
ECNLP 3

The Workshop on
e-Commerce and NLP

Proceedings of the Third Workshop

July 10, 2020



c©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-952148-21-7

ii



Introduction

It is our great pleasure to welcome you to the Third International Workshop on e-Commerce and NLP
(ECNLP).

This workshop focuses on intersection of Natural Language Processing (NLP) and e-Commerce. NLP
and information retrieval (IR) have been powering e-Commerce applications since the early days of the
fields. Today, NLP and IR already play a significant role in e-Commerce tasks, including product search,
recommender systems, product question answering, machine translation, sentiment analysis, product
description and review summarization, and customer review processing. With the exploding popularity
of chatbots and shopping assistants – both text- and voice-based – NLP, IR, question answering, and
dialogue systems research is poised to transform e-Commerce once again.

The ECNLP workshop series was designed to provide a venue for the dissemination of late-breaking
research results and ideas related to e-commerce and online shopping, as well as a forum where new and
unfinished ideas could be discussed. After the successful ECNLP workshops at The Web Conference in
2019 and 2020, we are happy to host ECNLP 3 at ACL 2020 and once again bring together researchers
from both academia and industry.

We have received a larger number of submissions than we could accept for presentation. ECNLP 3
received 21 submissions of long and short research papers. In total, ECNLP 3 featured 13 accepted
papers (62% acceptance rate). The selection process was competitive and we believe it resulted in a
balanced and varied program that is appealing to audiences from the various sub-areas of e-Commerce.

We would like to thank everyone who submitted a paper to the workshop. We would also like to express
our gratitude to the members of the Program Committee for their timely reviews, and for supporting the
tight schedule by providing reviews at short notice.

We hope that you enjoy the workshop!

The ECNLP Organizers May 2020
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Abstract

Named Entity Recognition (NER) in domains
like e-commerce is an understudied prob-
lem due to the lack of annotated datasets.
Recognizing novel entity types in this do-
main, such as products, components, and at-
tributes, is challenging because of their lin-
guistic complexity and the low coverage of ex-
isting knowledge resources. To address this
problem, we present a bootstrapped positive-
unlabeled learning algorithm that integrates
domain-specific linguistic features to quickly
and efficiently expand the seed dictionary. The
model achieves an average F1 score of 72.02%
on a novel dataset of product descriptions, an
improvement of 3.63% over a baseline BiL-
STM classifier, and in particular exhibits better
recall (4.96% on average).

1 Introduction

The vast majority of existing named entity recogni-
tion (NER) methods focus on a small set of promi-
nent entity types, such as persons, organizations,
diseases, and genes, for which labeled datasets are
readily available (Tjong Kim Sang and De Meulder,
2003; Smith et al., 2008; Weischedel et al., 2011;
Li et al., 2016). There is a marked lack of studies in
many other domains, such as e-commerce, and for
novel entity types, e.g. products and components.

The lack of annotated datasets in the e-
commerce domain makes it hard to apply super-
vised NER methods. An alternative approach is
to use dictionaries (Nadeau et al., 2006; Yang
et al., 2018), but freely available knowledge re-
sources, e.g. Wikidata (Vrandečic and Krötzsch,
2014) or YAGO (Suchanek et al., 2007), contain
only very limited information about e-commerce
entities. Manually creating a dictionary of suffi-
cient quality and coverage would be prohibitively
expensive. This is amplified by the fact that in
the e-commerce domain, entities are frequently ex-

pressed as complex noun phrases instead of proper
names. Product and component category terms
are often combined with brand names, model num-
bers, and attributes (“hard drive” → “SSD hard
drive” → “WD Blue 500 GB SSD hard drive”),
which are almost impossible to enumerate exhaus-
tively. In such a low-coverage setting, employing a
simple dictionary-based approach would result in
very low recall, and yield very noisy labels when
used as a source of labels for a supervised machine
learning algorithm. To address the drawbacks of
dictionary-based labeling, Peng et al. (2019) pro-
pose a positive-unlabeled (PU) NER approach that
labels positive instances using a seed dictionary,
but makes no label assumptions for the remain-
ing tokens (Bekker and Davis, 2018). The authors
validate their approach on the CoNLL, MUC and
Twitter datasets for standard entity types, but it
is unclear how their approach transfers to the e-
commerce domain and its entity types.

Contributions We adopt the PU algorithm of
Peng et al. (2019) to the domain of consumer elec-
tronic product descriptions, and evaluate its effec-
tiveness on four entity types: Product, Component,
Brand and Attribute. Our algorithm bootstraps
NER with a seed dictionary, iteratively labels more
data and expands the dictionary, while account-
ing for accumulated errors from model predictions.
During labeling, we utilize dependency parsing to
efficiently expand dictionary matches in text. Our
experiments on a novel dataset of product descrip-
tions show that this labeling mechanism, combined
with a PU learning strategy, consistently improves
F1 scores over a standard BiLSTM classifier. Iter-
ative learning quickly expands the dictionary, and
further improves model performance. The pro-
posed approach exhibits much better recall than
the baseline model, and generalizes better to un-
seen entities.
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Algorithm 1: Iterative Bootstrapping NER
Input: Dictionary Dseed, Corpus C,

threshold K, max iterations I
Result: Dictionary D+, Classifier L
D+ ← Dseed;
Cdep ← dependency parse(C);
i← 0;
while not converged(D+) and i < I do

Clab ← label(C,D+);
Cexp ← expand labels(Clab, Cdep);
L← train classifier(Cexp);
Cpred ← predict(Cexp, L);
for e← Cpred do

if e /∈ D+ and freq(e) > K then
D+ ← add entity(D+, e);

end
end
i← i+ 1;

end

2 NER with Positive Unlabeled Learning

In this section, we first describe the iterative boot-
strapping process, followed by our approach to
positive unlabeled learning for NER (PU-NER).

2.1 Iterative Bootstrapping
The goal of iterative bootstrapping is to succes-
sively expand a seed dictionary of entities to label
an existing training dataset, improving the quality
and coverage of labels in each iteration (see Algo-
rithm 1). In the first step, we use the seed dictionary
to assign initial labels to each token. We then utilize
the dependency parses of sentences to label tokens
in a “compound” relation with already labeled to-
kens (see Figure 1). In the example “hard drive”
is labeled a Component based on the initial seed
dictionary, and according to its dependency parse
it has a “compound” relation with “dock”, which is
therefore also labeled as a Component. We employ
an IO label scheme, because dictionary entries are
often more generic than the specific matches in text
(see the previous example), which would lead to
erroneous tags with schemes such as BIO.

In the second step, we train a NER model on the
training dataset with new labels assigned. We re-
peat these steps at most I times, and in each subse-
quent iteration we use the trained model to predict
new token-level labels on the training data. Novel
entities predicted more than K times are included
in the dictionary for the next labeling step. The

Figure 1: Red check marks indicate tokens labeled by
the dictionary, black those based on label expansion us-
ing dependency information. The green box shows the
true extent of the multi-token Component entity.

Figure 2: Architecture of the positive unlabeled NER
(PU-NER) model.

threshold K ensures that we do not introduce noise
in the dictionary with spurious positively labeled
entities.

2.2 PU-NER Model

As shown in Figure 2, our model first uses
BERT (Devlin et al., 2018) to encode the sub-word
tokenized input text into a sequence of contextual-
ized token representations {z1, ..., zL}, followed by
a bidirectional LSTM (Lample et al., 2016) layer to
model further interactions between tokens. Similar
to Devlin et al. (2018), we treat NER as a token-
level classification task, without using a CRF to
model dependencies between entity labels. We use
the vector associated with the first sub-word token
in each word as the input to the entity classifier,
which consists of a feedforward neural network
with a single projection layer. We use back propa-
gation to update the training parameters of the Bi-
LSTM and the final classifier, without fine-tuning
the entire BERT model.

Dictionary-based labeling achieves high preci-
sion on the matched entities but low recall. This
fits the positive unlabeled setting (Elkan and Noto,
2008), which assumes that a learner only has ac-
cess to positive examples and unlabeled data. Thus,
we consider all tokens matched by the dictionary
as positive, and consider all other tokens to be unla-
beled. The goal of PU learning is then to estimate
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the true risk regarding the expected number of pos-
itive examples remaining in the unlabeled data. We
define the empirical risk as R̂l = 1

n

∑n
i l(ŷi, yi)

and assume the class prior to be equal to real dis-
tribution of examples in the data πp = P (Y = 1),
and πn = P (Y = 0). As the model tends to pre-
dict the positive labels correctly during training, i.e.
l(ŷi

p, 1) declines to a small value. We follow Peng
et al. (2019) and combine risk estimation with a
non-negative constraint:

R̂l =
1

np

np∑

i

l(ŷi
p, 1)

+max

(
0,

1

nu

nu∑

i

l(ŷi
u, 0)− πp

np

np∑

i

l(ŷi
p, 0)

)

3 Dataset

E-commerce covers a wide range of complex entity
types. In this work, we focus on electronic prod-
ucts, e.g. personal computers, mobile phones, and
related hardware, and define the following entity
types: Products, i.e. electronic consumer devices
such as mobiles, laptops, and PCs. Products may
be preceded by a brand and include some form of
model, year, or version specification, e.g. “Galaxy
S8” or “Dell Latitude 6400 multimedia notebook”.
Components are parts of a product, typically with
a physical aspect, e.g. “battery”, or “multimedia
keyboard”.1 Brand refers to producers of a prod-
uct or component, e.g. ”Samsung”, or ”Dell”. At-
tributes are units associated with components, e.g.
size (“4 TB”), or weight (“3 kg”).

To create our evaluation dataset, we use the
Amazon review dataset (McAuley et al., 2015),2

a collection of product metadata and customer re-
views from Amazon. The metadata includes prod-
uct title, a descriptive text, category information,
price, brand, and image features. We use only en-
tries in the Electronics/Computers subcategory and
randomly sample product descriptions of length
500–1000 characters, yielding a dataset of 24,272
training documents. We randomly select another
100 product descriptions to form the final test set.
These are manually annotated by 2 trained linguists,
with disagreements resolved by a third expert an-
notator. Token-level inter-annotator agreement was

1Non-physical product features and software, such as
“Toshiba Face Recognition Software”, or “Windows 7” are
not considered as components.

2http://jmcauley.ucsd.edu/data/amazon/links.html

high (Krippendorf’s α = 0.7742). The test doc-
uments contain a total of 27, 108 tokens (1, 493
Product, 3, 234 Component, 1, 485 Attribute, and
443 Brand).

4 Experiments

To evaluate our proposed model (PU), we compare
it against two baselines: (1) dictionary-only label-
ing (Dictionary), and (2) our model with standard
cross-entropy loss instead of the PU learning risk
(BiLSTM). The BiLSTM model is trained in a su-
pervised fashion, treating all non-dictionary entries
as negative tokens. The BiLSTM and PU models
were implemented using AllenNLP (Gardner et al.,
2018). We use SpaCy3 for preprocessing, depen-
dency parsing, and dictionary-based entity labeling.
We manually define seed dictionaries for Product
(6 entries), Component (60 entries) and Brand (13
entries). For Attributes, we define a set of 8 regular
expressions to pre-label the dataset. Following pre-
vious works, we evaluate model performance using
token-level F1 score.

There are two options to estimate the value of
the class prior πp. One approach is to treat πp as a
hyperparameter which is fixed during training. An-
other option is suggested in Peng et al. (2019), who
specify an initial value for πp to start bootstrapping,
but recalculate πp after several train-relabel steps
based on the predicted entity type distribution. In
our work, we treated πp as a fixed hyperparameter
with a value of πp = 0.01.

We run our bootstrapping approach for I = 10
iterations, and report the F1 score of the best itera-
tion.

4.1 Results and Discussion

Table 1 shows the F1 scores of several model abla-
tions by entity type on our test dataset. From the
table, we can observe: 1) The PU algorithm outper-
forms the simpler models for most classes, which
demonstrates the effectiveness of the PU learning
framework for NER in our domain. 2) Dependency
parsing is a very effective feature for Component
and Product, and it strongly improves the overall
F1 score. 3) The iterative training strategy yields
a significant improvement for most classes. Even
after several iterations, it still finds new entries to
expand the dictionaries (Figure 3).

The Dictionary approach shows poor perfor-
mance on average, which is due to the low recall

3https://spacy.io/
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Entity Type Dictionary BiLSTM PU PU+Dep PU+Iter PU+Dep+Iter

Component 46.19 65.98 66.89 67.38 68.67 70.66
Product 16.78 60.23 60.24 65.05 60.24 67.07
Brand 49.74 74.06 74.84 76.24 76.24 76.24
Attribute 7.05 73.30 73.84 74.14 74.14 74.14

All 29.94 68.39 68.95 70.70 69.82 72.02

Table 1: Token-Level F1 scores on the test set. The unmodified PU algorithm achieves an average F1 score of
68.95%. Integrating dependency parsing (Dep) and iterative relabeling (Iter) raises the F1 score to 72.02%, an
improvement of 42.08% over a dictionary-only approach, and 3.63% over a BiLSTM baseline.

caused by very limited entities in the dictionary.
PU greatly outperforms the dictionary approach,
and has an edge in F1 score over the BiLSTM model.
The advantages of PU gradually accumulate with
each iteration. For Product, the combination of PU
learning, dependency parsing-based labeling, and
iterative bootstrapping, yields a 7% improvement
in F1 score, for Component, it is still 5%.

