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Abstract

Deep pre-trained contextualized encoders like
BERT (Devlin et al., 2019) demonstrate re-
markable performance on a range of down-
stream tasks. A recent line of research in prob-
ing investigates the linguistic knowledge im-
plicitly learned by these models during pre-
training. While most work in probing oper-
ates on the task level, linguistic tasks are rarely
uniform and can be represented in a variety
of formalisms. Any linguistics-based probing
study thereby inevitably commits to the for-
malism used to annotate the underlying data.
Can the choice of formalism affect probing re-
sults? To investigate, we conduct an in-depth
cross-formalism layer probing study in role se-
mantics. We find linguistically meaningful dif-
ferences in the encoding of semantic role- and
proto-role information by BERT depending on
the formalism and demonstrate that layer prob-
ing can detect subtle differences between the
implementations of the same linguistic formal-
ism. Our results suggest that linguistic formal-
ism is an important dimension in probing stud-
ies and should be investigated along with the
commonly used cross-task and cross-lingual
experimental settings.

1 Introduction

The emergence of deep pre-trained contextualized
encoders has had a major impact on the field of nat-
ural language processing. Boosted by the availabil-
ity of general-purpose frameworks like AllenNLP
(Gardner et al., 2018) and Transformers (Wolf
et al., 2019), pre-trained models like ELMO (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019)
have caused a shift towards simple architectures
where a strong pre-trained encoder is paired with a
shallow downstream model, often outperforming
the intricate task-specific architectures of the past.

The versatility of pre-trained representations im-
plies that they encode some aspects of general
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Figure 1: Intra-sentence similarity by layer L of the
multilingual BERT-base. Functional tokens are similar
in L = 0, syntactic groups emerge at higher levels.

linguistic knowledge (Reif et al., 2019). Indeed,
even an informal inspection of layer-wise intra-
sentence similarities (Fig. 1) suggests that these
models capture elements of linguistic structure, and
those differ depending on the layer of the model.
A grounded investigation of these regularities al-
lows to interpret the model’s behaviour, design
better pre-trained encoders and inform the down-
stream model development. Such investigation is
the main subject of probing, and recent studies con-
firm that BERT implicitly captures many aspects
of language use, lexical semantics and grammar
(Rogers et al., 2020).

Most probing studies use linguistics as a theoret-
ical scaffolding and operate on a task level. How-
ever, there often exist multiple ways to represent
the same linguistic phenomenon: for example, En-
glish dependency syntax can be encoded using a
variety of formalisms, incl. Universal (Schuster
and Manning, 2016), Stanford (de Marneffe and
Manning, 2008) and CoNLL-2009 dependencies
(Hajič et al., 2009), all using different label sets and
syntactic head attachment rules. Any probing study
inevitably commits to the specific theoretical frame-
work used to produce the underlying data. The dif-
ferences between linguistic formalisms, however,
can be substantial.

Can these differences affect the probing results?
This question is intriguing for several reasons. Lin-
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guistic formalisms are well-documented, and if the
choice of formalism indeed has an effect on prob-
ing, cross-formalism comparison will yield new
insights into the linguistic knowledge obtained by
contextualized encoders during pre-training. If,
alternatively, the probing results remain stable de-
spite substantial differences between formalisms,
this prompts a further scrutiny of what the pre-
trained encoders in fact encode. Finally, on the re-
verse side, cross-formalism probing might be used
as a tool to empirically compare the formalisms
and their language-specific implementations. To
the best of our knowledge we are the first to explic-
itly address the influence of formalism on probing.

