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Abstract

Many e-commerce services provide customer review systems. Previous laboratory studies have
indicated that the ratings recorded by these systems differ from the actual evaluations of the users,
owing to the influence of historical ratings in the system. Some studies have proposed using
real-world datasets to model rating prediction. Herein, we propose an aspect-similarity-aware
historical influence model for rating prediction using natural language processing techniques.
In general, each user provides a rating considering different aspects. Thus, it can be assumed
that historical ratings provided considering similar aspects to those of later ones will influence
evaluations of users more. By focusing on the review-topic similarities, we show that our method
predicts ratings more accurately than the previous historical-inference-aware model. In addition,
we examine whether our model can predict “intrinsic rating,” which is given if users were not
influenced by historical ratings. We performed an intrinsic rating prediction task, and showed
that our model achieved improved performance. Our method can be useful to debias user ratings
collected by customer review systems. The debiased ratings help users to make decision properly
and systems to provide helpful recommendations. This might improve the user experience of e-
commerce services.

1 Introduction

Currently, many e-commerce services like Amazon provide customer review systems (CRS). CRSs re-
trieve user feedbacks, which contain mainly ratings and reviews, shared across entire users, enabling (1)
subsequent users to help decide whether to purchase the items and (2) the systems to make recommen-
dations for items.

Previous studies have shown that historical ratings presented by a CRS can create historical influence
(Adomavicius et al., 2016). In this study, “historical influence” refers to a phenomena that historical
ratings make users give ratings apart from their natural evaluation. According to the previous work,
users tend to give higher ratings to items presented with a high average historical rating. Such influence
affects the unbiased purchase decisions of subsequent users, and provides inaccurate and unhelpful rec-
ommendations. Therefore, it is important that the recommender system estimates the “intrinsic rating”,
which is given if users were not influenced. Recently, some studies have proposed historical-influence-
aware rating prediction models (Wang et al., 2014; Liu et al., 2016; Zhang et al., 2019). In particular,
Zhang et al. (2019) found that the subsequent rating of an item correlates with the average historical
ratings at the time of evaluation. They concluded that such correlation patterns could be described by an
assimilation-contrast theory (Anderson, 1973). Subsequent users tend to provide ratings according to the
average historical rating when it is close to their intrinsic ratings (assimilation); conversely, they provide
ratings against the average historical rating when it differs from their intrinsic ratings (contrast). The
proposed model is called the historical-influence-aware latent factor (HIALF) model, and it has achieved
significant improvements in rating prediction. In addition, the model can be used to estimate intrinsic
ratings.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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We assume that evaluators are influenced significantly by the historical ratings given under aspects
similar to theirs. In general, different users focus on different aspects of an item and the rating is given
based on these aspects. For example, a user concerned more about the color of an item may provide a
different rating for the item than a user concerned more about the price. Therefore, it is natural that the
strength of the influence from each historical rating depends on the aspects under which the rating was
provided. Consequently, evaluators are likely to provide ratings higher or lower than intrinsic ratings,
when the historical rating is high or low, respectively.

In this paper, we conduct preliminary analyses to confirm that our assumption is appropriate. Then, we
propose an aspect-aware historical influence model for rating prediction using natural language process-
ing techniques (Figure 1 (A)). We apply topic modeling to extract aspects from reviews, and calculate the
similarities in the aspects. The calculated aspect similarity is used to weight the corresponding histori-
cal ratings. The weighted ratings are then aggregated to integrate the matrix factorization (MF) model
(Koren et al., 2009). We conduct experiments to show that our model outperforms HIALF and MF in
rating prediction on four real-world datasets. Additionally, to examine whether our model can predict
intrinsic ratings, we evaluate our model on the additional task of predicting the first rating for each item.
Our results demonstrate that the proposed model predict the intrinsic ratings of users accurately.
Contributions: The contributions of this work are summarized as follows.

• We develop an aspect-similarity-aware historical influence model using reviews.