Figure 3: Recall curves of the BiLSTM+Dep and
PU+Dep model for Component, Product, Brand, and
Attribute. PU+Dep boosts recall by 3.03% on average,
with a max average difference of 4.96% after 5 itera-
tions.

PU Learning Performance Figure 3 shows that
the PU algorithm especially improves recall over
the baseline classifier for Components, Products
and Brands. With each iteration step, the PU model
is increasingly better able to predict unseen entities,
and achieves higher recall scores than the BiLSTM
model. While the baseline curve on Brands stays
almost flat during iterations, PU consistently im-
proves recall as new entities are added into dictio-
nary. For Attributes, however, both models exhibit
about the same level of recall, which in addition is
largely unaffected by the number of iterations.

This suggests that PU learning better estimates
the true loss in the model. In a fully supervised

setting, a standard classification loss function can
accurately describe the loss on positive and nega-
tive samples. However, in the positive unlabeled
setting, many unlabeled samples may actually be
positive, and therefore the computed loss should
not strongly push the model towards the negative
class. We therefore want to quantify how much the
loss is overestimated due to false negative samples,
so that we can appropriately reduce this loss using
the estimated real class distribution.

Error Analysis Both PU and the baseline model
in some cases have difficulties predicting Attributes
correctly. This can be due to spelling differences be-
tween train and test data (e.g. ”8 Mhz” vs ”8Mhz”),
but also because of unclean texts in the source doc-
uments. Another source of errors is the fixed word
piece vocabulary of the pre-trained BERT model,
which often splits unit terms such as ”Mhz” into
several word pieces. Since we use only the first
word piece of a token for prediction, this means
that signals important for prediction of the Attribute
class may get lost. This suggests that for technical
domains with very specific vocabulary, tokeniza-
tion is important to allow the model to better repre-
sent the meaning of each word piece.

5 Related work

Recent work in positive-unlabeled learning in
the area of NLP includes deceptive review detec-
tion (Ren et al., 2014), keyphrase extraction (Ster-
ckx et al., 2016) and fact check-worthiness de-
tection (Wright and Augenstein, 2020), see also
(Bekker and Davis, 2018) for a survey. Our ap-
proach extends the work of Peng et al. (2019) in
a novel domain and for challenging entity types.
In the area of NER for e-commerce, Putthividhya
and Hu (2011) present an approach to extract prod-
uct attributes and values from product listing titles.
Zheng et al. (2018) formulate missing attribute
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value extraction as a sequence tagging problem,
and present a BiLSTM-CRF model with attention.
Pazhouhi (2018) studies the problem of product
name recognition, but uses a fully supervised ap-
proach. In contrast, our method is semi-supervised
and uses only very few seed labels.

6 Conclusion

In this work, we introduce a bootstrapped, iterative
NER model that integrates a PU learning algorithm
for recognizing named entities in a low-resource
setting. Our approach combines dictionary-based
labeling with syntactically-informed label expan-
sion to efficiently enrich the seed dictionaries. Ex-
perimental results on a dataset of manually an-
notated e-commerce product descriptions demon-
strate the effectiveness of the proposed framework.
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Abstract

In an attempt to balance precision and recall
in the search page, leading digital shops have
been effectively nudging users into select cate-
gory facets as early as in the type-ahead sug-
gestions. In this work, we present Session-
Path, a novel neural network model that im-
proves facet suggestions on two counts: first,
the model is able to leverage session em-
beddings to provide scalable personalization;
second, SessionPath predicts facets by ex-
plicitly producing a probability distribution at
each node in the taxonomy path. We bench-
mark SessionPath on two partnering shops
against count-based and neural models, and
show how business requirements and model
behavior can be combined in a principled way.

1 Introduction

Modern eCommerce search engines need to work
on millions of products; in an effort to fight “zero
result” pages, digital shops often sacrifice precision
to increase recall1, relying on Learn2Rank (Liu,
2009) to show the most relevant results in the top
positions (Matveeva et al., 2006). While this strat-
egy is effective in web search, when users rarely
go after page one (Granka et al., 2004; Guan and
Cutrell, 2007), it is only partially successful in prod-
uct search: shoppers may spend time browsing sev-
eral pages in the result set and re-order products
based on custom criteria (Figure 1); analyzing in-
dustry data, up to 20% of clicked products occur
not on the first page, with re-ranking in approxi-
mately 10% of search sessions.

Leading eCommerce websites leverage machine
learning to suggest facets - i.e. product categories,
such as Video Games for “nintento switch” - during

1The “nintendo switch” query for a gaming console re-
turns 50k results on Amazon.com at the time of drafting this
footnote; 50k results are more products than the entire catalog
of a mid-size shop such as Shop 1 below.

Figure 1: Price re-ordering on Amazon.com, showing
degrading relevance in the result set when querying for
a console - “nintendo switch” - and then re-ranking
based on price.

type-ahead (Figure 2): narrowing down candidate
products explicitly by matching the selected cate-
gories, shops are able to present less noisy result
pages and increase the perceived relevance of their
search engine. In this work we present Session-
Path, a scalable and personalized model to solve
facet prediction for type-ahead suggestions: given
a shopping session and candidate queries in the
suggestion dropdown menu, the model is asked to
predict the best category facet to help users narrow
down search intent. A big advantage of Session-
Path is that it can complement any existing stack
by adding facet prediction to items as retrieved by
the type-ahead API.

We summarize the main contributions of this
work as follows:

• we devise, implement and benchmark sev-
eral models of incremental complexity (as
measured by features and engineering re-
quirements); starting from a non-personalized
count-based baseline, we arrive at Session-
Path, an encoder-decoder architecture that
explicitly models the real-time generation of
paths in the catalog taxonomy;
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Figure 2: Facet suggestions during type-ahead: shop-
pers can be nudged to pick a facet before querying, to
help the search engine present more relevant results.

• we discuss the importance of false positives
and false negatives in the relevant business
context, and provide decision criteria to adjust
the precision/recall boundary after training.
By combining the predictions of the neural
network with a decision module, we show how
model behavior can be tuned in a principled
way by human decision makers, without inter-
fering with the underlying inference process
or introducing ad hoc manual rules.

To the best of our knowledge, SessionPath is the
first type-ahead model that allows dynamic facet
predictions: linguistic input and in-session intent
are combined to adjust the target taxonomy depth
(sport / basketball vs sport / basketball / lebron)
based on real-time shopper behavior and model
confidence. For this reason, we believe the methods
and results here presented will be of great interest
to any digital shop struggling to strike the right
balance between precision and recall in a catalog
with tens-of-thousands-to-millions of items.

2 Less (Choice) is More: Considerations
From Industry Use Cases

The problem of narrowing down the result set be-
fore re-ranking is a known concern for mid-to-big-
size shops: as shown in Figure 1-A, a common
solution is to invite shoppers to select a category
facet when still typing. Aside from UX consider-
ations, restricting the result set may be beneficial
for other reasons. On one hand, decision science
proved that providing shoppers with more alterna-
tives is actually less efficient (the so-called ”para-
dox of choice” (Scheibehenne et al., 2010; Iyengar
and Lepper, 2001)) - insofar as SessionPath helps
avoiding unnecessary “cognitive load”, it may be a
welcomed ally in fighting irrational decision mak-
ing; on the other, by restricting result set through

Figure 3: Shoppers in Session A and Session B have
different sport intent, as shown by the products visited.
By combining linguistic and behavioral in-session data,
SessionPath provides in real-time personalized facet
suggestions to the same “nike” query in the type-ahead.

facet selection, the model may reduce the long-tail
effect of many queries on product visibility: when
results are too many and items frequently changed,
standard Learn2Rank approaches tend to penalize
less popular items (Abdollahpouri et al., 2017; An-
derson, 2006), which end up buried among noisy
results far from the first few pages and never collect
enough relevance feedback to rise through the top.

In this work, we extend industry best practices of
facet suggestion in type-ahead by providing a solu-
tion that is dynamic in two ways: i) given the same
query, session context may be used to provide a
contextualized suggestion (Figure 3); ii) given two
queries, the model will decide in real-time how
deep in the taxonomy path the proposed sugges-
tion needs to be (Figure 4): for some queries, a
generic facet may be optimal (as we do not want to
narrow the result set too much), for others a more
specific suggestion may be more suitable. Given
the natural trade-off between precision and recall at
different depths, Section 7.2 is devoted to provide
a principled solution.

3 Related Work

Facet selection. Facet selection is linked to query
classification on the research side (Lin et al., 2018;
Skinner and Kallumadi, 2019) and query scoping
on the product side, i.e. pre-selecting, say, the facet
color with value black for a query such as “black
basketball shoes” (Liberman and Lempel, 2014;
Vandic et al., 2013). Scoping may result in an ag-
gressive restriction of the result set, lowering recall
excessively: in most cases, an acceptable shopping
experience would need to combine scoping with
query expansion (Diaz et al., 2016). SessionPath
is more flexible than query classification, by sup-
porting explicit path prediction and incorporating
in-session information; it is more gentle than scop-
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ing (by nudging transparently the final user instead
of forcing a selection behind the scene); it is more
principled than expansion in balancing precision
and recall.

Deep Learning in IR. The development of deep
learning models for IR has been mostly restricted
to the retrieve-and-rerank paradigm (Mitra and
Craswell, 2017; Guo et al., 2016). Some recent
works have been focused specifically on ranking
suggestions for type-ahead: neural language mod-
els are proposed by Park and Chiba (2017); Wang
et al. (2018b); specifically in eCommerce, Kan-
nadasan and Aslanyan (2019) employs fastText to
represent queries in the ranking phase and Yu et al.
(2020) leverages deep image features for in-session
personalization. While this work employs deep
neural networks both for feature encoding and the
inference itself, the proposed methods are agnos-
tic on the underlying retrieval algorithm, as long
as platforms can enrich type-ahead response with
the predicted category. By providing a gentle en-
try point into existing workflows, a great product
strength of SessionPath is the possibility of deploy-
ing the new functionalities with minimal changes
to any architecture, neural or traditional (see also
Appendix A).

4 Problem Statement

Suggesting a category facet can be modelled with
the help of few formal definitions. A target shop
E has products p1, p2, ...pn ∈ P (e.g. nike air
max 97) and categories c1,1, c1,2, ...cn,m ∈ C,
where cn,m is the category n at depth m (e.g.
at m = 1, [soccer, volley, football, basketball],
at m = 2 [shoes, pants, t-shirts], etc.); a tax-
onomy tree Tm is an indexed mapping P 7→
Cm, assigning a category to products for each
depth m (e.g. air max 97 7→0 root,7→1 soc-
cer, 7→2 shoes, 7→3 messi etc.); root is the base
category in the taxonomy, and it is common to
all products (we will omit it for brevity in all our
examples). In what follows, we use path to de-
note a sequence of categories (hierarchically struc-
tured) in our target shop (e.g. root / soccer / shoes /
messi), and nodes to denote the categories in a path
(e.g. soccer is a node of soccer / shoes / messi).

Given a browsing session s containing products
px, py, ...pz, and a candidate type-ahead query q,
the model’s goal is to learn both the optimal depth
value m and, for each k ≤ m, a contextual function
f(q, s) 7→ Ck. As we shall see in the ensuing

Figure 4: Functional flow for SessionPath: the current
session and the candidate query “shoes” are embedded
and fed to the model; the distribution over possible cat-
egories at each step of the taxonomy is passed to a deci-
sion module, that either cuts the generation at that step
or includes the step in the final prediction. The deci-
sion process is repeated until either the module cuts or
a max-length path is generated.

section, SessionPath solution to this challenge is
two-fold: a model generating a path first, and a
decision module to pick the appropriate depth m
(Figure 4).

5 Baseline and Personalized Models

We approach the challenge incrementally, by first
developing a count-based model (CM) that learns
a mapping from queries to all paths (i.e. sport and
sport / soccer are treated purely as “labels”, so they
are two completely unrelated target classes for the
model); CM will both serve as a baseline for more
sophisticated methods and as a fast reference imple-
mentation not requiring any deep learning infras-
tructure. We improve on CM with SessionPath,
a model based on deep neural networks. From a
product perspective, it is important to remember
(Figure 4) that a decision module is called after a
path prediction is made: we discuss how to tune
this crucial part after establishing the general per-
formance of the proposed models.

5.1 A Baseline Model

The intuition behind the count-based model is that
we may gain insights on relevant paths linked to
a query from the clicks on search results. There-
fore, we can build a simple count-based model by
creating a map from each query in the search logs
to their frequently associated paths. To build this
map, we first retrieve all products clicked after each
query, along with their path; for a given query, we
can then calculate the percentage of occurrence
of each path in the clicked products. Since the

9



model is not hierarchical, it is important to note
that sport and sport / basketball will be treated as
completely disjoint target classes for the prediction.
To avoid noisy results, we empirically determined
a frequency threshold for paths to be counted as rel-
evant to a certain query (80%); at prediction time,
given a query in the training set, we retrieve all
the paths associated with it and return the one with
longest depth; for unseen queries, no prediction is
made.

