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Abstract

Medical imaging is frequently used in clinical
practice and trials for diagnosis and treatment.
Writing imaging reports is time-consuming
and can be error-prone for inexperienced radi-
ologists. Therefore, automatically generating
radiology reports is highly desired to lighten
the workload of radiologists and accordingly
promote clinical automation, which is an es-
sential task to apply artificial intelligence to
the medical domain. In this paper, we propose
to generate radiology reports with memory-
driven Transformer, where a relational mem-
ory is designed to record key information of
the generation process and a memory-driven
conditional layer normalization is applied to
incorporating the memory into the decoder of
Transformer. Experimental results on two pre-
vailing radiology report datasets, IU X-Ray
and MIMIC-CXR, show that our proposed ap-
proach outperforms previous models with re-
spect to both language generation metrics and
clinical evaluations. Particularly, this is the
first work reporting the generation results on
MIMIC-CXR to the best of our knowledge.
Further analyses also demonstrate that our ap-
proach is able to generate long reports with
necessary medical terms as well as meaningful
image-text attention mappings.1

1 Introduction

Radiology report generation, which aims to au-
tomatically generate a free-text description for a
clinical radiograph (e.g., chest X-ray), has emerged
as a prominent attractive research direction in both
artificial intelligence and clinical medicine. It can
greatly expedite the automation of workflows and
improve the quality and standardization of health
care. Recently, there are many methods proposed

†Corresponding author.
1Our code and the best performing models are released at

https://github.com/cuhksz-nlp/R2Gen.

Findings
The lungs are clear bilaterally. Specifically,
no evidence of focal consolidation, or ple-
ural effusion. Minimal right basilar subse-
gmental atelectasis noted. Cardio medias-
tinal silhouette is unremarkable. Tortuosity
of the thoracic aorta noted.
Impression
No acute cardiopulmonary abnormality.

Figure 1: An example chest X-ray image and its report
including findings and impression.

in this area (Jing et al., 2018; Li et al., 2018; John-
son et al., 2019; Liu et al., 2019; Jing et al., 2019).

Practically, a significant challenge of radiology
report generation is that radiology reports are long
narratives consisting of multiple sentences. As il-
lustrated by Figure 1, a radiology report generally
consists of a section of findings which describes
medical observations, including both normal and
abnormal features, as well as an impression or con-
cluding remark summarizing the most prominent
observations. Therefore, applying conventional im-
age captioning approaches (Vinyals et al., 2015;
Anderson et al., 2018) may be insufficient for ra-
diology report generation, as such approaches are
designed to briefly describe visual scenes with short
sentences. The ability to provide accurate clinical
descriptions for a radiograph is of the highest pri-
ority, which places a higher demand on the genera-
tion process. Nevertheless, despite the difficulties
posed by these evident length and accuracy require-
ments, radiology reports do have their own distinc-
tive characteristics. An important feature to note
is their highly patternized nature, as illustrated by
the sample report described above (Figure 1). On
the basis of this patternization, many approaches
have been proposed to address the challenges of
radiology report generation. For example, Liu et al.
(2019) found that a simple retrieval-based method
could achieve a comparative performance for this
task. Li et al. (2018) combined retrieval-based and
generation-based methods with manually extracted

https://github.com/cuhksz-nlp/R2Gen
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templates. Although promising results may be ob-
tained by the retrieval-based approaches, they are
still limited in the preparation of large databases,
or the explicit construction of template lists to de-
termine the patterns embedded in various reports.

In this paper, we propose to generate radiology
reports via memory-driven Transformer. In detail,
a relational memory (RM) is proposed to record
the information from previous generation processes
and a novel memory-driven conditional layer nor-
malization (MCLN) is designed to incorporate the
relational memory into Transformer (Vaswani et al.,
2017). As a result, similar patterns in different med-
ical reports can be implicitly modeled and memo-
rized during the generation process, which thereby
can facilitate the decoding of Transformer and is
capable of generating long reports with informative
content. Experimental results on two benchmark
datasets confirm the validity and effectiveness of
our approach, where Transformer with RM and
MCLN achieves the state-of-the-art performance
on all datasets. To summarize, the contributions of
this paper are four-fold:
• We propose to generate radiology reports via a

novel memory-driven Transformer model.
• We propose a relational memory to record the

previous generation process and the MCLN to
incorporate relational memory into layers in the
decoder of Transformer.
• Extensive experiments are performed and the re-

sults show that our proposed models outperform
the baselines and existing models.
• We conduct analyses to investigate the effect

of our model with respect to different memory
sizes and show that our model is able to generate
long reports with necessary medical terms and
meaningful image-text attention mappings.