Ideally, the task chosen for a cross-formalism
study should be encoded in multiple formalisms
using the same textual data to rule out the influ-
ence of the domain and text type. While many lin-
guistic corpora contain several layers of linguistic
information, having the same textual data anno-
tated with multiple formalisms for the same task
is rare. We focus on role semantics – a family
of shallow semantic formalisms at the interface
between syntax and propositional semantics that
assign roles to the participants of natural language
utterances, determining who did what to whom,
where, when etc. Decades of research in theo-
retical linguistics have produced a range of role-
semantic frameworks that have been operational-
ized in NLP: syntax-driven PropBank (Palmer et al.,
2005), coarse-grained VerbNet (Kipper-Schuler,
2005), fine-grained FrameNet (Baker et al., 1998),
and, recently, decompositional Semantic Proto-
Roles (SPR) (Reisinger et al., 2015; White et al.,
2016). The SemLink project (Bonial et al., 2013)
offers parallel annotation for PropBank, VerbNet
and FrameNet for English. This allows us to iso-
late the object of our study: apart from the role-
semantic labels, the underlying data and conditions
for the three formalisms are identical. SR3DE
(Mújdricza-Maydt et al., 2016) provides compati-
ble annotation in three formalisms for German, en-
abling cross-lingual validation of our results. Com-
bined, these factors make role semantics an ideal
target for our cross-formalism probing study.

A solid body of evidence suggests that encoders
like BERT capture syntactic and lexical-semantic
properties, but only few studies have considered
probing for predicate-level semantics (Tenney et al.,
2019b; Kovaleva et al., 2019). To the best of
our knowledge we are the first to conduct a cross-

formalism probing study on role semantics, thereby
contributing to the line of research on how and
whether pre-trained BERT encodes higher-level se-
mantic phenomena.

Contributions. This work studies the effect of
the linguistic formalism on probing results. We con-
duct cross-formalism experiments on PropBank,
VerbNet and FrameNet role prediction in English
and German, and show that the formalism can af-
fect probing results in a linguistically meaningful
way; in addition, we demonstrate that layer probing
can detect subtle differences between implementa-
tions of the same formalism in different languages.
On the technical side, we advance the recently intro-
duced edge and layer probing framework (Tenney
et al., 2019b); in particular, we introduce anchor
tasks - an analytical tool inspired by feature-based
systems that allows deeper qualitative insights into
the pre-trained models’ behaviour. Finally, ad-
vancing the current knowledge about the encod-
ing of predicate semantics in BERT, we perform a
fine-grained semantic proto-role probing study and
demonstrate that semantic proto-role properties
can be extracted from pre-trained BERT, con-
trary to the existing reports. Our results suggest
that along with task and language, linguistic for-
malism is an important dimension to be accounted
for in probing research.

2 Related Work

2.1 BERT as Encoder

BERT is a Transformer (Vaswani et al., 2017) en-
coder pre-trained by jointly optimizing two unsu-
pervised objectives: masked language model and
next sentence prediction. It uses WordPiece (WP,
Wu et al. (2016)) subword tokens along with po-
sitional embeddings as input, and gradually con-
structs sentence representations by applying token-
level self-attention pooling over a stack of layers L.
The result of BERT encoding is a layer-wise repre-
sentation of the input wordpiece tokens with higher
layers representing higher-level abstractions over
the input sequence. Thanks to the joint pre-training
objective, BERT can encode words and sentences
in a unified fashion: the encoding of a sentence or
a sentence pair is stored in a special token [CLS].

To facilitate multilingual experiments, we use
the multilingual BERT-base (mBERT) published
by Devlin et al. (2019). Although several recent
encoders have outperformed BERT on benchmarks



173

(Liu et al., 2019; Lan et al., 2019; Raffel et al.,
2019), we use the original BERT architecture, since
it allows us to inherit the probing methodology and
to build upon the related findings.

2.2 Probing

Due to space limitations we omit high-level dis-
cussions on benchmarking (Wang et al., 2018) and
sentence-level probing (Conneau et al., 2018a), and
focus on the recent findings related to the represen-
tation of linguistic structure in BERT. Surface-level
information generally tends to be represented in the
lower layers of deep encoders, while higher layers
store hierarchical and semantic information (Be-
linkov et al., 2017; Lin et al., 2019). Tenney et al.
(2019a) show that the abstraction strategy applied
by the English pre-trained BERT encoder follows
the order of the classical NLP pipeline. Strength-
ening the claim about linguistic capabilities of
BERT, Hewitt and Manning (2019) demonstrate
that BERT implicitly learns syntax, and Reif et al.
(2019) show that it encodes fine-grained lexical-
semantic distinctions. Rogers et al. (2020) provide
a comprehensive overview of BERT’s properties
discovered to date.