5.2 Modelling Session Context and
Taxonomy Paths

The main conceptual improvements over CM are
three:

• SessionPath produces predictions also for
queries not in the training set;

• SessionPath introduces personalization, by
combining the linguistic information con-
tained in the query with in-session shopping
intent;

• SessionPath is trained to produce the most
accurate path by explicitly making a new pre-
diction at each node, not predicting paths in a
one-out-of-many scenario; in other words, Ses-
sionPath knows that sport and sport / basket-
ball are related, and that the second path is
generated from the first when a given distribu-
tion over sport activities is present.

To represent the current session in a dense archi-
tecture, we first train a skip-gram prod2vec model
over user data for the entire website, mapping
product to 50-dimensional vectors (Mikolov et al.,
2013a; Grbovic et al., 2015). At training and serv-
ing time SessionPath retrieves the embeddings of
the products in the target session, and use average
pooling to calculate the context vector from the
sequence of embeddings, as shown by Covington
et al. (2016); Yu et al. (2020). To represent the
candidate query, an encoding of linguistic behavior
that generalizes to unseen queries is needed. We
tested different strategies:

• word2vec: we train a skip-gram model
from Mikolov et al. (2013b) over product
short descriptions from the catalog. Since
most search queries are less than three words
long, we opted for a simple and fast average
pooling of the embeddings in the tokenized
query;

• character-based language model: inspired by
Skinner (2018), we train a char-based lan-
guage model (single LSTM layer with hid-
den dimension 50) on search logs and product
descriptions from the target shop; a standard
LSTM approach was found ineffective in pre-
liminary tests, so we opted instead for using
the “Balanced pooling” strategy from Skinner
and Kallumadi (2019), where the dense repre-
sentation for the query is obtained by taking
the last network state and then concatenating
it together with average-pooling (Wang et al.,
2018a), max-pooling, and min-pooling;

• pre-trained language model: we map the
query to a 768-size vector using BERT (De-
vlin et al., 2019) (as pre-trained for the target
language by Magnini et al. (2006));

• Search2Prod2Vec + unigrams: we propose a
“small-data” variation to Search2Vec by Gr-
bovic et al. (2016), where queries (on a web
search engine) are embedded through events
happening before and after the search event.
Adapting the intuition to product search, we
propose to represent queries through the em-
beddings of products clicked in the search
result page; in particular, each query q is
the weighted average of the corresponding
prod2vec embeddings; it can be argued that
the clicking event is analogous to a “pointing”
signal (Tagliabue and Cohn-Gordon, 2019),
when the meaning of a word (“shoes”) is
understood as a function from the string to
a set of objects falling under that concept
(e.g. Chierchia and McConnell-Ginet (2000)).
In the spirit of compositional semantics (Ba-
roni et al., 2014), we generalize this represen-
tation to unseen queries by building a unigram-
based language model, so that “nike shoes”
gets its meaning from the composition (aver-
age pooling) of the meaning of nike and shoes.

To generate a path explicitly, we opted for an
encoder-decoder architecture. The encoder em-
ploys the wide-and-deep approach popularized by
Cheng et al. (2016), and concatenates textual and
non-textual feature to obtain a wide representation
of the current context, which is passed through a
dense layer to represent the final encoded state. The
decoder is a word-based language model (Zoph and
Le, 2016) which produces a sequence of nodes (e.g.
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Shop Queries (with context) Products
Shop 1 270K (185K) 29.699
Shop 2 270K (227K) 93.967

Table 1: Descriptive statistics for the dataset.

sport, basketball, etc.) conditioned on the repre-
sentation created by the encoder; more specifically,
the architecture of the decoder consists of a sin-
gle LSTM with 128 cells, a fully-connected layer
and a final layer with softmax output activation.
The output dimension corresponds to the total num-
ber of distinct nodes found in all the paths of the
training data, including two additional tokens to
encode the start-of-sequence and end-of-sequence.
For training, the decoder uses the encoded infor-
mation to fill its initial cell states; at each timestep,
we use teacher forcing to pass the target charac-
ter, offset by one position, as the next input char-
acter to the decoder (Williams and Zipser, 1989).
Empirically, we found that robust parameters for
the deep learning methods are a learning rate of
0.001, time decay of 0.00001, early stopping with
patience = 20, and mini-batch of size 128; fur-
thermore, the Adam optimizer with cross-entropy
loss is used for all networks, with training up to
300 epochs. Once trained, the model can gener-
ate a path given an encoded session representation
and a start-of-sequence token: after the first step,
the decoder uses autoregression sequence gener-
ation (Bahdanau et al., 2015) to predict the next
output token.

6 Dataset

We leverage behavioral and search data from two
partnering shops in Company’s network: Shop 1
and Shop 2 have uniform data ingestion, making it
easy to compare how well models generalize; they
are mid-size shops, with annual revenues between
20 and 100 million dollars. Shop 1 and Shop 2
differ however in many respects: they are in differ-
ent verticals (apparel vs home improvement), they
have a different catalog structure (603 paths orga-
nized in 2-to-4 levels for each product vs 985 paths
in 3 levels for all products), and different traffic
(top 200k vs top 15k in the Alexa Ranking). De-
scriptive statistics for the training dataset can be
found in Table 1: data is sampled for both shops
from June-August in 2019; for testing purposes, a
completely disjoint dataset is created using events
from the month of September.

Model D=1 D=2 D=last
CM 0.63 0.53 0.22
MLP+BERT 0.72 0.59 0.33
SP+BERT 0.77 0.64 0.40
SP+LSTM 0.79 0.68 0.43
SP+W2V 0.82 0.71 0.46
SP+SV 0.87 0.79(0.01) 0.55
CM 0.41 0.34 0.24
MLP+BERT 0.61 0.50 0.39
SP+BERT 0.66 0.55 0.45
SP+LSTM 0.67 0.57 0.46
SP+W2V 0.69 0.59 0.47
SP+SV 0.80 0.71 0.59

Table 2: Accuracy scores for depth = 1, depth = 2,
depth = last, divided by Shop 1 (top) and Shop 2
(bottom). We report the mean over 5 runs, with SD if
SD ≥ 0.01.

7 Experiments

We perform offline experiments using search logs
for Shop 1 and Shop 2: for each search event in
the dataset, we use products seen before the query
(if any) to build a session vector as explained in
Section 5.2; the path of the products clicked after
the query is used as the target variable for the model
under examination.

7.1 Making predictions

We benchmark CM and SessionPath from Sec-
tion 5, plus a multi-layer perceptron (MLP) to in-
vestigate the performance of an intermediate model:
while not as straightforward as CM, MLP is con-
siderably easier to train and serve than Session-
Path and it may therefore be a compelling archi-
tectural choice for many shops (see Appendix A
for practical engineering details); MLP concate-
nates the session vector with the BERT encoding
of the candidate query, and produces a distribution
over all possible full-length paths (one-out-of-many
classification, where the target class comprises all
the paths at the maximum depth for the catalog at
hand). Table 2 shows accuracy scores for three dif-
ferent depth levels in the predicted path: SP+BERT
is SessionPath using BERT to encode linguistic
behavior, SP+W2V is using word2vec, SP+SV is
using Search2Prod2Vec and SP+LSTM is using
the language model. Every SessionPath variant
outperforms the count-based and neural baselines,
with Search2Prod2Vec providing up to 150% in-
crease over CM and 67% over MLP. CM score is
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penalized not only by the inability to generalize to
unseen queries: even when considering previously
seen queries in the test set, SP+SV’s accuracy is
significantly higher (0.58 vs 0.27 at D = last),
showing that neural methods are more effective
in capturing the underlying dynamics. Linguis-
tic representations learned directly over the tar-
get shop outperform bigger models pre-trained
on generic text sources, highlighting some differ-
ences between general-purpose embeddings and
shop-specific ones, and suggesting that off-the-
shelf NLP models may not be readily applied to
short, keyword-based queries. While fairly accu-
rate, SP+W2V is much slower to train compared
to SP+SV and harder to scale across clients, as it
relies on having enough content in the catalog to
train models that successfully deal with shop lingo.
On a final language-related note, it is worth stress-
ing that click-based embeddings built for SP+SV
show not just better performance over seen queries
(which is expected), but better generalization abil-
ity in the unseen part as well compared to BERT
embeddings (0.82 vs 0.70 at D = 1 for Shop 1,
0.76 vs 0.63 for Shop 2).

In the spirit of ablation studies, we re-
run SP+SV and SP+BERT without session vec-
tor. Interestingly enough, context seems to play
a slightly different role in the two shops and the
two models: SP+BERT is greatly helped by con-
textual information, especially for unseen queries
(0.28 vs 0.21 at D = last for Shop 1, 0.40 vs 0.15
for Shop 2), but the effect for SP+SV is smaller
(0.50 vs 0.42 for Shop 2); while models on Shop 2
show a bigger drop in performance when removing
session information, generally (and unsurprisingly)
session-aware models provide better generalization
on unseen queries across the board. By comparing
SessionPath with a simpler neural model (such
as MLP), it is clear that session plays a bigger
role in MLP, suggesting that SessionPath architec-
ture is able to better leverage linguistic information
across cases.

Finally, we investigate sample efficiency of cho-
sen methods by training on smaller fractions of
the original training dataset: Table 3 reports ac-
curacy of four methods when downsampling the
training set for Shop 1 to 1/10th and 1/4th of the
dataset size. CM’s inability to generalize cripples
its total score; MLP is confirmed to be simple yet
effective, performing significantly better than the
count-based baseline; SP+SV is confirmed to be

Model (D=last) 1/10 1/4
CM 0.18 0.20
MLP+BERT 0.28 0.30
SP+BERT 0.31 0.34
SP+SV 0.51 0.53

Table 3: Accuracy scores (D=last) when training on
portions of the original dataset for Shop 1.

the best performing model, and even with only
1/10th of samples outperforms all other models
from Table 2: by leveraging the bias encoded in
the hierarchical structure of the products, SP+SV
allows paths that share nodes (sport, sport / basket-
ball) to also share statistical evidence, resulting in
a very efficient learning.

Accuracy provides a strong argument on the effi-
cacy of the proposed models in industry, and it is
in fact widely employed in the relevant literature:
Vandic et al. (2013) employs click-based accuracy
for label prediction, while Molino et al. (2018)
(in a customer service use cases) uses accuracy at
different depths for sequential predictions that are
somewhat similar to SessionPath. However, accu-
racy by itself falls short to tell the whole story on
product decisions: working with Coveo’s clients, it
is clear that not all shops are born equal - some (e.g.
mono-brand fashion shops) strongly favor a smaller
and cleaner result page; others (e.g. marketplaces)
favor bigger, even if noisier, result sets. Section 7.2
presents our contribution in analyzing the business
context and proposes viable solutions.

7.2 Tuning the decision module

Consider the two possible decisions in the scenario
depicted in Figure 5: given “nike shoes” as query
and basketball shoes as session context, Session-
Path prediction is shoes / nike / basketball. Ac-
cording to scenario 1, a decision is made to cut the
path at shoes / nike: the resulting set of products
contain a mixed set of shoes from the target brand,
with no specific sport affinity; in scenario 2, the
decision module allows the prediction of a longer
path, shoes / nike / basketball: the result page is
smaller and only contains basketball shoes of the
target brand. Intuitively, a perfect model would
choose 2 only when it is “confident” of the underly-
ing intention, as expressed through the combination
of language and behavioral clues; when the model
is less confident, it should stick to 1 to avoid hiding
from the shopper’s possible interesting products.
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Figure 5: Two scenarios for the decision module af-
ter SessionPath generates the shoes / nike / basketball
path, with input query “nike shoes” and Lebron James
basketball shoes in the session. In Scenario 1 (blue),
we cut the result set after the second node - shoes / nike
- resulting in a mix set of shoes; in Scenario 2 (red), we
use the full path - shoes / nike / basketball - resulting in
only basketball shoes (dotted line products). How can
we define what is the optimal choice?

To quantify how much confident the model is
at any given node in the predicted path, at each
node sn we output the multinomial distribution d
over the next node sn+1

2 and calculate the Gini
coefficient of d, g(d):

g(d) =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x̄

(GI)

where n is the total number of classes in the
distribution d, xi is the probability of the class i
and x̄ is the mean probability of the distribution.

Once GI = g(d) is computed, a decision rule
DR(GI) for the decision module in Figure 4 is
given by:

DR(x) =

{
1 if x ≥ ct

0 otherwise

where 1 means that the module is confident
enough to add the node to the final path that will
be shown to the user, while 0 means the path gen-
eration is stopped at the current node. ct is our
confidence threshold: since different values of ct
imply more or less aggressive behavior from the
model, it is important to tune ct by taking into
account the relevant business constraints.

2Non-existent paths account for less then 0.005% of all
the paths in the test set, proving that SessionPath is able to
accurately learn transitions between nodes and suggesting that
an explicit check at decision time is unnecessary. Of course,
if needed, a “safety check” may be performed at query time
by the search engine, to verify that filtering by the suggested
path will result in a non-empty set.

Gini Threshold Precision Recall
0.996 0.65 0.99
0.993 0.82 0.91
0.990 0.93 0.77
0.980 0.99 0.74

Table 4: Precision and recall at different decision
thresholds for Shop 1.