2 The Proposed Method

Generating radiology reports is essentially an
image-to-text generation task, for which there exist
several solutions (Vinyals et al., 2015; Xu et al.,
2015; Anderson et al., 2018; Cornia et al., 2019).

We follow the standard sequence-to-sequence
paradigm for this task. In doing so, we treat the
input from a radiology image as the source se-
quence X = {x1,x2, ...,xS},xs ∈ Rd, where
xs are patch features extracted from visual ex-
tractors and d the size of the feature vector. The
corresponding report is the target sequence Y =
{y1, y2, ..., yT }, yt ∈ V, where yt are the generated

tokens, T the length of generated tokens and V the
vocabulary of all possible tokens. An overview of
our proposed model is shown in Figure 2, where
the details are illustrated in following subsections.

2.1 The Model Structure

Our model can be partitioned into three major com-
ponents, i.e., the visual extractor, the encoder and
the decoder, where the proposed memory and the
integration of the memory into Transformer are
mainly performed in the decoder. The overall de-
scription of the three components and the training
objective of the task is detailed below.

Visual Extractor Given a radiology image Img,
its visual features X are extracted by pre-trained
convolutional neural networks (CNN), e.g., VGG
(Simonyan and Zisserman, 2015) or ResNet (He
et al., 2016), and the encoded results are used as the
source sequence for all subsequent modules. The
process is formulated as:

{x1,x2, ...,xS} = fv(Img) (1)

where fv(·) represents the visual extractor.

Encoder In our model, we use the standard en-
coder from Transformer, where the outputs are the
hidden states hi encoded from the input features
xi extracted from the visual extractor:

{h1,h2, ...,hS} = fe(x1,x2, ...,xS) (2)

where fe(·) refers to the encoder.

Decoder The backbone decoder in our model is
the one from Transformer, where we introduce an
extra memory module to it by improving the orig-
inal layer normalization with MCLN for each de-
coding layer as shown in Figure 2. Therefore the
decoding process can be formalized as

yt = fd(h1, ...,hS ,MCLN(RM(y1, ..., yt−1)))
(3)

where fd(·) refers to the decoder and the details
of the memory (RM) and MCLN are presented in
following subsections.

Objective Given the aforementioned structure, the
entire generation process can be formalized as a
recursive application of the chain rule

p(Y |Img) =

T∏
t=1

p(yt|y1, ..., yt−1, Img) (4)

where Y = {y1, y2, ..., yT } is the target text se-
quence. The model is then trained to maximize
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Figure 2: The overall architecture of our proposed model, where the visual extractor, encoder and decoder are
shown in gray dash boxes and the details of the visual extractor and encoder are omitted. The relational memory
and memory conditional layer-normalization are illustrated in grey solid boxes with blue dash lines.

P (Y |Img) through the negative conditional log-
likelihood of Y given the Img:

θ∗ = arg max
θ

T∑
t=1

log p(yt|y1, ..., yt−1, Img; θ)

(5)
where θ is the parameters of the model.

2.2 Relational Memory

For any relevant Img, they may share similar pat-
terns in their reports and they can be used as good
references for each other to help the generation pro-
cess. As shown in Figure 1, patterns such as “The
lungs are clear bilaterally” and “no evidence of
focal consolidation, or pleural effusion” always ap-
pear in the reports of similar images and are shown
simultaneously. To exploit such characteristics, we
propose to use an extra component, i.e., relational
memory, to enhance Transformer to learn from the
patterns and facilitate computing the interactions
among patterns and the generation process.

