE (Sun et al., 2017),
GCN-Align (Wang et al., 2018), MultiKE (Zhang
et al., 2019), and CEA (Zeng et al., 2020).

4.3 Results

Overall Comparisons. Table 2 shows the results
of all approaches. Because all the approaches use
the same sets of seeding and testing alignments
in each dataset, the results of the compared ap-
proaches are obtained from their original papers. It
shows that our approach EPEA achieves promis-
ing improvements compared with the previous ap-
proaches. Our approach outperforms all the com-
pared approaches other than CEA on five datasets,
in terms of Hits@1, Hits@10 and MRR. Taking
no account of CEA, RDGCN achieved the state-
of-the-art results on three cross-lingual datasets.
Compared with RDGCN, our approach gets im-
provements of 17.7%, 15.7%, and 6.9% of Hits@1
on these datasets. MultiKE performed the best
on DBP-WD and DBP-YG among the compared
approaches excluding CEA, our approach outper-
forms MultiKE by 6.1% and 12.0% of Hits@1 on
the two datasets, respectively. CEA is a strong
approach which uses a collective alignment frame-
work with adaptive feature fusion mechanism; only
results of Hits@1 (i.e. accuracy) are reported by
its authors. In terms of Hits@1, CEA performs
better than RDGCN and MultiKE on cross-lingual
and monolingual datasets, respectively. Compared
with CEA, our approach gets higher Hits@1 on
DBPZH−EN and DBPJA−EN, and gets better re-
sults than CEA on DBP-YG. CEA performs better

than EPEA on DBPFR−EN and DBP-WD, but the
results of two approaches are close, with small dif-
ferences of 1.7% and 2.3%.

Contributions of component models. To analyze
the contributions of component models in our ap-
proach, we build two variations of EPEA by remov-
ing or replacing GNN model. The first variation
of EPEA is represented as CNN, which only uses
the CNN model to predict alignments based on
attribute features. The second variation of EPEA
is represented as CNN+GAT, which replaces the
edge-aware attentional GNN with GAT (Velickovic
et al., 2017) in EPEA. The results of CNN and
CNN+GAT are also outlined in Table 2. It shows
that two sub-models of EPEA are both effective and
important for the promising performance of EPEA.
First, the CNN model can extract useful similar-
ity features for predicting entity alignments, which
gets better results than half of the comparison ap-
proaches, including MTransE, MuGNN, AliNet,
JAPE, et al. Second, GNN-based feature propa-
gation improves the results significantly, and the
new designed GNN model edge-aware attention
in EPEA works better than GAT. There is 11.9%
improvements of Hits@1 on average when GAT is
used to propagate the similarity features, while our
new GNN model gets even bigger improvements,
average 24.9% of Hits@1.

Impact of Seed Alignments. To investigate how
the size of seed alignments (pre-aligned entity pairs
for training) affects the results of our approach, we
run our approach with different number of seed
alignments. The proportions of seed alignments
ranges from 5% to 30% with step of 5%. Figure 3
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shows theHits@1 andHits@10 of EPEA on two
datasets, DBP-YG and DBPFR−EN . It shows that
EPEA gets nearly optimal Hits on DBP-YG using
10% seed alignments, both Hits@1 and Hits@10
are 100% when more than 15% seed alignments
are used. This is because DBP-YG contains rich
attribute information of entities including entities’
names, our approach can fully utilize attribute and
structure information to accurately predict entity
alignments even with small number of seed align-
ments. On the DBPFR−EN dataset, our approach
gets>70% Hits@1 and>95% Hits@10 when only
10% seed alignments are used; it outperforms most
of the compared approaches in Table 2 which use
30% seed alignments. As the number of seed align-
ments increases, our approach steadily improves
the alignment results.
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Figure 3: Results of EPEA using different sizes of seed
alignments (horizontal coordinates: proportions of pre-
aligned entities used in training data; vertical coordi-
nates: Hits@k )

5 Related Work

A number of embedding-based entity alignment
approaches have been proposed recently. Some
approaches mainly rely on the structure infor-
mation in KGs to find alignments, including
MTransE (Chen et al., 2017), IPTransE (Zhu
et al., 2017), BootEA (Sun et al., 2018a),

MuGNN (Cao et al., 2019), NAEA (Zhu et al.,
2019), RDGCN (Wu et al., 2019) and AliNet (Ze-
qun Sun, 2020). Entity embeddings are learned
by using information of entity and their relations.
MTransE encodes structure information of KGs in
separate spaces, and then performs transitions from
one space to the other. TPTransE and BootEA both
are iterative alignment approaches, which use new
discovered alignments to expand the seeding align-
ments. MuGNN employs a multi-channel GNN to
learn alignment-oriented KG embeddings. NAEA
enhances the TransE model by learning embed-
dings by a neighborhood-aware attentional repre-
sentation method. RDGCN uses a relation-aware
dual-graph convolutional network to incorporate
relation information via attentive interactions be-
tween KG and its dual relation counterpart. AliNet
is a GNN-based model which aggregates both di-
rect and distant neighborhood information.

To get improved results, some approaches uti-
lize entity attributes or names in KGs. JAPE (Sun
et al., 2017) performs attribute embedding by Skip-
Gram model which captures the correlations of at-
tributes in KGs. GCN-Align (Wang et al., 2018) en-
codes attribute information of entities into their em-
beddings by using GCNs. MultiKE (Zhang et al.,
2019) uses a framework unifying the views of en-
tity names, relations and attributes to learn embed-
dings for aligning entities. CEA (Zeng et al., 2020)
combines structural, semantic and string features
of entities, which are integrated with dynamically
assigned weights.

Compared with the previous approaches, ours
directly learns embeddings of entity-pairs, instead
of entities. Attribute and structure information are
encoded in the embeddings sequentially, and exper-
iments validate the effectiveness of our approach.

6 Conclusion

This paper presents a new entity-pair embedding
approach for KG alignment. Our approach first ex-
tracts useful attribute features of entity-pairs by us-
ing a convolutional neural network, and then prop-
agates the features among the neighbors of entity-
pairs, by using a graph neural network with edge-
aware attentions. The embeddings are learned with
the object of separating equivalent and nonequiv-
alent entity-pairs. Experiments on five real-world
datasets show that our approach achieves the state-
of-the-art results.
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