Due to the contextual and interactive nature of
SessionPath, we turn search logs into a “simula-
tion” of the interactions between hypothetical shop-
pers and our model (Kuzi et al., 2019). In particu-
lar, for any given search event in the test dataset -
comprising products seen in the session, the actual
query issued, all the products returned by the search
engine, the products clicked from the shopper in
the result page -, and a model prediction (e.g. sport
/ basketball), we construct two items:

• golden truth set: which is the set of the
paths corresponding to the items the shopper
deemed relevant in that context (relevance is
therefore assessed as pseudo-feedback from
clicks);

• filtered result set: which is the set of prod-
ucts returned by the engine, filtering out those
not matching the prediction by the model (i.e.
simulating the engine is actually working with
the categories suggested by SessionPath).

With the golden truth set, the filtered result set
and the original result page, we can calculate preci-
sion and recall at different values of ct (please refer
to Appendix B for a full worked out example).

Table 4 reports the chosen metrics calculated
for Shop 1 at different values of ct; the trade-off
between the two dimensions makes all the point
Pareto-optimal: there is no way to increase perfor-
mance in one dimension without hurting the other.
Going from the first configuration (ct = 0.996)
to the second (ct = 0.993) causes a big jump in
the metric space, with the model losing some re-
call to gain considerably in precision. To get a
sense of how the model is performing in practice,
Figure 6 shows three sessions for the query “nike
shoes”: when session context is empty (session 1),
the model defaults to the broadest category (sneak-
ers); when session is running-based or basketball-
based, the model adjusts its aggressiveness depend-
ing on the threshold we set. It is interesting to
note that while the prediction for 2 at ct = 0.97 is
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wrong at the last node (product is a7, not a3), the
model is still making a reasonable guess (e.g. by
guessing sport and brand correctly).

In our experience, the adoption of data-driven
models in traditional digital shops is often received
with some skepticism over the “supervision” by
business experts (Baer and Kamalnath, 2017): a
common solution is to avoid the use of neural net-
works, in favor of model interpretability. Session-
Path’s decision-based approach dares to dream a
different dream, as the proposed architecture shows
that we can retain the accuracy of deep learning
and still provide a meaningful interface to busi-
ness users – here, in the form of a precision/recall
space to be explored with an easy-to-understand
parameter.

8 Conclusions and Future Work

This research paper introduced SessionPath, a per-
sonalized and scalable model that dynamically sug-
gests product paths in type-ahead systems; Session-
Path was benchmarked on data from two shops
and tested against count-based and neural models,
with explicit complexity-accuracy trade-offs. Fi-
nally, we proposed a confidence-based decision
rule inspired by customer discussions: by abstract-
ing away model behavior in one parameter, we wish
to solve the often hard interplay between business
requirements and machine behavior; furthermore,
by leveraging a hierarchical structure of product
concepts, the model produces predictions that are
suitable to a prima facie human inspection (e.g.
Figure 6).

While our evaluation shows very encouraging
results, the next step will be to A/B test the pro-
posed models on a variety of target clients: Shop 1
and Shop 2 data comes from search logs of a last-
generation search engine, which possibly skewed
model behavior in subtle ways. With more data, it
will be possible to extend the current work in some
important directions:

1. while this work showed that SessionPath is
effective, the underlying deep architecture can
be improved further: on one hand, by do-
ing more extensive optimization; on the other,
by focusing on how to best perform linguis-
tic generalization: transfer learning (between
tasks as proposed by Skinner and Kallumadi
(2019), or across clients, as described in Yu
et al. (2020)) is a powerful tool that could be
used to improve performances further;

Figure 6: Sample SessionPath predictions for the can-
didate query “nike shoes”, with two thresholds (gray,
green) and three sessions, 1, 2, 3 (no product for ses-
sion 1, a pair of running shoes for 2, a pair of basket-
ball shoes for 3). The model reacts quickly both across
sessions (switching to relevant parts of the underlying
product catalog) and across threshold values, making
more aggressive decisions at a lower value (green).

2. the same model can be applied with almost no
changes to the search workflow, to provide
a principled way to do personalized query
scoping. A preliminary A/B test on Shop
1 using the MLP model on a minor catalog
facet yielded a small (2%) but statistically
significant improvement (p < 0.05) on click-
through rate and we look forward to extending
our testing;

3. we could model path depth within the decoder
itself, by teaching the model when to stop; as
an alternative to learning a decision rule in
a supervised setting, we could leverage rein-
forcement learning and let the system improve
through iterations - in particular, the choice of
cutting the path for a given query and session
vector could be cast in terms of contextual
bandits;

4. finally, precision and recall at different depths
are just a first start; preliminary tests with bal-
anced accuracy on selected examples show
promising results, but we look forward to per-
forming user studies to deepen our understand-
ing of the ideal decision mechanism.

Personalization engines for digital shops are ex-
pected to drive an increase in profits by 15% by
the end of 2020 (Gillespie et al., 2018); facet sug-
gestions help personalizing the search experience
as early as in the type-ahead drop-down window:
considering that search users account globally for
almost 14% of the total revenues (Charlton, 2013),
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and that category suggestions may improve click-
through-rate and reduce cognitive load, Session-
Path (and similar models) may play an important
role in next-generation online experiences.
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A Architectural Considerations

Figure 7 represents a functional overview of a type-
ahead service: when User X on a shop starts typing
a query after browsing some products, the query
seed and the session context are sent to the server.
An existing engine - traditional or neural - will
then take the query and the context and produce a
list of top-k query candidates, ranked by relevance,
which are then sent back to the client to populate
the dropdown window of the search bar.
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Figure 7: High-level functional overview of an industry
standard API for type-ahead suggestions: query seed
and possibly session information about the user are sent
by the client to the server, where some retrieval and
re-ranking module produces the final top-k suggestions
and prepares the response for front-end consumption.

As depicted in Figure 8, category suggestions
can be quickly added to any existing infrastructure
by treating the current engine as a “black-box” and
adding path predictions at run-time for the first (or
the first k, since requests to the model at that point
can be batched with little overhead) query candi-
date(s). In this scenario, the decoupling between
retrieval and suggestions is absolute, which may
be a good idea when the stacks are very different
(say, traditional retrieval and neural suggestions),
but less extreme solutions are obviously possible.
The crucial engineering point is that path prediction
(using any of the methods from Section 7) can be
added and tested quickly, with few conceptual and
engineering dependencies: the more traditional the
existing stack, the more an incremental approach is
recommended: count-based first - since predictions
can be served simply from an in-memory map -,
MLP second - since predictions require a small
neural network, but they are fast enough to only
require CPU at query time -, and finally the full Ses-
sionPath - which requires dedicated hardware con-
siderations to be effective in the time constraints of
the type-ahead use case. As a practical suggestion,
we also found quite effective when using simpler
models (e.g. MLP) to first test it at a given depth:
for example, you start by only classifying the most
likely nodes in template sport / ?, and then incre-
mentally increase the target classes by adding more
diverse paths.

Adding a lightweight wrapper around the origi-
nal bare-bone endpoint allows for other improve-
ments as well: for example, considering typical
power-law of query logs, a caching layer can be
used to avoid a full retrieving-and-rerank iteration
for frequent queries; obviously, this and similar
features are independent from SessionPath itself.

Figure 8: A lightweight SessionPath functional inte-
gration: starting from a standard flow (Figure 7, a sim-
ple wrapper around the existing module sends the same
session information and the top-n suggestions to Ses-
sionPath, for dynamic path prediction. The final re-
sponse is then obtained by simply augmenting the exist-
ing response containing query candidates with category
predictions.

Figure 9: A sample row in the test set, displaying
search results (7 products in 4 paths) for the query
“shoes” and a session containing a pair of LeBron
James basketball shoes. In this example, the shopper
clicked on products P1 and P4.

B Metrics Calculation: a Worked-Out
Example

For the sake of reproducibility, we present a worked
out example of metrics calculations for offline test-
ing of the decision module (Section 7.2). Figure 9
depicts an historical interaction from the search
logs: a session containing a product, a query is-
sued by the user and the search result page (“serp”),
containing seven items belonging to the following
paths:

P1 = sport / basketball / lebron
P2 = sport / basketball / lebron
P3 = sport / basketball / lebron
P4 = sport / running / sneakers
P5 = sport / basketball / jerseys
P6 = sport / basketball / curry
P7 = sport / running / sneakers.
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Click-through data (i.e. products in the
serp clicked by the user) indicates that P1

and P4 are relevant, and so the associated
paths are ground truths (sport/basketball/lebron
and sport/running/sneakers). We now present the
full calculations in three scenarios, corresponding
to three level of depths in the predicted path.

Scenario 1 (general): prediction is sport. In this
case, result set would be intact, so: True Positives
(TP) are P1, P2, P3, P4, P7, False Positives (FP)
are P5, P6, False Negatives (FN) are ∅. Precision
is: TP / (TP + FP) = 5/(5 + 2) = 0.71, Recall is:
TP / (TP + FN) = 5/(5+0) = 1.0 (with no cut, all
truths are retrieved so 1.0 is the expected result).

Scenario 2 (intermediate): prediction is
sport/basketball. In this case, filtering the
result set according to the decision made by the
model would give P1, P2, P3, P5, P6 as the final set.
So: TP = P1, P2, P3, FP = P5, P6, FN = P4, P7; Pre-
cision = 3/(3+2) = 0.6, Recall = 3/(3+2) = 0.6.

Scenario 3 (specific): prediction is sport / bas-
ketball / lebron. In this case, filtering the re-
sult set according to the decision made by the
model would give P1, P2, P3 as the final set. So:
TP = P1, P2, P3, FP = ∅, FN = P4, P7; Preci-
sion = 3/(3 + 0) = 1.0, Recall = 3/(3 + 2) = 0.6.

The full calculations show very clearly the natu-
ral trade-off discussed at length in Section 7.2: the
deeper the path, the more precise are the results
but also the higher the chance of hiding valuable
products from the shopper.
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Abstract 

Alternative recommender systems are critical for 
ecommerce companies. They guide customers to 
explore a massive product catalog and assist 
customers to find the right products among an 
overwhelming number of options. However, it is 
a non-trivial task to recommend alternative 
products that fit customers’ needs. In this paper, 
we use both textual product information (e.g. 
product titles and descriptions) and customer 
behavior data to recommend alternative products. 
Our results show that the coverage of alternative 
products is significantly improved in offline 
evaluations as well as recall and precision. The 
final A/B test shows that our algorithm increases 
the conversion rate by 12% in a statistically 
significant way. In order to better capture the 
semantic meaning of product information, we 
build a Siamese Network with Bidirectional 
LSTM to learn product embeddings. In order to 
learn a similarity space that better matches the 
preference of real customers, we use co-compared 
data from historical customer behavior as labels 
to train the network. In addition, we use NMSLIB 
to accelerate the computationally expensive kNN 
computation for millions of products so that the 
alternative recommendation is able to scale across 
the entire catalog of a major ecommerce site. 

1 Introduction 

Recommender systems are pervasive in 
ecommerce and other web systems (Zhang et al. 
2019). Alternative product recommendation is an 
important way to help customers easily find the 
right products and speed up their buying decision 
process. For example, if a customer is viewing a 
“25.5 cu. ft. Counter Depth French Door 
Refrigerator in Stainless Steel”, she may also be 
interested in other french door refrigerators in 
different brands but with similar features such as 
capacity, counter depth, material, etc. 
 There are two main ways to obtain an 
alternative product list for a given product. First 
is a content-based recommendation approach. If 
two products have similar attributes or content so  
 
 

 
 
that one can be replaced by the other, we can 
consider them as alternative products. Word2vec  
has been used to learn item embeddings for 
comparing item similarities (Caselles-Dupre, 
Lesaint, and Royo-Letelier 2018). However, this 
unsupervised learning process does not guarantee 
the embedding distance is consistent with 
customers’ shopping preference. The second way 
is to leverage customer behavior to find 
alternative products in the style of item-to-item 
collaborative filtering (Linden, Smith, and York 
2003). If customers frequently consider two 
products together, one product can be 
recommended as an alternative for the other. 
Unfortunately, this approach has a cold start 
problem. 
 In this work, we formulate the recommendation 
problem into a supervised product embedding 
learning process. To be specific, we develop a 
deep learning based embedding approach using 
Siamese Network, which leverages both product 
content (including title and description) and 
customer behavior to generate Top-N 
recommendations for an anchor product. Our 
contributions are as follows: 

• Recommend alternative products using 
both product textual information and 
customer behavior data. This allows us to 
better handle both the cold start and 
relevancy problems. 

• Use a Bidirectional LSTM structure to 
better capture the semantic meaning of 
product textual information.  

• Build a Siamese Network to incorporate 
co-compared customer behavior data to 
guide the supervised learning process and 
generate a product embedding space that 
better matches customer’s preference. 

• Our model outperforms baselines in both 
offline validations and an online A/B test. 
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2 Problem Formulation 

We have the textual information 𝑇 = {𝑥!, … , 𝑥"} 
(a concatenation of product title and description) 
of a catalog of products 𝑃 = {𝑝!, … , 𝑝"} to make 
recommendations. The goal of the alternative 
recommendation is to learn a embedding 
projection function 𝑓#  so that the embedding of 
an anchor product that is viewed by a customer 
𝑓#(𝑥$)  is close to the embeddings of its 
alternatives 𝑓#(𝑥%) . In this paper, we use the 
cosine similarity between the embeddings of 
𝑓#(𝑥$) and 𝑓#(𝑥%)  as the energy function. 