In doing so, the relational memory uses a matrix

to transfer its states over generation steps, where
the states record important pattern information with
each row (namely, memory slot) representing some
pattern information.2 During the generation, the
matrix is updated step-by-step with incorporating
the output from previous steps. Then, at time step
t, the matrix from the previous step, Mt−1, is func-
tionalized as the query and its concatenations with
the previous output serve as the key and value to
feed the multi-head attention module. Given H
heads used in Transformer, there are H sets of
queries, keys and values via three linear transfor-
mations, respectively. For each head, we obtain
the query, key and value in the relational memory
through Q = Mt−1 ·Wq, K = [Mt−1;yt−1]·Wk

and V = [Mt−1;yt−1] ·Wv, respectively, where
yt−1 is the embedding of the last output (at step
t − 1); [Mt−1;yt−1] is the row-wise concatena-
tion of Mt−1 and yt−1. Wq, Wk and Wv are

2Note that the rows (memory slots) and patterns do not
follow one-to-one mapping, where the entire matrix serves as
a whole unit to deliver the pattern information.
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Figure 3: The illustration of the gate mechanism.

the trainable weights of linear transformation of
the query, key and value, respectively. Multi-head
attention is used to model Q, K and V so as to
depict relations of different patterns. As a result,

Z = softmax(QK>/
√
dk) ·V (6)

where dk is the dimension of K, and Z the output of
the multi-head attention module. Consider that the
relational memory is performed in a recurrent man-
ner along with the decoding process, it potentially
suffers from gradient vanishing and exploding. We
therefore introduce residual connections and a gate
mechanism. The former is formulated as

M̃t = fmlp(Z + Mt−1) + Z + Mt−1 (7)

where fmlp(·) refers to the multi-layer perceptron
(MLP). The detailed structure of the gate mecha-
nism in the relational memory is shown in Figure 3,
where the forget and input gates are applied to bal-
ance the inputs from Mt−1 and yt−1, respectively.
To ensure that yt−1 can be used for computation
with Mt−1, it is extended to a matrix Yt−1 by du-
plicating it to multiple rows. Therefore, the forget
and input gate are formalized as

Gf
t = Yt−1W

f + tanh(Mt−1) ·Uf (8)

Gi
t = Yt−1W

i + tanh(Mt−1) ·Ui (9)

where Wf and Wi are trainable weights for Yt−1
in each gate; similarly, Uf and Ui are the trainable
weights for Mt−1 in each gate. The final output of
the gate mechanism is formalized as

Mt = σ(Gf
t )�Mt−1 + σ(Gi

t)� tanh(M̃t)
(10)

where � refers to the Hadamard product and σ the
sigmoid function and Mt is the output of the entire
relational memory module at step t.

2.3 Memory-driven Conditional Layer
Normalization

Although memory shows its effectiveness in many
NLP tasks (Sukhbaatar et al., 2015; Lample et al.,

DATASET
IU X-RAY MIMIC-CXR

TRAIN VAL TEST TRAIN VAL TEST

IMAGE # 5,226 748 1,496 368,960 2,991 5,159
REPORT # 2,770 395 790 222,758 1,808 3,269
PATIENT # 2,770 395 790 64,586 500 293
AVG. LEN. 37.56 36.78 33.62 53.00 53.05 66.40

Table 1: The statistics of the two benchmark datasets
w.r.t. their training, validation and test sets, including
the numbers of images, reports and patients, and the
average word-based length (AVG. LEN.) of reports.

2019), it is by default applied to encoding with
rather isolated designs. However, given that text
generation is a dynamic process and largely af-
fected by the output at each decoding step, memory
is expected to be closely integrated to the decoder.

Therefore, we propose a novel MCLN and use
it to incorporate the relational memory to enhance
the decoding of Transformer. Recall that in the con-
ventional Transformer, to improve generalization,
γ and β are two crucial parameters for scaling and
shifting the learned representations,3 respectively.
Thus we propose to incorporate the relational mem-
ory via MCLN by feeding its output Mt to γ and
β. Consequently, this design takes the benefit from
the memory while preventing it from influencing
too many parameters of Transformer so that some
core information for generation is not affected.