While recent results indicate that BERT success-
fully represents lexical-semantic and grammatical
information, the evidence of its high-level semantic
capabilities is inconclusive. Tenney et al. (2019a)
show that the English PropBank semantics can be
extracted from the encoder and follows syntax in
the layer structure. However, out of all formalisms
PropBank is most closely tied to syntax, and the
results on proto-role and relation probing do not
follow the same pattern. Kovaleva et al. (2019)
identify two attention heads in BERT responsible
for FrameNet relations. However, they find that
disabling them in a fine-tuning evaluation on the
GLUE (Wang et al., 2018) benchmark does not
result in decreased performance.

Although we are not aware of any systematic
studies dedicated to the effect of formalism on prob-
ing results, the evidence of such effects is scattered
across the related work: for example, the aforemen-
tioned results in Tenney et al. (2019a) show a differ-
ence in layer utilization between constituents- and
dependency-based syntactic probes and semantic
role and proto-role probes. It is not clear whether
this effect is due to the differences in the underly-
ing datasets and task architecture or the formalism
per se.

Our probing methodology builds upon the edge
and layer probing framework. The encoding pro-
duced by a frozen BERT model can be seen as a
layer-wise snapshot that reflects how the model
has constructed the high-level abstractions. Tenney
et al. (2019b) introduce the edge probing task de-
sign: a simple classifier is tasked with predicting
a linguistic property given a pair of spans encoded
using a frozen pre-trained model. Tenney et al.
(2019a) use edge probing to analyse the layer uti-
lization of a pre-trained BERT model via scalar
mixing weights (Peters et al., 2018) learned during
training. We revisit this framework in Section 3.

2.3 Role Semantics

We now turn to the object of our investigation: role
semantics. For further discussion, consider the
following synthetic example:

a. [John]Ag gave [Mary]Rc a [book]Th.
b. [Mary]Rc was given a [book]Th by [John]Ag.
Despite surface-level differences, the sentences

express the same meaning, suggesting an under-
lying semantic representation in which these sen-
tences are equivalent. One such representation is
offered by role semantics - a shallow predicate-
semantic formalism closely related to syntax. In
terms of role semantics, Mary, book and John are
semantic arguments of the predicate give, and
are assigned roles from a pre-defined inventory, for
example, Agent, Recipient and Theme.

Semantic roles and their properties have received
extensive attention in linguistics (Fillmore, 1968;
Levin and Rappaport Hovav, 2005; Dowty, 1991)
and are considered a universal feature of human
language. The size and organization of the role and
predicate inventory are subject to debate, giving
rise to a variety of role-semantic formalisms.

PropBank assumes a predicate-independent la-
beling scheme where predicates are distinguished
by their sense (get.01), and semantic arguments
are labeled with generic numbered core (Arg0-5)
and modifier (e.g. AM-TMP) roles. Core roles are
not tied to specific definitions, but the effort has
been made to keep the role assignments consis-
tent for similar verbs; Arg0 and Arg1 correspond
to the Proto-Agent and Proto-Patient roles as per
Dowty (1991). The semantic interpretation of core
roles depends on the predicate sense.

VerbNet follows a different categorization
scheme. Motivated by the regularities in verb
behavior, Levin (1993) has introduced the group-
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ing of verbs into intersective classes (ILC). This
methodology has been adopted by VerbNet: for
example, the VerbNet class get-13.5.1 would
include verbs earn, fetch, gain etc. A verb in Verb-
Net can belong to several classes corresponding
to different senses; each class is associated with a
set of roles and licensed syntactic transformations.
Unlike PropBank, VerbNet uses a set of approx.
30 thematic roles that have universal definitions
and are shared among predicates, e.g. Agent,
Beneficiary, Instrument.

FrameNet takes a meaning-driven stance on the
role encoding by modeling it in terms of frame se-
mantics: predicates are grouped into frames (e.g.
Commerce buy), which specify role-like slots to
be filled. FrameNet offers fine-grained frame dis-
tinctions, and roles in FrameNet are frame-specific,
e.g. Buyer, Seller and Money. The resource
accompanies each frame with a description of the
situation and its core and peripheral participants.