• We show that our model can estimate the intrinsic ratings of users more accurately.

• Our results indicate that users are strongly influenced by the historical ratings provided under as-
pects similar to theirs.
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Figure 1: Illustration of historical influence models. A user purchased headphones and rated it. (A)
Model where users are influenced by ratings whose review was written under aspects similar to those of
the evaluator (B) Model where users are influenced more by recent ratings used in HIALF. For example,
in illustration (A), evaluator u focuses on the “headband” and “adjustment” of the item. Thus, the evalu-
ator will be influenced significantly by ratings r2, r3 and r5, because their reviews mention “headband”
and “adjustment” of the item.

2 Related Works

Laboratory experiment on historical influence: Adomavicius et al. (2016) showed that users may
fail to evaluate an item properly when they preliminarily observe system-predicted or averaged ratings.
For example, even when comparing items of the same quality, users tend to give higher ratings to the one
presented with a higher average historical rating.
Modeling historical influence: Some studies have modeled historical influence in real-world datasets
(Wang et al., 2014; Liu et al., 2016; Zhang et al., 2019). Wang et al. (2014) developed Herding Effect
Aware Rating Dynamics Model (HEARD) introducing generative model. Although the model calculates
the distribution of next rating from historical ratings to model dynamics of rating growth, it does not
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take user preference into account. By contrast, Liu et al. (2016) and Zhang et al. (2019) attempted to
model influence from historical ratings on subsequent users combining with MF. Liu et al. preliminarily
analyzed the real-world datasets and found that the next rating correlates with the average of the historical
ratings of the item. Then, they proposed the model which has the term considering the average and
number of historical ratings. Similarly, Zhang et al. analyzed the other datasets and concluded that such
correlation patterns can be explained by “Assimilate-Contrast” theory in psychology, based on which they
developed HIALF and showed that the model outperforms previous methods. Although these methods
have considered historical influence, they ignore reviews. Our model is on top of these works, and our
proposed method uses reviews to model aspect-similarity-aware historical influence.
Rating prediction with reviews: Many works use reviews to improve accuracy, in particular, some of
them utilize the MF model (McAuley and Leskovec, 2013; Ling et al., 2014; Tan et al., 2016; Zheng
et al., 2017; Chen et al., 2018; Li et al., 2019b). They differ from our work in using reviews to model
user-preferences and item-features. Our method utilizes reviews not for user/item modeling directly, but
for modeling historical influence.
Modeling social influence: Recent works have studied social influence, which is another type of
influence on evaluation (Ye et al., 2012; Guo et al., 2014; Li et al., 2019a; Li et al., 2019b; Wu et al.,
2019a; Wu et al., 2019b). These works model social influence under explicit user-user networks such as
friends, and trust. However, some of CRSs like Amazon does not have explicit network. Mukherjee and
Guennemann (2019) proposed the model GhostLink, which can infer implicit user-user network from
only timestamped reviews of the users. GhostLink use echoed/copied topics of reviews as an indication
of influence. They showed that they can predict ratings accurately using the inferred influence network.
There is a difference that while we focus on the historical influence from ratings and reviews, GhostLink
is motivated to infer the user-user networks to find out who-influences-whom relationships.

3 Preliminary Analysis

Zhang et al. (2019) investigated the relationship between subsequent ratings and historical ratings at
the point of each evaluation. If users provide completely uninfluenced feedbacks, there should be no
correlation between subsequent ratings and historical ratings. They obtained relationships between the
subsequent rating and historical ratings, and evaluated the relationships using the slopes of fitted lines in
the points obtained. This is discussed in detail in Section 3.2.

Following Zhang et al., we performed preliminary analyses to confirm that users are influenced by
the ratings of user feedback considering similar aspects. Specifically, we use restricted subsets of user
feedbacks for averaging, instead of subsets of all historical ratings as in the study of Zhang et al. Each
subset is formulated to have similar aspects for each target user feedback. Then, we plot the target ratings
against the average of the subsets. Lastly, we compare the slopes of the fitted lines, and examine whether
these slopes change depending on the subset used for averaging.