As shown in Figure 2, in each Transformer de-
coding layer, we use three MCLNs, where the out-
put of the first MCLN is functionalized as the query
to be fed into the following multi-head attention
module together with the hidden states from the
encoder as the key and value. To feed each MCLN,
at step t, the output of the relational memory Mt is
expanded into a vector mt by simply concatenating
all rows from Mt. Then, an MLP is used to predict
a change ∆γt on γt from mt, and update it via

∆γt = fmlp(mt) (11)

γ̂t = γ + ∆γt (12)

Similarly, ∆βt and β̂t are performed by

∆βt = fmlp(mt) (13)

β̂t = β + ∆βt (14)

Afterwards, the predicted β̂t and γ̂t are applied to
the mean and variance results of the multi-head

3In detail, γ is used to amplify the values in the learned
representation and β provides a bias adjustment to them.
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L AVG. ∆ P R F1

IU
X-RAY

BASE 0.396 0.254 0.179 0.135 0.164 0.342 - - - -
+RM 0.444 0.283 0.196 0.141 0.179 0.364 8.9% - - -
+RM+MCLN 0.470 0.304 0.219 0.165 0.187 0.371 17.6% - - -

MIMIC
-CXR

BASE 0.314 0.192 0.127 0.090 0.125 0.265 - 0.331 0.224 0.228
+RM 0.330 0.200 0.133 0.095 0.128 0.265 3.7% 0.325 0.243 0.249
+RM+MCLN 0.353 0.218 0.145 0.103 0.142 0.277 12.1% 0.333 0.273 0.276

Table 2: The performance of all baselines and our full model on the test sets of IU X-RAY and MIMIC-CXR
datasets with respect to NLG and CE metrics. BL-n denotes BLEU score using up to n-grams; MTR and RG-L
denote METEOR and ROUGE-L, respectively. The average improvement over all NLG metrics compared to BASE
is also presented in the “AVG. ∆” column. The performance of all models is averaged from five runs.

self-attention from the previous generated outputs:

fmcln(r) = γ̂t �
r− µ
υ

+ β̂t (15)

where r refers to the output from the previous mod-
ule; µ and υ are the mean and standard deviation of
r, respectively. The result fmcln(r) from MCLN
is then fed to the next module (for the 1st and 2nd
MCLN) or used as the final output for generation
(for the 3rd MCLN).

3 Experiment Settings

3.1 Datasets
We conduct our experiments on two datasets, which
are described as follows:
• IU X-RAY (Demner-Fushman et al., 2016)4: a

public radiography dataset collected by Indiana
University with 7,470 chest X-ray images and
3,955 reports.
• MIMIC-CXR (Johnson et al., 2019)5: the

largest radiology dataset to date that consists of
473,057 chest X-ray images and 206,563 reports
from 63,478 patients.

For both datasets, we follow Li et al. (2018) to ex-
clude the samples without reports. Then we apply
their conventional splits. Specifically, IU X-RAY is
partitioned into train/validation/test set by 7:1:2 of
the entire dataset, and MIMIC-CXR’s official split
is adopted. The statistics of the datasets are shown
in Table 1, with the numbers of images, reports,
patients and the average length of reports.

3.2 Baseline and Evaluation Metrics
To compare with our proposed model, the follow-
ing ones are used as the main baselines:

4https://openi.nlm.nih.gov/
5https://physionet.org/content/

mimic-cxr/2.0.0/

• BASE: this is the vanilla Transformer, with three
layers, 8 heads and 512 hidden units without
other extensions and modifications.
• BASE+RM: this is a simple alternative of our

proposed model where the relational memory is
directly concatenated to the output of the Trans-
former ahead of the softmax at each time step.
This baseline aims to demonstrate the effect of
using memory as an extra component instead of
integration within the Transformer.

In addition, we also compare our model with those
in previous studies, including conventional image
captioning models, e.g., ST (Vinyals et al., 2015),
ATT2IN (Rennie et al., 2017), ADAATT (Lu et al.,
2017), TOPDOWN (Anderson et al., 2018), and
the ones proposed for the medical domain, e.g.,
COATT (Jing et al., 2018), HRGR (Li et al., 2018)
and CMAS-RL (Jing et al., 2019).