SPR follows the work of Dowty (1991) and
discards the notion of categorical semantic roles
in favor of feature bundles. Instead of a
fixed role label, each argument is assessed via
a 11-dimensional cardinal feature set including
Proto-Agent and Proto-Patient properties like
volitional, sentient, destroyed, etc.
The feature-based approach eliminates some of the
theoretical issues associated with categorical role
inventories and allows for more flexible modeling
of role semantics.

Each of the role labeling formalisms offers cer-
tain advantages and disadvantages (Giuglea and
Moschitti, 2006; Mújdricza-Maydt et al., 2016).
While being close to syntax and thereby easier to
predict, PropBank doesn’t contribute much seman-
tics to the representation. On the opposite side
of the spectrum, FrameNet offers rich predicate-
semantic representations for verbs and nouns, but
suffers from high granularity and coverage gaps
(Hartmann et al., 2017). VerbNet takes a middle
ground by following grammatical criteria while
still encoding coarse-grained semantics, but only
focuses on verbs and core (not modifier) roles. SPR
avoids the granularity-generalization trade-off of
the categorical inventories, but is yet to find its way
into practical NLP applications.

3 Probing Methodology

We take the edge probing setup by Tenney et al.
(2019b) as our starting point. Edge probing aims

to predict a label given a pair of contextualized
span or word encodings. More formally, we en-
code a WP-tokenized sentence [wp1, wp2, ...wpk]
with a frozen pre-trained model, producing con-
textual embeddings [e1, e2, ...ek], each of which is
a layered representation over L = {l0, l1, ...lm}
layers, with encoding at layer ln for the wordpiece
wpi further denoted as eni . A trainable scalar mix is
applied to the layered representation to produce the
final encoding given the per-layer mixing weights
{a0, a1..am} and a scaling parameter γ:

ei = γ
m∑
l=0

softmax(al)eli

Given the source src and target tgt wordpieces
encoded as esrc and etgt, our goal is to predict the
label y.

Due to its task-agnostic architecture, edge prob-
ing can be applied to a wide variety of unary (by
omitting tgt) and binary labeling tasks in a uni-
fied manner, facilitating the cross-task comparison.
The original setup has several limitations that we
address in our implementation.

Regression tasks. The original edge probing
setup only considers classification tasks. Many
language phenomena - including positional infor-
mation and semantic proto-roles, are naturally mod-
eled as regression. We extend the architecture by
Tenney et al. (2019b) and support both classifica-
tion and regression: the former achieved via soft-
max, the latter via direct linear regression to the
target value.

Flat model. To decrease the models’ own ex-
pressive power (Hewitt and Liang, 2019), we keep
the number of parameters in our probing model as
low as possible. While Tenney et al. (2019b) utilize
pooled self-attentional span representations and a
projection layer to enable cross-model comparison,
we directly feed the wordpiece encoding into the
classifier, using the first wordpiece of a word. To
further increase the selectivity of the model, we
directly project the source and target wordpiece
representations into the label space, opposed to the
two-layer MLP classifier used in the original setup.

Separate scalar mixes. To enable fine-grained
analysis of probing results, we train and analyze
separate scalar mixes for source and target word-
pieces, motivated by the fact that the classifier
might utilize different aspects of their represen-
tation for prediction1. Indeed, we find that the

1Tenney et al. (2019b, Appendix C) also use separate pro-
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mixing weights learned for source and target word-
pieces might show substantial – and linguistically
meaningful – variation. Combined with regression-
based objective, separating the scalar mixes allows
us to scrutinize layer utilization patterns for seman-
tic proto-roles.

Sentence-level probes. Utilizing the BERT-
specific sentence representation [CLS] allows us
to incorporate the sentence-level natural language
inference (NLI) probe into our kit.

Anchor tasks. We employ two analytical tools
from the original layer probing setup. Mixing
weight plotting compares layer utilization among
tasks by visually aligning the respective learned
weight distributions transformed via a softmax
function. Layer center-of-gravity is used as a sum-
mary statistic for a task’s layer utilization. While
the distribution of mixing weights along the layers
allows us to estimate the order in which informa-
tion is processed during encoding, it doesn’t allow
to directly assess the similarity between the layer
utilization of the probing tasks.