3.1 Datasets

We used four datasets of different categories from the Amazon dataset (He and McAuley, 2016). These
datasets include reviews and ratings from May 1996 to July 2014. From these datasets, we extracted user
IDs, item IDs, 1-5-star(s) ratings, free-text reviews, and timestamps. The statistics of the datasets are
summarized in Table 1.

# items # users # ratings&reviews

Movies and TVs 208,321 2,088,620 4,607,047
Electronics 498,196 4,261,096 7,824,482
Clothing, Shoes and Jewelry 1,503,384 3,117,268 5,748,920
Books 2,370,585 8,026,324 2,507,155

Table 1: Summary of the Amazon datasets.
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3.2 Measurement Procedure

First, we describe the details of the analyses conducted by Zhang et al. Items with overall average ratings
in the range of 2.9 to 3.1 were used. A prior expectation ei,n is calculated as

ei,n =
1

|Hi,n|
∑

r∈Hi,n

r, (1)

where Hi,n denotes the historical ratings of ri,n: {ri,1, ri,2, . . . , ri,n−2, ri,n−1}. The prior expectations
are rounded off to one decimal place. For the set of the pairs of (ri,n, ei,n), a binning operation is
performed by each ei,n. As a result, we obtain bins of {1.0, 1.1, . . . , 4.9, 5.0}, and each bin contains
a set of the next ratings {ṙ1, . . . , ṙNe} given by different users under a prior expectation e. These next
ratings are averaged within each bin of the prior expectation e as

r̄e =
1

Ne

Ne∑
k=1

ṙk, (2)

where Ne denotes the number of next ratings contained in the bin of the prior expectation e. Finally, the
prior expectations e and average next ratings r̄e are plotted, and the Pearson correlation coefficient and
slopes of the fitted lines are calculated. A linear regression model is used for the fitting.

In the original procedure, all historical ratings of ri,n are used (Eq. 1). Here, we consider using subsets
for calculating the prior expectations, instead of using Hi,n. We adopt the following factors to extract
subsets for each user feedback:

• Random: Randomly selecting ten user feedbacks.

• Sentence-Similarity: Selecting the ten most similar user feedbacks. We use the bag-of-words of
TF-IDF to measure sentence similarity for simplicity.

An issue of concern is that some undesirable positive correlations may occur in cases where the target
reviews contain words, such as “good,” “great,” “bad,” and “terrible,” that directly express the quality of
the item. In these cases, the user feedback extracted based on similarity also contains such words, and
has positive correlations. However, these are not derived from historical influence.

Consider this, we also apply the same procedure for the future ratings of ri,n. The analyses using future
ratings are expected to capture only positive correlations that are not related to historical influences.
Therefore, by subtracting the effects of the future ratings from those of the historical ratings, we can
measure the historical influence from each subset without undesirable positive correlations. In future
ratings analyses, we extract ratings from {ri,n+1, ri,n+2, . . . , ri,Ni} for a target rating ri,n, where Ni

denotes the number of ratings of an item i in the datasets.

3.3 Results

In Table 2, we compared the Pearson correlation coefficients and slopes for each factor. To avoid noise
owing to the low sample size, we fitted lines to the points with prior experiments in range of 2.0 to 4.0.
There were strong positive coefficients for the Sentence-Similarity in four datasets in both the historical
and future ratings analyses. This indicates that linear regression is well-fitted. A comparison of the
slopes shows that Random exhibits mostly flat slopes for both the historical and future rating analyses on
the four datasets. By contrast, Sentence-Similarity exhibits positive slopes.