The performance of the aforementioned models
is evaluated by conventional natural language gen-
eration (NLG) metrics and clinical efficacy (CE)
metrics6. The NLG metrics7 include BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2011) and ROUGE-L (Lin, 2004). For clin-
ical efficacy metrics, we use the CheXpert (Irvin
et al., 2019)8 to label the generated reports and
compare the results with ground truths in 14 dif-
ferent categories related to thoracic diseases and
support devices. Precision, recall and F1 are used
to evaluate model performance for these metrics.

6Note that CE metrics only apply to MIMIC-CXR be-
cause the labeling schema of CheXpert is designed for
MIMIC-CXR, which is different from that of IU X-RAY.

7https://github.com/tylin/coco-caption
8https://github.com/MIT-LCP/mimic-cxr/

tree/master/txt/chexpert

https://openi.nlm.nih.gov/
https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
https://github.com/tylin/coco-caption
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt/chexpert
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt/chexpert
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU
X-RAY

ST\ 0.216 0.124 0.087 0.066 - 0.306 - - -
ATT2IN\ 0.224 0.129 0.089 0.068 - 0.308 - - -
ADAATT\ 0.220 0.127 0.089 0.068 - 0.308 - - -

COATT\ 0.455 0.288 0.205 0.154 - 0.369 - - -
HRGR\ 0.438 0.298 0.208 0.151 - 0.322 - - -
CMAS-RL\ 0.464 0.301 0.210 0.154 - 0.362 - - -

OURS 0.470 0.304 0.219 0.165 0.187 0.371 - - -

MIMIC
-CXR

ST] 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
ATT2IN] 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
ADAATT] 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
TOPDOWN] 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238

OURS 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276

Table 3: Comparisons of our full model with previous studies on the test sets of IU X-RAY and MIMIC-CXR
with respect to NLG and CE metrics. \ refers to that the result is directed cited from the original paper and ]
represents our replicated results by their codes.

3.3 Implementation Details

We adopt the ResNet101 (He et al., 2016) pre-
trained on Imagenet (Deng et al., 2009) as the vi-
sual extractor to extract patch features with the
dimension of each feature set to 2,048. Note that
for IU X-RAY, we use two images of a patient as
input to ensure consistency with the experiment
settings of previous work. The Transformer in our
proposed model and all baselines are randomly ini-
tialized. For relational memory, its dimension and
the number of heads in multi-head attention are
set to 512 and 8, respectively, and the number of
memory slots is set to 3 by default. For MCLN,
we use two MLPs to obtain ∆γ and ∆β where
they do not share parameters. The model is trained
under cross entropy loss with ADAM optimizer
(Kingma and Ba, 2015). We set the learning rate
to 5e-5 and 1e-4 for the visual extractor and other
parameters, respectively. We decay such rate by a
factor of 0.8 per epoch for each dataset and set the
beam size to 3 to balance the generation effective-
ness and efficiency. Note that the aforementioned
hyper-parameters are obtained by evaluating the
models on the validation sets of the two datasets.

4 Results and Analyses

4.1 Effect of Relational Memory

To illustrate the effectiveness of our proposed
method, we experiment with the aforementioned
baselines on the two benchmark datasets. The

results are reported in Table 2, with BASE+RM+
MCLN representing our full model (same below).

There are several observations. First, on NLG
metrics, both BASE+RM and BASE+RM+MCLN

outperform the vanilla Transformer (BASE) on both
datasets, which confirms the validity of incorporat-
ing memory into the decoding process in Trans-
former because that highly-patternized text in ra-
diology reports are reasonably modeled to some
extent. Second, our full model achieves the best
performance over all baselines on different met-
rics, and it particularly outperforms BASE+RM

with significant improvement, which clearly in-
dicates the usefulness of MCLN in incorporat-
ing memory rather than other ways of integra-
tion. Third, on NLG metrics, when comparing
between the datasets, the performance gains from
two memory-driven models (i.e., BASE+RM and
BASE+RM+MCLN) over BASE on IU X-RAY are
larger than that of MIMIC-CXR. The reason be-
hind might be that the IU X-RAY is relatively small
and patterns among different reports in this dataset
are more consistent so that our model helps more
with the proposed memory. Fourthly, on the CE
metrics on MIMIC-CXR, our full model shows
the same trend as that for NLG metrics, where
it outperforms all its baselines in terms of preci-
sion, recall and F1. This observation is impor-
tant because higher NLG scores do not always re-
sult in higher clinical scores (e.g., the precision of
BASE+RM on CE is lower than that of BASE), so
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|S| PARA. BL-1 BL-2 MTR RG-L