Tenney et al. (2019a) have demonstrated that
the order in which linguistic information is stored
in BERT mirrors the traditional NLP pipeline. A
prominent property of the NLP pipelines is their
use of low-level features to predict downstream
phenomena. In the context of layer probing, prob-
ing tasks can be seen as end-to-end feature extrac-
tors. Following this intuition, we define two groups
of probing tasks: target tasks – the main tasks un-
der investigation, and anchor tasks – a set of related
tasks that serve as a basis for qualitative compari-
son between the targets. The softmax transforma-
tion of the scalar mixing weights allows to treat
them as probability distributions: the higher the
mixing weight of a layer, the more likely the probe
is to utilize information from this layer during pre-
diction. We use Kullback-Leibler divergence to
compare target tasks (e.g. role labeling in different
formalisms) in terms of their similarity to lower-
level anchor tasks (e.g. dependency relation and
lemma). Note that the notion of anchor task is con-
textual: the same task can serve as a target and as
an anchor, depending on the focus of the study.

jections in the background, but do not investigate the differ-
ences between the learned projections.

tok sent pred arg

CoNLL+SL 312.2K 11.3K 13.3K 23.9K
SR3de 62.6K 2.8K 2.9K 5.5K

Table 1: Statistics for CoNLL+SemLink (English) and
SR3de (German), only core roles.

4 Setup

4.1 Source data

For German we use the SR3de corpus (Mújdricza-
Maydt et al., 2016) that contains parallel PropBank,
FrameNet and VerbNet annotations for verbal pred-
icates. For English, SemLink (Bonial et al., 2013)
provides mappings from the original PropBank cor-
pus annotations to the corresponding FrameNet
and VerbNet senses and semantic roles. We use
these mappings to enrich the CoNLL-2009 (Hajič
et al., 2009) dependency role labeling data – also
based on the original PropBank – with roles in all
three formalisms via a semi-automatic token align-
ment procedure. The resulting corpus is substan-
tially smaller than the original, but still an order of
magnitude larger than SR3de (Table 1). Both cor-
pora are richly annotated with linguistic phenom-
ena on word level, including part-of-speech, lemma
and syntactic dependencies. The XNLI probe is
sourced from the corresponding development split
of the XNLI (Conneau et al., 2018b) dataset. The
SPR probing tasks are constructed from the original
data by Reisinger et al. (2015).

type en de

*token.ix unary 208.9K 46.9K
ttype [v] unary 177.2K 34.0K
lex.unit [v] unary 187.6K 35.7K
pos unary 312.2K 62.6K
deprel binary 300.9K 59.8K
role binary 23.9K 5.5K
*spr binary 9.7K -
xnli unary 2.5K 2.5K

Table 2: Probing task statistics. Tasks marked with [v]
use a most frequent label vocabulary. Here and further,
tasks marked with * are regression tasks.

4.2 Probing tasks

Our probing kit spans a wide range of probing tasks,
from primitive surface-level tasks mostly utilized
as anchors later to high-level semantic tasks that
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language en de

PropBank 5 10
VerbNet 23 29
FrameNet 189 300

Table 3: # of role probe labels by formalism.

task input label

token.ix I [saw] a cat. → 2
ttype I [saw] a cat. → saw
lex.unit I [saw] a cat. → see.V
pos I [saw] a cat. → VBD
deprel [I]tgt [saw]src a cat. → SBJ
role.vn [I]tgt [saw]src a cat. → Experiencer
spr.vltn [I]tgt [saw]src a cat. → 2

Table 4: Word-level probing task examples for English.
vltn corresponds to the volition SPR property.

aim to provide a representational upper bound to
predicate semantics. We follow the training, test
and development splits from the original SR3de,
CoNLL-2009 and SPR data. The XNLI task is
sourced from the development set and only used for
scalar mix analysis. To reduce the number of labels
in some of the probing tasks, we collect frequency
statistics over the corresponding training sets and
only consider up to 250 most frequent labels. Be-
low we define the tasks in order of their complexity,
Table 2 provides the probing task statistics, Table 3
compares the categorical role labeling formalisms
in terms of granularity, and Table 4 provides exam-
ples. We evaluate the classification performance
using Accuracy, while regression tasks are scored
via R2.