𝐸# =
〈'!()")	,'!()#)	〉
‖'!()")	‖‖'!()#)	‖

        (1) 

The problem is how to learn a function as the 
embedding projection function 𝑓#  to better 
capture the semantic meanings of the product 
textual information and project a sequence of 
tokens 𝑥/ 	into an embedding vector of size d. The 
total loss over the training data set 𝑋 =
0𝑥$

(/), 𝑥%
(/), 𝑦(/)2 is given by 

𝐿#(𝑋) = ∑ 𝐿#
(/)(0

/1! 𝑥$
(/), 𝑥%

(/), 𝑦(/))    (2)                                     

where the instance loss function 𝐿#
(/)  is a 

contrastive loss function. It consists of a term 
𝐿2	for the positive cases (𝑦(/) = 1), where the 
product pair are alternative to each other. In 
addition, it consists of a term 𝐿3	for the negative 
cases (𝑦(/) = 0), where the product pair are not 
often considered together by customers. 

𝐿!
(#) = 𝑦(#)𝐿%$𝑥&

(#), 𝑥'
(#)' + (1 − 𝑦(#))𝐿((𝑥&

(#), 𝑥'
(#))  (3) 

The loss functions for the positive and negative 
cases are given by:  

𝐿2 7𝑥$
(/), 𝑥%

(/)8 = |1 − 𝐸#|      (4)                                      

𝐿($𝑥&
(#), 𝑥'

(#)' = -|𝐸𝑤|				𝑖𝑓	𝐸! > 0
		0						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

       (5)                               

Based on the loss function, the problem is how to 
build a network that can learn part of the product 
information that is important for customers and 
project a product to the right embedding space that 
is consistent with customers’ preference. 

3 Deep Learning Embedding Approach 

Textual Data and Co-compared Data 
Product Information: From the ecommerce site 
catalog data, we extract the product ID, product 
title and description as the raw textual data with 
an example in Table 1.  
 

Product ID Product Title Product Description 

‘12345678’ 
60 Gal. Electric 
Air Compressor 

This compressor offers a solid 
cast iron, twin cylinder 
compressor pump for extreme 
durability. It also offers 135 
psi maximum pressure and air 
delivery 11.5/10.2 SCFM at 
40/90 psi.  

 Table 1. Product Textual Data 
Co-compared Data: Customers can select several 
products on a search result page for co-
comparison to verify how they are similar and 
different based on their features. Those products 
are considered alternative to each other. The co-
compared is a strong signal of the similarity 
between products within same product taxonomy. 
We extract co-compared data from clickstream to 
create the training data. Some examples of the co-
compared data are shown in Table 2. 
   

Product ID Product ID Co-compared 

‘12345678’ ‘87654321’ 1 

‘32187654’ ‘54321876’ 1 

Table 2. Co-compared Example 

Siamese Network with Bidirectional LSTM 

 

 

 

 

 

 
 

Fig. 1 Siamese Network with Bidirectional LSTM 
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We build a Siamese Network (Bromley et al. 
1994) with Bidirectional LSTM (Graves and 
Schmidhuber 2005) components to learn and 
generate embeddings for all products. The 
product embedding space better captures the 
semantic meaning of the product textural 
information and customer preferences. Textual 
data are in a sequential format and the order of the 
texts matters for the network. We choose 
Bidirectional LSTM to learn representation in 
both directions from the input sequences. We use 
Keras with TensorFlow to build and train the 
network. We choose RMSprop (Hinton et al. 
2012) as the optimizer. The loss function is the 
binary cross entropy. The network architecture is 
shown in Figure 1. 

Creating Training Data by Sampling 
 

 
Fig. 2 Connected Graphs 

Positive and negative sampling: we filter out the 
products without titles and/or descriptions from 
the co-compared data. We form a connected graph 
from the co-compared product pairs. For example, 
if product A and B are co-compared and product 
B and C are co-compared, then (A, B, C) forms a 
connected graph. If products D and E are co-
compared and E and F are co-compared, then (D, 
E, F) forms a connection graph. We create positive 
samples for each product by randomly sampling 
another product within the same set, e.g. [A, C, 1]. 
We also create negative samples for each product 
in a connected graph by randomly sampling a 
different connected graph first, then randomly 
sampling a product in that graph, e.g. [A, D, -1], 
as shown in Figure 2.  
 

How many data 
points 

How many 
products 

What’s the time 
period (year) 

331900 65684 1 

Table 3. Training Data Statistics 
 

 The negative sampling space is much larger 
than the positive sampling space because only a 
small number of products are frequently co-
compared together by our customers. Thus, for 
each anchor product, we sample more negative 
samples than positive samples. Based on our 
experiments and empirically analysis, for each 

positive sample, three negative samples are 
created which gives the best performance on the 
validation loss when training the model. The 
statistics of the training data is shown in Table 3. 

Training the Model and Generating 
Embeddings 
The Siamese Network training process takes about 
10 hours to converge. The next step is to load the 
best model weights to generate product 
embeddings. Specifically, from the Siamese 
Network, we remove the last cosine similarity 
layer and the second input branch which processes 
the second product of the product pairs. We only 
use the Embedding layer and the Bidirectional 
LSTM layer. The final result is the concatenation 
of the hidden state of the product title and the 
hidden state of the product description. 

Scalable Recommendation Generation 
We generate millions of embeddings based on 
product titles and descriptions. For each product, 
the task is to compute distances with the rest of 
millions of product embeddings using a similarity 
metric, e.g. cosine similarity, and rank the 
similarity scores from higher to lower to get the 
Top-N recommended products. According to the 
detailed analysis from (Aumüller et al. 2019), we 
choose NMSLIB (Boytsov et al. 2016) library to 
conduct heavy kNN computations because it has 
high performance in both recall and queries per 
second.  

4 Performance Evaluation  

In this section, we describe how we evaluate the 
effectiveness and efficiency of our deep learning 
model with offline evaluation and online A/B test. 
We use our production data to validate the results 
since this is a unique case for us. We did not find 
exact similar open data set with similar customer 
behaviors that can be used for our evaluation.  

Algorithms: 
1) Baseline 1: Attributed Based 
This baseline algorithm uses product attributes to 
generate recommendations. The attributes contain 
numerical and categorical data. The categorical 
features are converted into numerical format using 
one-hot encoding. The distance between two 
products is computed using cosine similarity. This 
is the content-based method we compare with.  
2) Baseline 2: Frequently Compared 
This baseline algorithm uses the actual customer 
co-compared data. The recommendations are 
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ranked by the co-comparison counts. Due to the 
cold-start problem, many products in the catalog 
do not have such recommendations even we create 
labels from the co-compared data. This is the 
collaborative filtering method we compare with 
since it’s based on item-to-item relationships built 
by customer browsing behaviors.  
3) Proposed: Deep Learning Based 
For Deep Learning Based, we choose 0.8 as the 
cutting threshold for the cosine similarity score. 
This threshold is selected and validated based on 
the judgement from our human expert validators 
after they examine thousands of random sampled 
anchors from the catalog data and the 
recommendations generated from our model. We 
only keep the recommendations that have at least 
0.8 similarity with each anchor product. 

Offline Evaluation: 
1) Precision and Recall:  

 Precision Recall 

 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 

Attribute Based 0.23% 0.13% 0.10% 0.15% 0.34% 0.33% 

Frequently Compared 0.75% 0.51% 0.47% 0.51% 0.93% 1.02% 

Deep Learning Based 1.47% 0.81% 0.61% 0.91% 2.08% 2.59% 

Table 4. Precision and Recall 

Comparison 1:  

Two weeks of actual customer purchase data from 
clickstream data is used to evaluate the 
performance of all 3 algorithms based on precision 
and recall. There are total 1.1 million purchase 
sessions. In this comparison, we use the raw data 
regardless if each session has all two baselines. 
This is a fair comparison since not all anchors can 
be covered by both algorithms. For example, a 
product may not have the same set of attributes as 
other products so this product cannot be covered 
by Attributed Based algorithm. This is because 
there are vast variants of similar products without 
same set of attributes. Another scenario is that this 
product has never been compared with other 
products by our customers so this product cannot 
be covered by Frequently Compared algorithm. 
For the Deep Learning Based, we compare its 
recommendations with the purchased items. Table 
4 shows our algorithm performs much better than 
the baseline algorithms for all top 1, 5, and 10 
items precision and recall scores, especially for 

precision top 1, recall top 5 and top 10. The main 
reasons are: i) Frequently Compared recommends 
co-compared products by customers and only 
covers small sets of products; ii) Attributed Based 
approach has a higher coverage but a lower 
relevancy. 

Comparison 2:  

In this comparison, we select sessions that have 
both Attributed Based and Frequently Compared. 
Table 5 shows our Deep Learning Based still 
performs much better than Attributed Based but 
not Frequently Compared. The reason is that the 
label we used to train our model is from co-
compared data, so our model has the upbound 
from Frequently Compared’s performance. This 
experiment validated our hypothesis.  

 Precision Recall 

 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 

Attribute Based 0.21% 0.13% 0.12% 0.16% 0.31% 0.34% 

Frequently Compared 2.48% 1.81% 1.75% 1.65% 2.65% 2.76% 

Deep Learning Based 1.72% 0.90% 0.67% 1.09% 2.33% 2.85% 

Table 5. Precision and Recall 

2) Coverage: The anchor coverages of all the 
algorithms are also computed. The Attributes 
Based and Frequently Compared approaches 
cover 31.5% and 47.1% of anchors, respectively, 
and those two numbers are increased to 81.2% 
and 83.4% with the incremental increase from our 
Deep Learning Based approach. Since most of our 
products have titles and descriptions, so our Deep 
Learning Based significantly boosts the coverage 
of anchor products from our catalog to have good 
recommendations. 

Online A/B Testing: 

Conversion Rate: The A/B test was run for three 
weeks and success was measured using 
conversion rate. Conversion rate is the number of 
purchases divided by number of visits which 
captures the similarity between anchor and 
recommendations. Our deep learning model 
outperforms the existing hybrid algorithm which 
combined Attribute Based and Frequently 
Compared with a 12% higher conversion rate. 
This is a very successful test for our business. 
We’re implementing the deep learning algorithm 
on our production site.  

22



 

 
 
 

 
5 Related Work 

The traditional method for recommender systems 
is content-based recommendations (Lops et al. 
2011). This method can handle the cold start 
problem well. Collaborative Filtering is another 
method based on user behaviors. For example, 
Matrix Factorization (Koren et al. 2009) is a 
widely used method for collaborative filtering. 
Our two baseline algorithms, one is considered as 
content-based and the other is considered as 
collaborative filtering using user behavior data 
with the co-compared format.  Deep learning now 
has been widely used not only in the academic 
community, but also in industrial recommender 
system settings, such as Airbnb’s listing 
recommendations (Grbovic and Cheng 2018) and 
Pinterest’s recommendation engine (Ying et al. 
2018). Most of recent deep learning papers (e.g., 
Wang et al. 2019; Ebesu, Shen, and Fang 2018) 
have been focused on sequential 
recommendations. (Neculoiu et al. 2016) presents 
a deep network using Siamese architecture with 
character-level Bidirectional LSTM for job title 
normalization. (Mueller and Thyagarajan 2016) 
also presents a Siamese adaptation of the LSTM to 
learn sentence embedding. However, this work 
needs human annotated labels while our labels are 
extracted from clickstream data.  Our work more 
focuses on providing alternative recommendations 
by learning product embedding from product 
textual data and customer signals.  

6 Conclusion 

Recommender Systems are core functions for 
online retailers to increase their revenue. To help 
customers easily find alternative products in an 
automated way, we develop a deep learning 
approach to generate product embeddings based 
on a Siamese Network with Bidirectional LSTM. 
We extract co-compared data from customer 
clickstream and product textual data to train the 
network and generate the embedding space. Our 
approach significantly improves the coverage of 
similar products as well as improving recall and 
precision. Our algorithm also shows promising 
results on conversion rate in an online A/B test.  
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Abstract

Sentiment analysis is crucial for the advance-
ment of artificial intelligence (AI). Sentiment
understanding can help AI to replicate hu-
man language and discourse. Studying the
formation and response of sentiment state
from well-trained Customer Service Represen-
tatives (CSRs) can help make the interaction
between humans and AI more intelligent.

In this paper, a sentiment analysis pipeline
is first carried out with respect to real-world
multi-party conversations - that is, service
calls. Based on the acoustic and linguistic fea-
tures extracted from the source information, a
novel aggregated method for voice sentiment
recognition framework is built. Each party’s
sentiment pattern during the communication
is investigated along with the interaction sen-
timent pattern between all parties.

1 Introduction

The natural reference for AI systems is human be-
havior. In human social life, emotional intelligence
is important for successful and effective communi-
cation. Humans have the natural ability to compre-
hend and react to the emotions of their communica-
tion partners through vocal and facial expressions
(Kotti and Paternò, 2012; Poria et al., 2014a). A
long-standing goal of AI has been to create affec-
tive agents that can recognize, interpret and express
emotions.
Early-stage research in affective computing and
sentiment analysis has mainly focused on under-
standing affect towards entities such as movie,
product, service, candidacy, organization, action
and so on in monologues, which involves only one
person’s opinion. However, with the advent of
Human-Robot Interaction (HRI) such as voice as-
sistants and customer service chatbots, researchers
have started to build empathetic dialogue systems
to improve the overall HRI experience by adapting
to customers’ sentiment.