1 76.6M 0.350 0.217 0.141 0.278
2 81.4M 0.355 0.215 0.141 0.278
3 86.1M 0.360 0.223 0.144 0.279
4 90.8M 0.354 0.217 0.142 0.280

Table 4: NLG scores of our full model on the MIMIC-
CXR test set when different memory slots are used.
PARA. denotes the number of parameters.

that the performance from CE further confirms the
effectiveness of our method, whereas compared to
BASE+RM, MCLN is able to leverage memory in
a rather fine-grained way and thus better produce
reasonable descriptions for clinical abnormalities.

4.2 Comparison with Previous Studies

We compare our full model (denoted as OURS)
with existing models on the same datasets, with
all results reported in Table 3 on both NLG and
CE metrics. There are several observations drawn
from different aspects. First, Transformer confirms
its superiority to sequence-to-sequence structures
in this task, which is illustrated by the compar-
ison between our models (all baselines and our
full model) and ST. Our full model also outper-
forms conventional image captioning models, e.g.,
ATT2IN, ADAATT and TOPDOWN, which are de-
signed to generate a short piece of text for an image.
This observation confirms that designing a specific
model for long report generation is necessary for
this task. Second, memory shows its effectiveness
in this task when compared with those complicated
models, e.g., HRGR uses manually extracted tem-
plates. Particularly, although on the two datasets,
reinforcement learning (CMAS-RL) is proved to be
the best solution with a careful design of adaptive
rewards, our model achieves the same goal with
a simpler method. Third, It is noticed that there
are studies, e.g., HRGR, requires to utilize extra
information for this task and our full model outper-
forms them without such requirements. This ob-
servation indicates that an appropriate end-to-end
design (such as RM and MCLN) of using mem-
ory in Transformer can alleviate the need for extra
resources to enhance this task.

4.3 Analysis

We analyze several aspects of our model regarding
its hyper-parameters and generation results.
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Figure 4: The length distributions of the generated re-
ports on the MIMIC-CXR test set from BASE, BASE+
RM and BASE+RM+MCLN, as well as the ground-truth.

Memory Size To show the impacts of the mem-
ory size, we train RM with different numbers of
memory slots, i.e., |S| ∈ {1, 2, 3, 4} and the results
on MIMIC-CXR are shown in Table 4. In general,
since memory size controls how much information
is preserved in the past generation steps, it is con-
firmed in the observation that enlarging memory
size by the number of slots results in better overall
performance, with |S| = 3 achieving the best re-
sults. Still, we notice that the overall performance
drops when |S| = 4, which indicates that too large
memory may introduce redundant and invalid in-
formation so as to negatively affect the generation
process. Although enlarging memory size results in
increasing parameter numbers, it is demonstrated
that there are not too many parameters (compar-
ing to the total number of parameters) introduced
whenever adding one slot in the memory. This
observation suggests that the proposed model is
effective and efficient in learning with memory for
the radiology report generation task.

Report Length In addition to NLG and CE met-
rics, another important criterion to evaluate gen-
eration models is the length of generated reports
comparing to the ground-truth. In doing so, we cat-
egorize all reports generated on the MIMIC-CXR
test set into 10 groups (within [0, 100] with interval
of 10) according to their round-down lengths and
draw curves for their numbers in each category for
BASE, BASE+RM and BASE+RM+MCLN, as well
as the ground-truth. The results are presented in
Figure 4. Overall, more reports generated from
BASE+RM and BASE+RM+MCLN are longer than
that from BASE and their length distributions are
closer to the ground-truth reports, which thus leads
to better evaluation results on NLG metrics. The
reason behind might be that the memory provides
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Ground-truth
In comparison with study of there is
again enlargement of the cardiac s-
ilhouette with a pacer device in pla-
ce. No definite vascular congestion
raising the possibility of underlying
cardiomyopathy or pleural effusion.
No acute focal pneumonia. The rig-
ht picc line has been removed.