Token type (ttype) predicts the type of a word.
This requires contextual processing since a word
might consist of several wordpieces;
Token position (token.ix) predicts the linear
position of a word, cast as a regression task over
the first 20 words in the sentence. Again, the task
is non-trivial since it requires the words to be as-
sembled from the wordpieces.
Part-of-speech (pos) predicts the language-
specific part-of-speech tag for the given token.
Lexical unit (lex.unit) predicts the lemma and
POS of the given word – a common input repre-
sentation for the entries in lexical resources. We
extract coarse POS tags by using the first character
of the language-specific POS tag.

Dependency relation (deprel) predicts the de-
pendency relation between the parent src and de-
pendent tgt tokens;
Semantic role (role.[frm]) predicts the se-
mantic role given a predicate src and an argu-
ment tgt token in one of the three role label-
ing formalisms: PropBank pb, VerbNet vn and
FrameNet fn. Note that we only probe for the role
label, and the model has no access to the verb sense
information from the data.
Semantic proto-role (spr.[prop]) is a set of
eleven regression tasks predicting the values of
the proto-role properties as defined in (Reisinger
et al., 2015), given a predicate src and an argu-
ment tgt.
XNLI is a sentence-level NLI task directly sourced
from the corresponding dataset. Given two sen-
tences, the goal is to determine whether an en-
tailment or a contradiction relationship holds be-
tween them. We use NLI to investigate the layer
utilization of mBERT for high-level semantic tasks.
We extract the sentence pair representation via the
[CLS] token and treat it as a unary probing task.

5 Results

Our probing framework is implemented using
AllenNLP.2 We train the probes for 20 epochs
using the Adam optimizer with default parameters
and a batch size of 32. Due to the frozen encoder
and flat model architecture, the total runtime of
the main experiments is under 8 hours on a sin-
gle Tesla V100 GPU. In addition to pre-trained
mBERT we report baseline performance using a
frozen untrained mBERT model obtained by ran-
domizing the encoder weights post-initialization as
in Jawahar et al. (2019).

5.1 General Trends

While absolute performance is secondary to our
analysis, we report the probing task scores on re-
spective development sets in Table 5. We observe
that grammatical tasks score high, while core role
labeling lags behind - in line with the findings of
Tenney et al. (2019a)3 We observe lower scores
for German role labeling which we attribute to the
lack of training data. Surprisingly, as we show
below, this doesn’t prevent the edge probe from

2Code available: https://github.com/UKPLab/emnlp2020-
formalism-probing

3Our results are not directly comparable due to the differ-
ences in datasets and formalisms.

https://github.com/UKPLab/emnlp2020-formalism-probing
https://github.com/UKPLab/emnlp2020-formalism-probing
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task en de

*token.ix 0.95 (0.93) 0.92 (0.87)
ttype 1.00 (0.92) 1.00 (0.48)
lex.unit 1.00 (0.75) 1.00 (0.33)
pos 0.97 (0.40) 0.97 (0.26)
deprel 0.95 (0.42) 0.95 (0.41)
role.fn 0.92 (0.18) 0.59 (0.10)
role.pb 0.96 (0.67) 0.71 (0.49)
role.vn 0.94 (0.47) 0.73 (0.30)

Table 5: Best dev score for word-level tasks over 20
epochs, Acc for classification, R2 for regression; Base-
line in parentheses.

learning to locate relevant role-semantic informa-
tion in mBERT’s layers.

The untrained mBERT baseline expectedly un-
derperforms; however, we note good baseline re-
sults on surface-level tasks for English, which we
attribute to memorizing token identity and posi-
tion: although the weights are set randomly, the
frozen encoder still associates each wordpiece in-
put with a fixed random vector. We have confirmed
this assumption by scalar mix analysis of the un-
trained mBERT baseline: in our experiments the
baseline probes for both English and German at-
tended almost exclusively to the first few layers of
the encoder, independent of the task. For brevity,
here and further we do not examine baseline mixing
weights and only report the scores.