Sentiment study of Human-Human Interactions
(HHI) can help machines identify and react to hu-
man non-verbal communication which makes the
HRI experience more natural. The call center is a
rich resource of communication data. A large num-
ber of calls are recorded daily in order to assess
the quality of interactions between CSRs and cus-
tomers. Learning the sentiment expressions from
well-trained CSRs during communication can help
AI understand not only what the user says, but also
how he/she says it so that the interaction feels more
human.
In this paper, we target and use real-world data
- service calls, which poses additional challenges
with respect to the artificial datasets that have been
typically used in the past in multimodal sentiment
researches (Cambria et al., 2017), such as variabil-
ity and noises. The basic ‘sentiment’ can be de-
scribed on a scale of approval or disapproval, good
or bad, positive or negative, and termed polarity
(Poria et al., 2014b).
In the service industry, the key task is to enhance
the quality of services by identifying issues that
may be caused by systems of rules, or service
qualities. These issues are usually expressed by
a caller’s anger or disappointment on a call. In ad-
dition, service chatbots are widely used to answer
customer calls. If customers get angry during HRI,
the system should be able to transfer the customers
to a live agent. In this study, we mainly focuses on
identifying ‘negative’ sentiment, especially ‘angry’
customers. Given the non-homogeneous nature of
full call recordings, which typically include a mix-
ture of negative, and nonnegative statements, sen-
timent analysis is addressed at the sentence level.
Call segments are explored in both acoustic and
linguistic modalities. The temporal sentiment pat-
terns between customers and CSRs appearing in
calls are described.
The paper is organized as follows: Section 2 covers
a brief literature review on sentiment recognition
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from different modalities; Section 3 proposes a
pipeline which features our novelties in training
data creation using real-world multi-party conver-
sations, including a description of the data acqui-
sition, speaker diarization, transcription, and semi-
supervised learning annotation; the methodologies
for acoustic and linguistic sentiment analysis are
presented in Section 4; Section 5 illustrates the
methodologies adopted for fusing different modali-
ties; Section 6 presents experimental results includ-
ing the evaluation measures and temporal sentiment
patterns; finally, Section 7 concludes the paper and
outlines future work.

2 Related Work

In this section, we provide a brief overview of re-
lated work about text-based and audio-based senti-
ment analysis.

2.1 Text-based Sentiment Analysis

Sentiment analysis has focused primarily on the
processing of text and mainly consists of either rule-
based classifiers that make use of large sentiment
lexicons, or data-driven methods that assume the
availability of a large annotated corpora.
Sentiment lexicon is a list of lexical features (e.g.
words) which are generally labeled according to
their semantic orientation as either positive or neg-
ative (Liu, 2010). Widely used lexicons include bi-
nary polarity-based lexicons, such as Harvard Gen-
eral Inquirer (Stone et al., 1966), Linguistic Inquiry
and Word Count (LIWC, pronounced ‘Luke’) (Pen-
nebaker et al., 2007, 2001), Bing (Liu, 2012), and
valence-based lexicons, such as AFINN (Nielsen,
2011), SentiWordNet (Alhazmi et al., 2013), and
SnticNet (Cambria et al., 2010). Employing these
lexical, researchers can apply their own rules or
use existing rule-based modeling, such as VADER
(Hutto and Gilbert, 2015), to do sentiment analysis.
One big advantage for the rule-based models is that
these approaches require no training data and gen-
eralize to multiple domains. However, since words
are annotated based on their context-free semantic
orientation, word-sense disambiguation (Hutto and
Gilbert, 2015) may occur when the word has multi-
ple meanings. For example, words like ‘defeated’,
‘envious’, and ‘stunned’ are classified as ‘positive’
in Bing, but ‘-2’ (negative) in AFINN. Although
the rule-based algorithm is known to be noisy and
limited, a sentiment lexicon is a useful component
for any sophisticated sentiment detection algorithm

and is one of the main resources to start from (Poria
et al., 2014b).
Another major line of work in sentiment analysis
consists of data-driven methods based on a large
dataset annotated for polarity. The most widely
used datasets include the MPQA corpus which is
a collection of manually annotated news articles
(Wiebe et al., 2005; Wilson et al., 2005), movie
reviews with two polarity (Pang and Lee, 2004a),
a collection of newspaper headlines annotated for
polarity (Strapparava and Mihalcea, 2007). With
a large annotated datasets, supervised classifiers
have been applied (Go et al., 2009; Pang and Lee,
2004b; dos Santos and Gatti, 2014; Socher et al.,
2013; Wang et al., 2016). Such approaches step
away from blind use of keywords and word co-
occurrence count, but rather rely on the implicit
features associated with large semantic knowledge
bases (Cambria et al., 2015).

2.2 Audio-based Sentiment Analysis

Vocal expression is a primary carrier of affec-
tive signals in human communication. Speech as
signals contains several features that can extract
linguistic, speaker-specific information, and emo-
tional. Related work about audio-based sentiment
analysis along with multimodal fusion is reviewed
in this section.
Studies on speech-based sentiment analysis have
focused on identifying relevant acoustic features.
Use open source software such as OpenEAR (Ey-
ben et al., 2009), openSMILE (Eyben et al., 2010),
JAudio toolkit (McEnnis et al., 2005) or library
packages (McFee et al., 2015; Sueur et al., 2008)
to extract features. These features along with some
of their statistical derivates are closely related to
the vocal prosodic characteristics, such as a tone,
a volume, a pitch, an intonation, an inflection, a
duration, etc.
Supervised or unsupervised classifiers can be fit-
ted based on the statistical derivates of these fea-
tures (Jain et al., 2018; Pan et al., 2012). Sequence
models can be fitted based on filter banks, Mel-
frequency cepstral coefficients (MFCCs), or other
low-level descriptors extracted from raw speech
without feature engineering (Aguilar et al., 2019).
However, this approach usually requires highly ef-
ficient computation and large annotated audio files.
Multimodal sentiment analysis has started to draw
attention recently because of the unlimited mul-
timodality source of information online, such as
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videos and audios (Cambria et al., 2017; Poria,
2016; Poria et al., 2015). Most of the multimodal
sentiment analysis is focused on monologue videos.
In the last few years, sentiment recognition in
conversations has started to gain research inter-
est, since reproducing human interaction requires
a deep understanding of conversations, and senti-
ment plays a pivotal role in conversations. The
existing conversation datasets are usually recorded
in a controlled environment, such as a lab, and
segmented into utterances, transcribe to text and
annotated with emotion or sentiment labels manu-
ally. Widely used datasets include AMI Meeting
Corpus (Carletta et al., 2006), IEMOCAP (Busso
et al., 2008), SEMAINE (Mckeown et al., 2013)
and AVEC (Schuller et al., 2012).
Recently, a few recurrent neural network (RNN)
models are developed for emotion detection in con-
versations, e.g. DialogueRNN (Majumder et al.,
2019) or ICON(Hazarika et al., 2018). However
they are less accurate in emotion detection for the
utterances with emotional shift (Poria et al., 2019)
and the training data requires the speaker informa-
tion. The conversation models are not employed
in our polarity sentiment analysis because of the
quality of the data and the approach used to gain
the training data. More detailed explanations can
be found in Section 3.4.
At the heart of any multimodal sentiment analy-
sis engine is the multimodal fusion (Shan et al.,
2007; Zeng et al., 2007). The multimodal fusion
integrates all single modalities into a combined
single representation. Features are extracted from
each modality of the data independently. Decision-
level fusion feeds the features of each modality
into separate classifiers and then combines their
decisions. Feature-level fusion concatenates the
feature vectors obtained from all modalities and
feeds the resulting long vector into a supervised
classifier. Recent research on multimodal fusion
for sentiment recognition has been conducted at ei-
ther the feature level or decision level (Poria, 2016;
Poria et al., 2015).

3 Dataset and Pipeline

The data resources used for our experiments are
described in Section 3.1. Data preparation includ-
ing speech transcription and speaker diarization is
discussed in Section 3.2. The sentiment annota-
tion guideline is introduced in Section 3.3. Section
3.4 presents a semi-supervised learning annotation

pipeline that chains data preparation, model train-
ing, model deploying and data monitor.

3.1 BSCD: Benefits Service Call Dataset
The main dataset we created in this paper consists
of service calls collected from a health care benefits
Call Center (named BSCD). Calls are focused on
customers looking for help or support with com-
pany provided benefits such as health insurance.
500 calls are collected from the call center database
covering diverse topics, such as insurance plan in-
formation, insurance id card, dependent coverage,
etc. The call dataset has female and male speakers
randomly selected with their age ranging approx-
imately from 16-80. Calls involving translators
are eliminated to keep only speakers expressing
themselves in English. All the calls are presented
in Wave format with a sample rate of 8000 Hertz
and duration varying from 4 minutes to 26 minutes.
All calls are pre-processed to eliminate repetitive
introductions. The beginning of each call contains
an introduction of the users’ company name by a
robot. To address this issue, the segment before the
first pause (silence duration> 1 second) is removed
from each call.
A robust computational model of sentiment analy-
sis needs to be able to handle real-world variability
and noises. While the previous researches on multi-
modal sentiment or emotion analysis use audio and
visual recorded in laboratory settings (Busso et al.,
2008; Mckeown et al., 2010, 2013); the BSCD gath-
ers real-world calls which contain ambient noise
present in most audio recordings, as well as diver-
sity in person-to-person communication patterns.
Both of these conditions result in difficulties that
need to be addressed in order to effectively extract
useful data from these sources.

3.2 Data Preparation
To discard noise and long pauses (silence duration
> 5 seconds) in calls, Voice Activity Detection
(VAD) is applied, followed by the application of
Automatic Speech Recognition (ASR) and Auto-
matic Speaker Diarization (ASD) to transcribe the
verbal statements, extract the start and end time
of each utterance, and identify the speaker of each
utterance. Each call is segmented into an average
of 69 utterances. The duration of the utterances is
right-skewed with a median of 2.9 seconds; first
and third quantiles 1.6 and 5.1 seconds.
By searching keywords such as ‘How can I help’ in
the content of each utterance, speakers are labeled
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Thank you for calling this night or 
benefits center is the same . How 
can I help you ?

Okay . Let me get your account 
pulled up . I could take a look and 
see if there's been an update on it 
yet . Um , could I have your first 
and last name ?

Hey , Sam , I'm just trying to find 
out what's going on with my , um

Yeah . Yeah . Chapter on a Friday .

Speaker Diarization Speech Recognition

Discarded

CSR

Customer 

Noise or silence.   

Voice Activity Detection

Figure 1: Data preparation workflow

as CSR or customer. Each utterance is linked to
the corresponding audio stream, auto transcription,
as well as speaker label. The workflow and cor-
responding results for the first 23 seconds of one
selected call are shown in Figure 1, where the orig-
inal input is a call audio sample. After data prepa-
ration, segments of noise and silence are discarded.
This call sample is segmented into 4 utterances.
The audio streams are from the original audio and
split based on the start and end time of each ut-
terance. Auto transcriptions are more likely to be
ungrammatical if the recording quality is bad or
the conversation contains words that ASR cannot
identify or the speakers do not express themselves
clearly. The ungrammatical transcriptions usually
occur in customer parts and the frequency of un-
grammaticality varies from case to case. Although
the sentiment recognition of a whole call tends to
be robust with respect to speech recognition er-
rors, the sensitivity of each utterance analysis to
ASR errors is not reparable given our study. The
speaker labels are from ASD output which can be
misclassified because of the occurrence of speak-
ers overlapping or speakers with similar acoustic
features. Conversation sentiment pattern study can
be misleading due to the misclassified ASD output,
although misclassified ASD is rare.

This process allows us to study features from both
modalities: transcribed words and acoustics. Dis-
tinguishing different parties gives us the ability to
study the temporal sentiment transitions of individ-

ual speakers and interactions among speakers in
a conversation. However, since the data prepara-
tion is part of the pipeline described in section 3.4,
which runs in real-time, sentiment analysis must
rely on error-prone ASR and ASD outputs.

3.3 Sentiment Annotation
Sentiment annotation is a challenging task as the
label depends on the annotators’ perspective, and
the differences inherent in the way people express
emotions. The sentiment is opinion-based, not fact-
based. This study aims at identifying negative ex-
pressions in calls, especially angry customers who
are not satisfied with the services, or the business
rules, or the systems of rules. By identifying and
studying these types of cases, the business can im-
prove call center services and fix the possible busi-
ness or system issues.
Guidelines are set up for the annotation. The cus-
tomer negative tag is for negative emotions (e.g. “I
hate the system”), attitudes (e.g. “I am not follow-
ing you”), evaluations (e.g. “your service is the
worst”), and negative facts caused by other parties
(e.g. “I never received my card”). Other negative
facts are not considered as negative (e.g. “My wife
died, I need to remove her from my dependents”).
The guidelines for CSRs are different. Well trained
CSRs usually do not respond negatively, but there
are cases that they cannot help the customers. We
identify these cases as negative. Cases where a
CSR cannot help the customer usually involve busi-
ness process or system issues.
The sentiment is not always explicit in the text.
Borderline linguistic utterances stated loudly and
quickly are usually identified as negative (e.g. the
utterance “Trust me, it could be done” is classified
as negative, since it is in the context that the rep-
resentative fails to help the customer to enroll in
the health plan, and in the audio, the customer is
irritated). In all the multimodal sentiment analysis,
the labels of all modalities are kept consistent for
the same utterance. In our data annotation process,
we also keep both text and audio labels that agree
with each other and the annotation is based on the
audio segments.