There is a left pectoral pacemaker
with leads terminating in the right
atrium and right ventricle. The hea-
rt is enlarged. There is no pneumo-
thorax or pleural effusion. The lungs
are clear.

In comparison with the study of the-
re is little change in the appearance
of the pacer leads which extend to
the right atrium and apex of the right
ventricle. Continued enlargement of
the cardiac silhouette without vasc-
ular congestion or pleural effusion.
No evidence of pneumothorax.

BASE BASE+RM+MCLN

Ground-truth
There are low lung volumes. Biba-
silar atelectasis have minimally im-
proved. Mild vascular congestion
has minimally improved. There are
no new lung abnormalities or pne-
umothorax. Bilateral pleural effusi-
ons are small. Right picc tip is at the
cavoatrial junction.

In comparison with the study of th-
ere is little overall change. Again
there is some indistinctness of pul-
monary vessels consistent with el-
evated pulmonary venous pressure.
No evidence of acute focal pneum-
othorax.

The lung volumes are low. There is
a small left pleural effusion with as-
sociated atelectasis. The right lung
is clear. There is no pneumothorax.
The heart size is top normal. The hi-
lar and mediastinal contours are no-
rmal. A right subclavian catheter te-
rminate in the mid svc.

BASE BASE+RM+MCLN

Figure 5: Illustrations of reports from ground-truth, BASE and BASE+RM+MCLN models for two X-ray chest
images. To better distinguish the content in the reports, different colors highlight different medical terms.

more detailed information for the generation pro-
cess so that the decoder tends to produce more
diversified outputs than the original Transformer.
Particularly, when comparing BASE+RM+MCLN

and BASE+RM, the length distribution of the for-
mer generated reports is closer to the ground-truth,
which can be explained by that, instead of applying
memory to the final output, leveraging memory at
each layer in Transformer is more helpful and thus
controls the decoding process in a fine-grained way.
The above observations show that both memory
and the way of using it are two important factors to
enhance radiology report generation.

Case Study To further investigate the effective-
ness of our model, we perform qualitative anal-
ysis on some cases with their ground-truth and
generated reports from different models. Figure
5 shows two examples of front and lateral chest X-
ray images from MIMIC-CXR and such reports,
where different colors on the texts indicate differ-
ent medical terms. It is observed in these cases that
BASE+RM+MCLN is able to generate descriptions
aligned with that written by radiologists with sim-
ilar content flow. For example, in both cases, pat-
terns in the generated reports follow the structure
that starting from reporting abnormal findings (e.g.,
“cardiac silhouette” and “lung volumes”), and then
concluding with potential diseases (e.g., “pleural
effusion” and “atelectasis”). In addition, for the
necessary medical terms in the ground-truth re-
ports, BASE+RM+MCLN covers almost all of them
in its generated reports while vanilla Transformer
did much worse, e.g., the key terms “enlarged car-
diac silhouette”, “atelectasis” and “small pleural
effusion” in the two examples are not generated.

To further investigate different models quali-
tatively, we randomly select a chest X-ray on
the MIMIC-CXR test set and visualize the
image-text attention mappings from BASE and
BASE+RM+MCLN. Figure 6 shows the interme-
diate image-text correspondences for several words
from the multi-head attentions in the first layer of
the decoders. It is observed that BASE+RM+MCLN

is better at aligning the locations with the indicated
disease or parts. This observation suggests that our
model not only enhances the power of radiology
report generation, but also improves the interaction
between the images and the generated texts.
Error Analysis To analyze the errors from our
model, especially in targeting the low CE scores,
it is found that the class imbalance is severe on
the datasets and affects the model training and in-
ference, where majority voting is observed in the
generation process. For example, on MIMIC-CXR,
consolidation only accounts for 3.9% in the train-
ing set so that the trained model only recognizes
that 2.9% results in this case compared with the
ground truth 6.3%. Thus how to address the data
bias problem is a possible future work to improve
the accuracy of the generated radiology reports.