Our main probing results mirror the findings of
Tenney et al. (2019a) about the sequential process-
ing order in BERT. We observe that the layer utiliza-
tion among tasks (Fig. 2) generally aligns for En-
glish and German4, although we note that in terms
of center-of-gravity mBERT tends to utilize deeper
layers for German probes. Basic word-level tasks
are indeed processed early by the model, and XNLI
probes focus on deeper levels, suggesting that the
representation of higher-level semantic phenom-
ena follows the encoding of syntax and predicate
semantics.

5.2 The Effect of Formalism
Using separate scalar mixes for source and target
tokens allows us to explore the cross-formalism en-
coding of role semantics by mBERT in detail. For
both English and German role labeling, the probe’s
layer utilization drastically differs for predicate and

4Echoing the recent findings on mBERT’s multilingual
capacity (Pires et al., 2019; Kondratyuk and Straka, 2019).

Layer 

*token.ix [3.13]
ttype [4.8]

lex.unit [4.99]
pos [5.29]

deprel src [5.36]
deprel tgt [5.57]

role.pb src [5.47]
role.vn src [4.28]
role.fn src [4.36]
role.pb tgt [6.11]
role.vn tgt [6.05]
role.fn tgt [6.16]

xnli [6.28]

en

Layer 

[4.61]
[5.2]

[5.09]
[5.75]
[6.01]
[5.99]
[5.18]
[5.24]
[5.13]
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[6.15]

de

Figure 2: Layer probing results
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Figure 3: Anchor task analysis of SRL formalisms.

argument tokens. While the argument representa-
tion role*tgt mostly focuses on the same layers
as the dependency parsing probe, the layer utiliza-
tion of the predicates role*src is affected by
the chosen formalism. In English, PropBank pred-
icate token mixing weights emphasize the same
layers as dependency parsing – in line with the
previously published results. However, the probes
for VerbNet and FrameNet predicates (role.vn
src and role.fn src) utilize the layers asso-
ciated with ttype and lex.unit that contain
lexical information. Coupled with the fact that both
VerbNet and FrameNet assign semantic roles based
on lexical-semantic predicate groupings (frames in
FrameNet and verb classes in VerbNet), this sug-
gests that the lower layers of mBERT implicitly en-
code predicate sense information; moreover, sense
encoding for VerbNet utilizes deeper layers of the
model associated with syntax, in line with Verb-
Net’s predicate classification strategy. This finding
confirms that the formalism can indeed have lin-
guistically meaningful effects on probing results.

5.3 Anchor Tasks in the Pipeline
We now use the scalar mixes of the role label-
ing probes as target tasks, and lower-level probes
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as anchor tasks to qualitatively explore the differ-
ences between how our role probes learn to rep-
resent predicates and semantic arguments5 (Fig.
3). The results reveal a distinctive pattern that
confirms our previous observations: while Verb-
Net and FrameNet predicate layer utilization src
is similar to the scalar mixes learned for ttype
and lex.unit, the learned argument representa-
tions tgt and the PropBank predicate attend to
the layers associated with dependency relation and
POS probes. Aside from the PropBank predicate
encoding which we address below, the pattern re-
produces for English and German. This aligns with
the traditional separation of the semantic role la-
beling task into predicate disambiguation followed
by semantic argument identification and labeling,
along with the feature sets employed for these tasks
(Björkelund et al., 2009). Note that the observation
about the pipeline-like task processing within the
BERT encoders thereby holds, albeit on a sub-task
level.

5.4 Formalism Implementations
Both layer and anchor task analysis reveal a promi-
nent discrepancy between English and German role
probing results: while the PropBank predicate layer
utilization for English mostly relies on syntactic
information, German PropBank predicates behave
similarly to VerbNet and FrameNet. The lack of
systematic cross-lingual differences between layer
utilization for other probing tasks6 allows us to rule
out the effect of purely typological features such as
word order and case marking as a likely cause.