Sentence-Similarity exhibited high slopes on the four datasets in the historical-ratings analyses; con-
versely, the slopes decreased in the future ratings analyses. This implies that there may be cases where
the target reviews contain words expressing quality, as discussed previously. However, the slopes of
the historical-ratings analyses are higher than those of the future-ratings analyses. Therefore, we con-
cluded that Sentence-Similarity, which includes aspects similarity, might actually relate to the historical
influence.
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Slope Pearson Correction Coefficient

Random Sentence-Similarity Random Sentence-Similarity

Movies 0.037 0.718 0.502 0.997
(0.013) (0.428) (0.176) (0.995)

Electronics -0.028 0.763 0.422 0.997
(-0.042) (0.665) (0.771) (0.996)

Clothing -0.093 0.629 0.752 0.987
(-0.116) (0.531) (0.874) (0.983)

Books -0.037 0.549 0.398 0.995
(-0.018) (0.407) (0.197) (0.989

Table 2: Results of the historical-ratings (Upper lines) and future-ratings (Lower lines, within parenthe-
ses) analyses.

Random

Random (future-rating)

Similarity

Similarity (future-rating)

Slope
Corr. Coef.

Slope
Corr. Coef.

Slope
Corr. Coef.

Slope
Corr. Coef.

Prior Expectation Prior Expectation

Prior Expectation Prior Expectation

Figure 2: Plot of the prior expectations and average of next ratings in the Movies&TVs dataset. The
x-axis represents the bins of prior expectation, and the y-axis represents the average of the next ratings.

4 Base Models

4.1 Biased Matrix Factorization Model
The biased MF model proposed by Koren et al. (2009) calculates an interaction between a user preference
and an item feature as

r̂MF
u,i = µ+ bu + bi + p>u qi. (3)

Here, µ, bu, and bi denote the overall average, user bias, and item bias, respectively. pu and qi represent
the l-dimensional user preference vector and item feature vector, respectively. This model has been
widely used in rating prediction.

4.2 Historical Influence Aware Latent Factor Model
HIALF (Zhang et al., 2019) is designed under the assumption that the quality perceived by the users
and prior expectations primarily form their ratings. The experienced quality represents the intrinsic
evaluation of the users for item1. Prior expectation is defined as the average of the historical ratings
that users observe prior to evaluation. Zhang et al. showed that user ratings tend to differ from the
experienced quality because of being influenced. This indicates that the difference between the quality
experienced by users and prior expectation is a signal of being influenced. Thus, user ratings will be

1Note that the “experienced quality” and “intrinsic rating” are different in this paper. su,i in Eq. 4 denotes the former, which
is defined in Zhang et al. (2019). The later is denoted by bu + su,i in this paper.
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expressed as the sum of the experienced quality and influence based on this difference. HIALF predicts
the n-th rating of i by u as:

rHIALF
u,i,n = bu + su,i︸ ︷︷ ︸

MF

+αuf (|Hi,n|)β (ei,n − su,i)︸ ︷︷ ︸
Historical influence

. (4)

Here, su,i and ei,n denote the experienced quality and prior expectation, αu denotes the likelihood of a
user u being influenced, and Hi,n denotes the set of historical ratings before u provided the rating ri,n.
The experienced quality is calculated as su,i = r̂MF

u,i − bu. The prior expectation ei,n is calculated by the
recency-weighted average of historical ratings as:

ei,n =

∑n−1
k=1 ξ(n− k) · ri,k∑n−1

k=1 ξ(n− k)
, where ξ(d) = exp(−γ ∗ d). (5)

The weights of each historical rating increase depending on the recency. This is based on the idea that
users will focus more on recent historical ratings. In fact, Zhang et al. showed that the recency-weighted
average is better than the uniform average.

Function f(m) is sigmoid-form function modeling the magnifying impact of historical ratings with
the size m as:

f(m) =
a

1 + exp (−bm)
− a

2
, (6)

where m denotes the size of the historical ratings, and a, b are the learning parameters. The overall effect
of the historical influence will be strong when m is large.