5 Related Work
The most popular related task to ours is image cap-
tioning (Vinyals et al., 2015; Xu et al., 2015; An-
derson et al., 2018; Wang et al., 2019), which aims
to describe images with sentences. Different from
them, radiology report generation requires much
longer generated outputs, and possesses other fea-
tures such as patterns, so that this task has its own
characteristics requiring particular solutions. For
example, Jing et al. (2018) proposed a co-attention
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BASE: As compared to the previous radiograph there is no relevant change. Moderate cardiomegaly with mild fluid overload but no
overt pulmonary edema. No pleural effusions. No pneumonia. Unchanged right internal jugular vein catheter.

Original Image “cardiomegaly” “pulmonary” “pleural” “right”

Ground-truth: There are no old films available for comparison. The heart is moderately enlarged. There is a right ij cordis with tip in the
upper svc. There is mild pulmonary vascular re-distribution but no definite infiltrates or effusion.

BASE+RM+MCLN: A right internal jugular central venous catheter terminates in the mid svc. The heart is moderately enlarged. The
mediastinal and hilar contours are within normal limits. There is no pneumothorax or large pleural effusion. The lungs appear clear.

Original Image “right” “heart” “pleural” “lungs”

1.0

0.0

Figure 6: Visualizations of image-text attention mappings between a specific chest X-ray and generated reports
from BASE and BASE+RM+MCLN, respectively. Colors from blue to red represent the weights from low to high.

mechanism and leveraged a hierarchical LSTM to
generate reports. Li et al. (2018, 2019) proposed to
use a manually extracted template database to help
generation with bunches of special techniques to
utilize templates. Liu et al. (2019) proposed an ap-
proach with reinforcement learning to maintain the
clinical accuracy of generated reports. Compared
to these studies, our model offers an alternative
solution to this task with an effective and efficient
enhancement of Transformer via memory.

Extra knowledge (e.g., pre-trained embeddings
(Song et al., 2017; Song and Shi, 2018; Zhang
et al., 2019) and pretrained models (Devlin et al.,
2019; Diao et al., 2019)) can provide useful infor-
mation and thus enhance model performance for
many NLP tasks (Tian et al., 2020a,b,c). Specifi-
cally, memory and memory-augmented neural net-
works (Zeng et al., 2018; Santoro et al., 2018; Diao
et al., 2020; Tian et al., 2020d) are another line
of related research, which can be traced back to
Weston et al. (2015), which proposed memory net-
works to leverage extra information for question
answering; then Sukhbaatar et al. (2015) improved
it with an end-to-end design to ensure the model
being trained with less supervision. Particularly for
Transformer, there are also memory-based methods
proposed. For example, Lample et al. (2019) pro-
posed to solve the under-fitting problem of Trans-
former by introducing a product-key layer that is

similar to a memory module. Banino et al. (2020)
proposed MEMO, an adaptive memory to reason
over long-distance texts. Compared to these stud-
ies, the approach proposed in this paper focuses on
leveraging memory for decoding rather than encod-
ing, and presents a relational memory to learn from
previous generation processes as well as patterns
for long text generation. To the best of our knowl-
edge, this is the first study incorporating memory
for decoding with Transformer and applied for a
particular task, which may provide a reference for
studies in the line of this research.

6 Conclusion

In this paper, we propose to generate radiology
reports with memory-driven Transformer, where
a relational memory is used to record the infor-
mation from previous generation processes and a
novel layer normalization mechanism is designed
to incorporate the memory into Transformer. Ex-
perimental results on two benchmark datasets illus-
trate the effectiveness of the memory by either con-
catenating it with the output or integrating it with
different layers of the decoder by MCLN, which ob-
tains the state-of-the-art performance. Further anal-
yses investigate how memory size affects model
performance and show that our model is able to
generate long reports with necessary medical terms
and meaningful image-text attention mappings.
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