The difference in the number of role labels for
English and German PropBank, however, points
at possible qualitative differences in the label-
ing schemes (Table 3). The data for English
stems from the token-level alignment in SemLink
that maps the original PropBank roles to Verb-
Net and FrameNet. Role annotations for German
have a different lineage: they originate from the
FrameNet-annotated SALSA corpus (Burchardt
et al., 2006) semi-automatically converted to Prop-
Bank style for the CoNLL-2009 shared task (Hajič
et al., 2009), and enriched with VerbNet labels in
SR3de (Mújdricza-Maydt et al., 2016). As a result,
while English PropBank labels are assigned in a
predicate-independent manner, German PropBank,
following the same numbered labeling scheme,

5Darker color corresponds to higher similarity.
6Apart from the general tendency to use deeper layers in

German reported in 5.1

property R2

(A) *instigation 0.68 (0.21)
(A) *volition 0.75 (0.11)
(A) *awareness 0.78 (0.09)
(A) *sentient 0.83 (0.07)
(A) *change.of.location 0.49 (0.04)
(A) *exists.as.physical 0.63 (0.03)

(P) *created 0.22 (0.01)
(P) *destroyed 0.11 (0.00)
(P) *changes.possession 0.26 (-0.01)
(P) *change.of.state 0.37 (0.01)
(P) *stationary 0.39 (0.05)

Table 6: Best dev R2 for proto-role probing tasks over
20 epochs; A - Proto-Agent, P - Proto-Patient; Baseline
in parentheses.

keeps this scheme consistent within the frame. We
assume that this incentivizes the probe to learn se-
mantic verb groupings and reflects in our probing
results. The ability of the probe to detect subtle dif-
ferences between formalism implementations con-
stitutes a new use case for probing, and a promising
direction for future studies.

5.5 Encoding of Proto-Roles

We now turn to the probing results for decomposi-
tional semantic proto-role labeling tasks. Unlike
(Tenney et al., 2019b) who used a multi-label classi-
fication probe, we treat SPR properties as separate
regression tasks. The results in Table 6 show that
the performance varies by property, with some of
the properties attaining reasonably high R2 scores
despite the simplicity of the probe architecture and
the small dataset size. We observe that properties
associated with Proto-Agent tend to perform better.
The untrained mBERT baseline performs poorly
which we attribute to the lack of data and the fine-
grained semantic nature of the task.

Our fine-grained, property-level task design al-
lows for more detailed insights into the layer uti-
lization by the SPR probes (Fig. 4). The results
indicate that while the layer utilization on the pred-
icate side (src) shows no clear preference for par-
ticular layers (similar to the results obtained by
Tenney et al. (2019a)), some of the proto-role fea-
tures follow the pattern seen in the categorical role
labeling and dependency parsing tasks for the ar-
gument tokens tgt. With few exceptions, we ob-
serve that the properties displaying that behavior
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src

Layer 

tgt

Figure 4: Layer utilization for SPR properties.

are Proto-Agent properties; moreover, a close ex-
amination of the results on syntactic preference by
Reisinger et al. (2015, p. 483) reveals that these
properties are also the ones with strong preference
for the subject position, including the outlier case
of stationary which in their data behaves like
a Proto-Agent property. The correspondence is not
strict, and we leave an in-depth investigation of the
reasons behind these discrepancies for follow-up
work.

6 Conclusion

We have demonstrated that the choice of linguis-
tic formalism can have substantial, linguistically
meaningful effects on role-semantic probing re-
sults. We have shown how probing classifiers can
be used to detect discrepancies between formalism
implementations, and presented evidence of seman-
tic proto-role encoding in the pre-trained mBERT
model. Our refined implementation of the edge
probing framework coupled with the anchor task
methodology enabled new insights into the pro-
cessing of predicate-semantic information within
mBERT. Our findings suggest that linguistic for-
malism is an important factor to be accounted for
in probing studies.

This prompts several recommendations for the
follow-up probing studies. First, the formalism
and implementation used to prepare the linguis-
tic material underlying a probing study should be
always explicitly specified. Second, if possible,
results on multiple formalisations of the same task
should be reported and validated for several lan-
guages. Finally, assembling corpora with parallel
cross-formalism annotations would facilitate fur-
ther research on the effect of formalism in probing.

While our work illustrates the impact of formal-
ism using a single task and a single probing frame-
work, the influence of linguistic formalism per se

is likely to be present for any probing setup that
builds upon linguistic material. An investigation
of how, whether, and why formalisms and their
implementations affect probing results for tasks be-
yond role labeling and for frameworks beyond edge
probing constitutes an exciting avenue for future
research.
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