Function β(x) is a bias curve representing the assimilate-contrast effect of x = ei,n − su,i. Non-
parametric kernel regression is used to fit a set of samples {(gl, vl)}Ll=1 as:

β(x) =

∑L
l=1w (x, gl) · vl∑L
l=1w (x, gl)

, where w(x, gl) = exp
(
−κ (x− gl)2

)
. (7)

Here, {g1, g2, . . . , gL−1, gL} are fixed to {−4,−3.5, . . . , 3.5, 4.0} in order, and {v1, . . . , vL} are the
learning parameters. κ is a hyperparameter controlling the smoothness of the function. The learned
curve is expected to be formed as β(x) grows where |x| is small (assimilation); otherwise, it declines
(contrast).

The original MF model (Eq. 3) cannot discriminate whether a high rating is due to the intrinsic rating
or historical influence. By introducing the historical influence term, the MF term in HIALF can learn
intrinsic features apart from historical influence.

5 Proposed Model

We propose the model under the assumption that the strength of the historical influence depends on
aspects similarity between an evaluator and users who gave historical ratings. We use a topic model to
vectorize the review, and the extracted topic is regarded as an aspect of the review. Then, we calculate the
similarity between the review topics of the evaluator and those of the historical users. We use this simi-
larity as the aspect similarity, because user reviews are considered to reflect their aspects. By considering
aspect similarity, the proposed method is expected to model the historical influence accurately.

Our model is an extension of HIALF. The major difference lies in the calculation of prior expectation.
In HIALF, the historical ratings and recency are used in the calculation. By contrast, the proposed
model uses historical ratings and review topics. Concretely, we calculate the aspect similarity between
the evaluator and each historical user, and then, the prior expectation only among the ratings with high
aspect similarities. The model is described as follows:

r̂u,i = bu + su,i + αuf (|Hi,n|)β(esimi
u,i − su,i). (8)

Here, αu represents the likelihood of the user u being influenced, and function f(·) and β(·) models
the magnifying effect and the bias curve following HIALF, respectively (Eq. 6, 7). esimi

u,i denotes the
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aspect-aware prior expectation using the review-topic similarity. We detail the method in the following
subsection.

5.1 Aspect-aware Prior Expectation
We introduce similarity-weighted aggregation method. To calculate the aspect-aware prior expectation
esimi
u,i , we extract top-k similar reviews and aggregate them as:

esimi
u,i =

∑
(d′,r′)∈Dsimi

k
r′simiw(d′, du,i)∑

(d′,r′)∈Dsimi
k

simiw(d′, du,i)
, (9)

whereDsimi
k denotes the subset of pairs of top-k similar review-topics vectors and corresponding ratings,

w denotes scaling factor of similarity weighting, and du,i denote the review-topics vector for item i by
user u, respectively. In our paper, Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is used for topic
modeling and cosine similarity is used for similarity calculation. The prior expectation is designed to
give large weight to historical ratings which seem to be given under similar aspects.

5.2 Objective Function
To learn the model, we define objective function as:

L(Θ) =
∑

(u,i)∈T

(ru,i − r̂u,i)2+λl(‖pu‖2+‖qi‖2+b2u+b2i )+λαα
2
u+λf (a2+b2)+λβ

(
L∑
l=1

v2l

)
. (10)

Here, Θ denotes the learning parameters pu, qi, bu, bi, αu, a, b, and λl, λα, λf , λβ are regularization hy-
perparameters for Θ. T denotes the set of user-item pairs in training data, and ru,i is the ground truth of
the rating of item i by user u.

6 Experiments

We conducted two tasks: ordinay rating prediction (Task 1) and intrinsic rating prediction (Task 2). Task
1 is widely used to evaluate recommender systems. In Task 1, we investigated the effect of top-k and
w in Eq. 9. Task 2 is where a model predicts the first ratings of every item. The first ratings can be
used as the ground truth for the intrinsic ratings of users, because users who provided the first rating
were not exposed to any historical influence. In Task 2, the ratings are predicted only from pre-trained
users or item-features. The models are evaluated based on the ability to distinguish intrinsic ratings from
historical influence. If a model successfully learns the intrinsic user-features, it will be able to accurately
estimate the intrinsic ratings of users.