3.4 Semi-supervised Learning Annotation
Pipeline

To successfully run and train analytical models,
massive quantities of stored data are needed. Cre-
ating large annotated datasets can be a very time
consuming and labor-intensive process. To keep
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Database
Committee classifiers 

CT and CA

Automatic 
Annotation 

DL ={DLT , DLA}

Data 
Preparation 

Human 
Correction

Accept 
Machine Label

DU’ (I) DU
’ (M)

Yes

No

Fusion with 
Certainty 

DU ={DUT , DUA} D’U ={D’UT , D’UA}

Figure 2: Semi-supervised learning annotation pipeline

the human annotation effort to a minimum, a semi-
supervised learning annotation scheme is applied
to tag the polarity of utterances as negative, or non-
negative. Figure 2 illustrates the process which
is similar to active learning annotation. It takes
as input a set of labeled examples DL including
text DLT and audio DLA, as well as a larger set
of unlabeled examples DU = {DUT , DUA}, and
produces committee classifiersC = {CT , CA} and
a relatively small set of newly labeled data D′U (I)
and D′U (M) (Olsson, 2008).
Semi-supervised learning annotation cooperates
with humans and machines and combines both
semi-supervised learning and multiple classifiers
approach for corpus annotation. This pipeline con-
sists of several steps: data generation to obtain DU

(Section 3.2), model training for both modalities
to obtain CT and CA using DLT and DLA (Sec-
tion 4), model deployment to get machine label
D′U = {D′UT , D

′
UA}, model fusion (Section 5) and

results evaluation to decide whether to accept ma-
chine label D′U (M) or ask a human annotator for
classifications of the utterances to obtain D′U (I),
then move D′U (I) and D′U (M) from D′U to DL. It
is cyclical and iterative as every step is repeated to
continuously improve the accuracy of the classifier
and achieve a successful algorithm.
Note, the classifiers in committee C = {CT , CA}
are modified based onDL in each iteration. The an-
notation process starts with 20 calls selected from
the service center by human domain experts, 20
calls are chunked to 1410 segments via data prepa-
ration processing and annotated by three annotators
manually as DL. For the first three iterations, set
CT={Support Vector Machine (SVM), VADER,
AWSSA∗, AWSCC†, GoogleSA‡} requires a small
size of training data or no extra training data. As
the size of DLT increases, we form a new com-

∗AWS Comprehend Sentiment Analysis API
†AWS Custom Classification API
‡Google Language Sentiment Analysis API

mittee CT = {SVM, Long Short-Term Memory
(LSTM), Bidirectional Long Short-Term Memory
(BLSTM)}. These classifiers are described in Sec-
tion 4.1. Section 4.2 introduced CA = {Elastic-Net
Regularized Generalized Linear Models (Elastic-
Net), K-Nearest Neighbors (KNN), Random For-
est (RF), Gaussian Mixture Model (unsupervised
GMM) }. In the later iterations, Recurrent Neural
Networks (RNN) such as LSTM and BLSTM are
applied.
If one call has a long duration (T > 10 minutes)
and a high percentage of negative utterances based
on D′U (> 40% for customer or > 20% for CSR),
then we say this call is potentially negative and
informative. We then ask an annotator to manually
correct the annotated tags D′U by listening to the
call, and move the results D′U (I) to DL. For all
the other calls, we only keep the utterances where
classifiers all agree as D′U (M). We then remove
chunks that are too short (duration < 1s) or too
long (duration >20s). Finally, we discard chunks
where the annotator cannot discern classification.
Using the pipeline, 6,565 negative and 10,322 non-
negative call clips are annotated as the training
dataset. The training data DLT still include tran-
scription errors, even though the threshold dis-
cussed in the above paragraph is set to eliminate
these utterances to add to the training dataset. In
addition, 18,705 cleaned text chat data collected
from chat windows are also added to DLT via the
annotation pipeline to improve the CT accuracy.
Instead of checking fusion with certainty, we only
keep the utterances with classifiers in CT all agree
as D′U (M) = D′UT (M).
Because of the quality of the calls, the poor per-
formance of the ASR for some cases, and the
threshold used to annotate the utterances, more
than half of the original call segments are dis-
carded∗, and 18,705 text chat data are added to
∗The accuracy on the test data decreases by 8% when

including all the call segments in the training dataset.
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DLT={transcription data, chat data} without the
corresponding audio files in DLA. It is hard to
consider the context of the conversation since the
segments are not continuing in the training dataset.
Therefore, conversation models are not considered
in our committee classifiers C.

4 Bimodal Sentiment Analysis

To model information for sentiment analysis from
calls, we first obtain the streams corresponding to
each modality via the methods described in Section
3.2, followed by the extraction of a representative
set of features for each modality. These features
are then used as cues to build classifiers of binary
sentiment.

4.1 Sentiment Analysis of Textual Data

General approaches such as sentiment lexicons and
sentiment APIs are easy to apply. Both approaches
are employed in CT to monitor the utterance pre-
diction labels in the early stage of semi-supervised
learning annotation to extend training data.
VADER (Hutto and Gilbert, 2015) is a simple rule-
based model for general sentiment analysis. The
results have four categories: compound, negative,
neutral, and positive. We classify utterances with
negative output as negative, neutral and positive
as nonnegative† so that it is consistent with BSCD
annotation. This model has many advantages, such
as being less computationally expensive and easily
interpretable. However, one of the main issues with
only using lexicons is that most utterances do not
contain polarized words. The utterances without
polarized words are usually classified as neutral or
nonnegative‡.
Sentiment analysis API is another way to classify
sentiment without extra training data. Amazon of-
fers Sentiment Analysis in Amazon Comprehend
(AWSSA), which uses machine learning to find
insights and relationships in a text. The result re-
turns Mixed, Negative, Neutral, or Positive clas-
sification. To be consistent with the BSCD we
created, Neutral and Positive are combined as one
class: nonnegative†. Another sentiment analysis on
Google Cloud Natural Language API (GoogleSA)
also performs sentiment analysis on text. Sentiment
analysis attempts to determine the overall attitude

† Utterances with compound or mixed class are very few,
and they are discarded to keep the training data clear.
‡This conclusion is verified by the high Rec(+) and low

Rec(-) shown in table 1.

and is represented by numerical scores and magni-
tude values. We simply set utterances with negative
scores as negative and nonnegative otherwise.
For machine learning-oriented techniques by lin-
guistic features, we evaluated well-known SVM,
LSTM, and BLSTM models. Since the data is un-
balanced and we want the model to focus more on
the negative class, we apply weighted loss func-
tions during the training. Hyperparameters are
tuned for each model, and ensemble models are
also developed by taking the weighted majority
vote.

4.2 Sentiment Analysis of Acoustic Data

Feature engineering heavily relies on expert knowl-
edge about data features. To better understand the
human hearing process, we study the acoustic fea-
tures based on human perception. Three perceptual
categories are described in this section. Their cor-
responding features are usually short-term based
features that are extracted from every short-term
window (or frame). Long-term features can be
generated by aggregating the short-term features
extracted from several consecutive frames within a
time window. For each short-term acoustic feature,
we calculated nine statistical aggregations: mean,
standard deviation, quantiles (5%, 25%, 50%, 75%,
95%), range (95%-5% quantile), and interquartile
range (75%-25% quantile) to get the long-term fea-
tures of each segment.

• Loudness is the subjective perception of sound
pressure which is related to sound intensity. Am-
plitude and mean frequency spectrum features are
extracted to measure loudness. The greater the am-
plitude of the vibrations, the greater the amount of
energy carried by the wave, and the more intense
the sound will be.

• Sharpness is a measure of the high-frequency
content of a sound, the greater the proportion of
high frequencies the sharper the sound. Fundamen-
tal frequency (pitch) and dominant frequency are
extracted.

• Speaking rate is normally defined as the num-
ber of words spoken per minute. In general, the
speaking rate is characterized by different parame-
ters of speech such as pause and vowel durations.
In our study, speaking rate is measured by pause
duration, character per second (CPS), and word per
second (WPS) which are calculated as following
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for the ith segment:

Pause durationi =
T silence
i

T total
i

CPSi =
N character

i

T total
i

, WPSi =
Nword

i

T total
i

where for segment i, Ti denotes the time, and Ni

denotes the number of characters or words in the
corresponding transcription. Pause duration can be
interpreted as the percentage of the time where the
speaker is silent in each segment. The three vari-
ables are aggregated statistics, long-term features.

In nonnegative cases, speakers are in a relaxed and
normal emotional state. An agitated or angry emo-
tional state speaker is typically characterized by
increased vocal loudness, sharpness, and speaking
rate. CA ={Elastic-Net, KNN, RF, GMM} are built
based on the 39 selected features.
Hand-crafted features are generally very success-
ful for specificity sound analysis tasks. One of the
main drawbacks of feature engineering is that it
relies on transformations that are defined before-
hand and ignore some particularities of the signals
observed at runtime such as recording conditions
and recording devices. A more common approach
is to select and adapt features initially introduced
for other tasks. A now well-established example
of this trend is the popularity of MFCC features
(Serizel et al., 2018). In our experiments, MFCC
is extracted from each segment and fed to RNN
models in later iterations with |DLA| > 10, 000.

5 Fusion

There are two main fusion techniques: feature-level
fusion and decision-level fusion. In our experi-
ments, we employ decision-level fusion. Decision-
level fusion has many advantages (Poria et al.,
2015). One benefit of the decision-level fusion
is we can use classifiers for text and audio features
separately. The unimodal classifier can use data
from another communication channel of the same
type to improve its accuracy, e.g. text data from
the chat windows is borrowed to improve the CT

accuracy in our study. Separating modalities per-
mit us to use any learner suitable for the particular
problem at hand. In practice, the two unimodal
classifiers can be applied separately, e.g. to analyze
text data from chat windows DU = DUT , apply
CT only to get sentiment labels D′UT , then add

D′UT (M) to DLT . Another benefit of the decision-
level fusion is its processing speed since fewer fea-
tures are used for each classifier and separate clas-
sifiers can be run in parallel.
Decision-level fusion usually adds probabilities or
summarized predictions from each unimodal clas-
sifier with weights or takes the majority voting
among the predicted class labels by unimodal clas-
sifiers.
In this paper, various fusion methods are evaluated,
including two novel approaches that use linguis-
tic ensemble results as the baseline, while then
checking acoustic results to modify classification
decisions. In Fus1, if the audio ensemble classifies
negative and one or more text models classifies neg-
ative, we then reclassify the result to negative. In
Fus2, if the audio ensemble classifies a sample as
negative, we then reclassify the result to negative
directly without checking the linguistic modality.
The Fus1 and Fus2 approaches are proposed, be-
cause for borderline linguistic utterances, acoustic
features are more important than linguistic features
to understand the spoken intention of the speaker.

6 Experiment Results

The test dataset consists of 21 calls with 1,890 utter-
ances, which are manually annotated for negative
(848) and nonnegative (1,042).

6.1 Evaluation Measures

As evaluation measures, we rely on accuracy and
weighted F1-score, which is the weighted harmonic
mean of precision and recall. Precision is the prob-
ability of returning values that are correct. Recall,
also known as sensitivity is the probability of rele-
vant values that the algorithm outputs.
As shown in Table 1, general approaches in CT ,
Vader and APIs, tend to have a low negative re-
call. The semantic knowledge based classifiers
have more than 20% higher weighted F1-score than
the general approaches. The classifiers are trained
on DLT={transcription data, chat data}. The over-
all weighted F1-score is more than 10% higher
than the classifiers trained on call transcription only
data§.
BLSTM on MFCC performs better than CA =
{Elastic-Net (penalty 0.2||β||1 + 0.4||β||22), KNN
(k = 3), RF, GMM} on acoustic features. Using
audio features alone, a weighted F1-score of 0.584

§Weighted F1-scores are 0.718 (SVM), 0.719 (LSTM) and
0.714 (BLSTM).
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Methods
Text Audio

SVM LSTM BLSTM Vader AWSSA GoogleSA Elastic-Net KNN RF GMM BLSTM
Acc. 0.814 0.853 0.843 0.498 0.651 0.637 0.570 0.544 0.585 0.546 0.601
F1 (w) 0.814 0.852 0.842 0.347 0.628 0.615 0.500 0.534 0.549 0.500 0.584
Prec.(+) 0.770 0.802 0.781 0.494 0.594 0.586 0.528 0.518 0.541 0.513 0.561
Prec.(-) 0.871 0.92 0.934 0.742 0.821 0.779 0.860 0.589 0.741 0.685 0.693
Rec. (+) 0.886 0.929 0.946 0.991 0.908 0.881 0.964 0.697 0.883 0.872 0.811
Rec. (-) 0.746 0.779 0.745 0.024 0.404 0.402 0.205 0.402 0.309 0.252 0.402

Table 1: Binary classification of sentiment polarity on test data: Accuracy (Acc.), weighted F1-score (F1 (w)),
precision (Prec.) and recall (Rec.) for the nonnegative (+) and negative (-) classes

Methods
Ensemble Fusion

Text Audio T+A Fus1 Fus2
Acc. 0.851 0.586 0.846 0.858 0.871
F1 (w) 0.851 0.525 0.846 0.858 0.871
Prec.(+) 0.779 0.531 0.800 0.790 0.818
Prec.(-) 0.949 0.927 0.896 0.946 0.933
Rec. (+) 0.953 0.979 0.894 0.950 0.933
Rec. (-) 0.761 0.240 0.804 0.777 0.817

Table 2: Binary classification of sentiment polarity on
both linguistic and acoustic modalities

can be reached, which is acceptable considering
that the real world audio-only system exclusively
analyzes the tone of the speaker’s voice and doesn’t
consider any language information.
The acoustic modality is significantly weaker than
the linguistic modality. Usually, speakers’ tones
are not signifcantly different from the tones under
normal emotional state even the content is negative
(e.g. “We messed up.” with negative tag ). 97%
of the segments with correct D′UT but wrong D′UA

have negative as true tag. The other 3% are the
nonnegate segments with emphasized words (e.g. “
But I do have a newborn coming.” with nonnegtive
tag).
In most cases, text already includes enough infor-
mation to judge the sentiment. A few observed typi-
cal situations leading to linguistic modality misclas-
sification are the presence of misleading linguistic
cues caused by overlapping or other issues (e.g.
ASR “Customer: I love it. It can be done.” and
true transcription “CSR: I... Customer: Drop it.
It can be done.” with negative tag), ambiguous
linguistic utterances whose sentiment polarity are
highly dependent on the context described in ear-
lier or later part of the call (e.g. “But I got a call
from your service center today apologizing, saying,
Yeah, we made a mistake.” with nonnegative tag),
or nonnegative linguistic utterances stated angrily
(e.g. “So I think you should honor those amounts.”
with negative tag).