6.1 Experimental Settings
Dataset preprocessing: We preprocessed the four datasets described in Section 3. We preprocessed
the datasets following (Zhang et al., 2019). We started by removing items with less than 75 ratings. Then,
we extracted users with less than 50 ratings, and merged them into one pseudo-user. The pseudo-user is
treated in the same manner as other users. This process aims to remove users whose data are too small
to learn latent factors without reducing the historical ratings. The statistics of the preprocessed datasets
are summarized in Table 3.

# items # users # ratings&reviews

Movies and TV 11,194 2,311 3,079,522
Electronics 17,727 400 4,860,410
Clothing, Shoes and Jewelry 9,623 2 1,677,798
Books 42,462 9,401 9,321,929

Table 3: Summary of the statistics of preprocessed datasets.

Baseline models: We compared our model with the following baseline models in Task 1:
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(A) Biased-MF (Koren et al., 2009): Classical latent factor model (Eq. 3).

(B) HIALF (Zhang et al., 2019): The model considering the historical influence but not utilizing re-
views. Our model is based on this model.

(C) Simi-avg.: As baseline method, we predict ratings without LF integration, that is, r̂u,i = esimi
u,i .

In Task 2, we compared our proposed model with HIALF.
Evaluation metric: The root mean square error (RMSE) was used for performance evaluation. It was
calculated as:

RMSE =

√√√√ 1

|S|
∑

(u,i)∈S

(ru,i − r̂u,i)2, (11)

where S denotes the set of user-item pairs in the test set. ru,i and r̂u,i denote the ground-truth and
predicted ratings of item i by user u, respectively. Note that in the test set in Task 2, the historical
influence term in Eq. 8 (and Eq. 4) is equal to 0. This is because the test data have no historical ratings
or reviews. This is equivalent to the following:

r̂u,i = µ+ bu + bi + p>u qi, (12)

where bu, bi, pu, and qi are the learned parameters of HIALF and the proposed model.
Model training: In Task 1, we split the dataset into test (the last 25 ratings), validation (the last 50-26
ratings), and training (the rest of ratings). We used a validation set to tune the hyperparameters, and
performance evaluation was conducted on the test set. For all models, we used l = 5 for the number of
dimensions of the user preference and item feature vectors. The learning rate was searched in [0.005,
0.01, 0.05 0.1] for each model. For Biased-MF, the regularization parameter was searched in [0.005,
0.01, 0.05, 0.1]. For HIALF, we searched for the best hyperparameters in the range described by Zhang
et al. (2019). For our model, we first searched for w and k in [0.0, 1.0, 3.0, 5.0, 7.0, 9.0] and [5, 10, 30,
50, 100], respectively. Then, four regularization parameters were searched in [0.000001, 0.00001 0.0001,
0.001, 0.01, 0.1]. We tokenized the review-sentences, and removed stop-words using NLTK (Bird and
Klein, 2009). Then, reviews were vectorized by LDA using gensim (Řehůřek and Sojka, 2010). We used
10 for the number of topics according to the results of McAuley and Leskovec (2013). The stochastic
gradient descent algorithm was used for optimization.

In Task 2, the datasets were split into test (first rating of every item) and training (the rest of ratings).
We trained the model with the hyperparameters tuned in Task 1.

Computational resource of AI Bridging Cloud Infrastructure (ABCI) provided by National Institute of
Advanced Industrial Science and Technology (AIST) was used.

6.2 Results and Discussions
Effect of w and k: We focus on the hyperparameters w and k in Eq. 9. Figure 3 shows RMSE in the
Books dataset at various w and k. Here, Simi-avg. was used. We can see that w = 5.0, and k = 30 are
the best values. The RMSE tends to improve at w > 0 when k ≥ 30, indicating that weighing with the
similarity is effective. Weighing is not effective when k = 5 or 10, because all extracted reviews have
high similarities at these values. Additionally, the RMSE degrades when k ≥ 50. This is because if we
extract historical reviews that are too large, there may be low-similarity reviews.
Results of rating prediction in Task1: Table 4 illustrates the results of the rating prediction. Our
model outperforms almost all baseline models. Additionally, we confirm that integrating LF (Table 4
(D)) improves the RMSE over Simi-avg. (Table 4 (C)). In the Clothing dataset, Simi-avg. performs
better than Ours. This is because the LF model is not effective for pseudo-users, and there is only one
non-pseudo-user in the Clothing dataset. These results indicate that we succeeded in integrating LF and
the historical influence model.

Note that Ours and Simi-avg. use review textual information of target users. Since user ratings and
reviews are usually provided at the same time, recommender systems cannot use reviews to predict
ratings in practical situations. Therefore, Task 2 can be more suitable for practical evaluations.
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Figure 3: Effect of w and k. The y-axis rep-
resents RMSE, and x-axis represents w in
Eq. 9. Each line represents k.

Movies Electronics Clothing Books

(A) LF 1.1002 1.4076 1.2061 1.0369
(B) HIALF 1.0644 1.3630 1.1739 1.0182
(C) Simi-avg. 1.0589 1.2015 1.0789 0.9332
(D) Ours 1.0068 1.2001 1.0800 0.9261

Ours vs LF 8.49% 14.74% 10.45% 10.68%
Ours vs HIALF 5.41% 11.95% 8.00% 9.04%

Table 4: Results of rating predictions (RMSE).

Results of intrinsic rating prediction in Task2: Table 5 shows the results of the intrinsic rating pre-
diction. However, it is considered that the aspects of the pseudo-users are synthesized from many aspects
of users. We consider that the RMSE calculated including the pseudo-user might contain noise. Thus,
for a more personalized evaluation, we calculated RMSE without ratings of pseudo-users. In Table 5,
the results show that our proposed model outperforms HIALF except for the Electronics dataset. This
indicates that our model succeeds in separating historical influence and learning intrinsic preferences.
Table 6 shows that our model has a better performance than HIALF in personalized evaluations. From
these results, we consider that our model can predict the intrinsic ratings more accurately.

Movies Electronics Clothing Books

HIALF 1.0437 1.2112 1.0745 0.8971
Ours 1.0302 1.2118 1.0673 0.8672

Table 5: Results of predicting the first ratings.
RMSE are reported in the table.

Movies Electronics Clothing Books

HIALF 1.0076 0.9222 (0.6886) 0.7388
Ours 0.9959 0.8854 (0.6208) 0.7378

Table 6: Results of predicting the first ratings ex-
cept for pseudo-users. In the Clothing category,
there is only one rating given by non-pseudo-user
(reported in parentheses).

7 Conclusion

In this study, we propose an aspect-similarity-aware historical influence model for rating prediction.
First, we perform preliminary experiments to validate our assumption that review aspects relate to the
historical influence. From the analyses, we concluded that the sentence similarity relates to the histor-
ical influence. Thus, to model historical influence, we used textual information in user reviews, which
previous models have ignored, for topic modeling. In the ordinay rating prediction task, we showed
that the proposed approach achieved improvements over the previous historical-influence-aware models.
Furthermore, to examine whether the proposed model can distinguish the intrinsic ratings of users from
the historical influence, we conducted intrinsic rating prediction experiments. The results showed that
our model has better performance than previous models.

Our method is limited to situations where the reviews of users are obtained before they provide ratings.
For usual recommendation, it might not be practical. Thus, the method is not suitable for recommenda-
tions based on rating predictions. However, debiasing the historical influence to obtain intrinsic ratings
can be considered as an application of our model. The intrinsic ratings would help subsequent users to
make unbiased purchase decisions. In addition, recommender systems would be able to suggest accept-
able items to users by using the intrinsic ratings. These improvements will provide better user experience
of the e-commerce services.
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