In order to achieve better accuracy, we combine
the two modalities together to exploit complemen-
tary information. We simply combine results of the
three semantic knowledge based classifiers and all
the five audio classifiers by taking the weighted ma-
jority vote. The T+A ensemble results are shown
in Table 2 and they do not improve when compared
to the unimodal text ensemble results.
Since the unimodal performance of linguistic
modality is notably better than acoustic modality,
our decision-level fusion methods use linguistic
ensemble results as the base-line, while acoustic
results are used as supplemental information to cal-
ibrate each classification. Fus1 reclassifies the am-
biguous linguistic utterances, and Fus2 reclassifies
the nonnegative/ambiguous linguistic utterances
based on audio ensemble classifies. The two novel
fusion approaches discussed in Section 5 are tested.
The Fus2 bimodal system yields a 2% improve-
ment in weighted F1-score than the text unimodal
system.
McNemar’s test is applied to compare the accuracy
of text only results D′UT and Fus2 results D′UF2

χ2 =
(14− 52)2

14 + 52
= 21.88,

where the number of segments with correct D′UT

wrong D′UF2 is 14, and wrong D′UT correct D′UF2

is 52. The McNemar’s test gives χ2 = 21.88 and
P < 0.001, which implies a statistically significant
effect by adding acoustic features using the Fus2
approach.
The acoustic modality provides important cues to
identify borderline linguistic segments with neg-
ative emotions. Our results show that relying on
the joint use of linguistic and acoustic modalities
allows us to better sense the sentiment being ex-
pressed as compared to the use of only one modal-
ity at a time. The acoustic feature analysis helps
us to better understand the spoken intention of the
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Figure 3: The (cumulative) negative score pattern between customers (C) and CSRs (R)

speaker, which is not normally expressed through
text.

6.2 Tempo Sentiment Pattern

The sentiment is not only regarded as an internal
psychological phenomena but also interpreted and
processed communicatively through social inter-
actions. Conversations exemplify such a scenario
where inter-personal sentiment influences persist.
The left panel in Figure 3 shows the negative scores
of customers and CSRs in 21 test calls. The neg-
ative score, a weighted negative segment percent-
age, is calculated to analyze the overall sentiment.
Weights 0.8, 1, and 1.2 are assigned to the first third,
second third and last third of each call. Since long
pauses in calls are discarded in the data prepara-
tion process, these segments do not have sentiment
labels and do not contribute to the negative score.
The negative scores of CRSs are commonly lower
than customers’, and usually high negative scores
for customers correspond to high negative scores
for CSRs. We can conclude from the figure that
sentiment can be affected by other parties during a
conversation.
To further analyze the interactions between cus-
tomers and CSRs, the cumulative negative scores
for call 6, 15, and 16 are drawn on the right panel
of Figure 3. The x-axis shows time of the whole
call in seconds including noise and long pauses.
Call 6 shows the sentiment patterns of a typical
bad call, which is characterized by long duration
and long pauses. The two long pauses are from
444s to 607s and from 921s to 1008s. Between the
two long pauses, there are three customer and CSR
overlapping segments, but the Automatic Speaker
Diarization recognizes all of them as CSRs. The
customer has a high negative score from beginning
to end, and the CSR fails to help the customer dur-
ing the call. Call 15 is a typical good call. The
overall negative score is low and the negative score

pattern goes down for both the customer and the
CSR, which means the problem is resolved by the
end of the call. Call 16 is another type of call, in
which the customer does not get angry even though
the CSR is unable to solve his/her issues.

7 Discussion and Future Work

A new dataset BSCD consisting of real-world con-
versation, the service calls, is introduced. Human
communication is a dynamic process, and our even-
tual goal is to develop a bimodal sentiment analysis
engine with the ability to learn the temporal interac-
tion sentiment patterns among conversation parties.
In the process of fusion, we have approached the
study of audio sentiment analysis from an angle
that is somewhat different from most people’s.
Future research will concentrate on evaluations us-
ing larger data sets, exploring more acoustic fea-
ture relevance analysis, and striving to improve the
decision-level fusion process.
A call is constituent of a group of utterances that
have contextual dependencies among them. How-
ever, in our semi-supervised learning annotation
pipeline, about half of the segments in calls are
discarded. Therefore the interdependent modeling
is out of the scope of this paper and we include it
as future work.
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Abstract

While buying a product from the e-commerce
websites, customers generally have a plethora
of questions. From the perspective of both
the e-commerce service provider as well as
the customers, there must be an effective ques-
tion answering system to provide immediate
answers to the user queries. While certain
questions can only be answered after using the
product, there are many questions which can
be answered from the product specification it-
self. Our work takes a first step in this direc-
tion by finding out the relevant product specifi-
cations, that can help answering the user ques-
tions. We propose an approach to automati-
cally create a training dataset for this problem.
We utilize recently proposed XLNet and BERT
architectures for this problem and find that
they provide much better performance than
the Siamese model, previously applied for this
problem (Lai et al., 2018). Our model gives
a good performance even when trained on one
vertical and tested across different verticals.

1 Introduction

Product specifications are the attributes of a prod-
uct. These specifications help a user to easily iden-
tify and differentiate products and choose the one
that matches certain specifications. There are more
than 80 million products across 80+ product cat-
egories on Flipkart 1. The 6 largest categories are
- Mobile, AC, Backpack, Computer, Shoes, and
Watches. A large fraction of user queries (∼ 20%)2

can be answered with the specifications. Product
specifications would be helpful in providing instant
responses to questions newly posed by users about

∗ Work done while author was at IIT Kharagpur.
1Flipkart Pvt Ltd. is an e-commerce company based in

Bangalore, India.
2We randomly sampled 1500 questions from all these verti-

cals except Mobile and manually annotated them as to whether
these can be answered through product specifications.

Figure 1: Snapshot of a product with its specifications.

the corresponding product. Consider a question
“What is the fabric of this bag?” This new question
can be easily answered by retrieving the specifica-
tion “Material” as the response. Fig. 1 depicts this
scenario.

Most of the recent works on product related
queries on e-commerce leverage the product re-
views to answer the questions (Gao et al., 2019;
Zhao et al., 2019; McAuley and Yang, 2016). Al-
though reviews are a rich source of data, they are
also subject to personal experiences. People tend to
give many reviews on some products and since it is
based upon their personal experience, the opinion
is also diverse. This creates a massive volume and
range of opinions and thus makes review systems
difficult to navigate. Sometimes products do not
even have any reviews that can be used to find an
answer, also the reviews do not mention the speci-
fications a lot, but mainly deal with the experience.
So, there are several reasons why product speci-
fications might be a useful source of information
to answer product-related queries which does not
involve user experience to find an answer. As the
specifications are readily available, users can get
the response instantly.
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Dataset Products Questions Avg. Specs
Mobile 1,175 260,529 55
AC 300 16,545 35
Backpack 300 16,878 17
Computer 300 93,589 60
Shoes 300 5,812 10
Watches 300 21,392 50

Table 1: Statistics of 6 largest categories.

This paper attempts to retrieve the product speci-
fications that would answer the user queries. While
solving this problem, our key contributions are as
follows - (i) We demonstrate the success of XL-
Net on finding product specifications that can help
answering product related queries. It beats the
baseline Siamese method by 0.14 − 0.31 points
in HIT@1. (ii) We utilize a method to automati-
cally create a large training dataset using a semi-
supervised approach, that was used to fine-tune
XLNet and other models. (iii) While we trained
on Mobile vertical, we tested on different verti-
cals, namely, AC , Backpack , Computer , Shoes ,
Watches , which show promising results.

2 Background and Related Work

In recent years, e-commerce product question an-
swering (PQA) has received a lot of attention. Yu
et al. (2018) present a framework to answer prod-
uct related questions by retrieving a ranked list of
reviews and they employ the Positional Language
Model (PLM) to create the training data. Chen
et al. (2019) apply a multi-task attentive model to
identify plausible answers. Lai et al. (2018) pro-
pose a Siamese deep learning model for answering
questions regarding product specifications. The
model returns a score for a question and specifi-
cation pair. McAuley and Yang (2016) exploit
product reviews for answer prediction via a Mix-
ture of Expert (MoE) model. This MoE model
makes use of a review relevance function and an
answer prediction function. It assumes that a can-
didate answer set containing the correct answers
is available for answer selection. Cui et al. (2017)
develop a chatbot for e-commerce sites known as
SuperAgent. SuperAgent considers question an-
swer collections, reviews and specifications when
answering questions. It selects the best answer
from multiple data sources. Language representa-
tion models like BERT (Devlin et al., 2019) and
XLNet (Yang et al., 2019) are pre-trained on vast
amounts of text and then fine-tuned on task-specific
labelled data. The resulting models have achieved

state of the art in many natural language processing
tasks including question answering. Dzendzik et al.
(2019) employ BERT to answer binary questions
by utilizing customer reviews.

In this paper, unlike some of the previous
works (Lai et al., 2018; Chen et al., 2019) on PQA
that solely rely on human annotators to annotate the
training instances, we propose a semi-supervised
method to label training data. We leverage the prod-
uct specifications to answer user queries by using
BERT and XLNet.

3 Problem Statement

Here, we formalize the problem of answering user
queries from product specifications. Given a ques-
tion Q about a product P and the list of M speci-
fications {s1, s2, ..., sM} of P , our objective is to
identify the specification si that can help answer Q.
Here, we assume that the question is answerable
from specifications.

4 Model Architecture

Our goal is to train a classifier that takes a ques-
tion and a specification as input (e.g., “Color Code
Black”) and predicts whether the specification is
relevant to the question. We take Siamese architec-
ture (Lai et al., 2018) as our baseline method. We
fine-tune BERT and XLNet for this classification
task.

Siamese: We train a 100-dimensional word2vec
embedding on the whole corpus (all questions and
specifications as shown in Table 1.) to get the in-
put word representation. In the Siamese model,
the question and specification is passed through a
Siamese Bi-LSTM layer. Then we use max-pooling
on the contextual representations to get the fea-
ture vectors of the question and specification. We
concatenate the absolute difference and hadamard
product of these two feature vectors and feed it to
two fully connected layers of dimension 50 and 25,
subsequently. Finally, the softmax layer gives the
relevance score.

BERT and XLNet : The architecture we use for
fine-tuning BERT and XLNet is the same. We be-
gin with the pre-trained BERTBase and XLNetBase
model. To adapt the models for our task, we in-
troduce a fully-connected layer over the final hid-
den state corresponding to the [CLS] input token.
During fine-tuning, we optimize the entire model
end-to-end, with the additional softmax classifier
parameters W ∈ RK×H , where H is the dimen-
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Dataset # que-spec Answer type (in %)
pairs Num Y/N Other

AC 3693 0.27 0.52 0.21
Backpack 2693 0.29 0.48 0.23
Computer 2718 0.04 0.78 0.18
Shoes 999 0.09 0.49 0.42
Watches 1700 0.17 0.59 0.24

Table 2: Test datasets statistics.

sion of the hidden state vectors andK is the number
of classes.

5 Experimental Setup

5.1 Dataset Creation

The Statistics for the 6 largest categories used in
this paper are shown in Table 1, containing a snap-
shot of product details up to January 2019. Except
for mobiles, for other domains, 300 products were
sampled. As the number of question-specification
pairs is huge, manually labelling a sufficiently large
dataset is a tedious task. So, we propose a semi-
supervised method to create a large training dataset
using Dual Embedding Space model (DESM) (Mi-
tra et al., 2016).

Suppose a product P has S specifications and
Q questions. For a question qi ∈ Q and a spec-
ification sj ∈ S, we find dual embedding score
DUAL(qi, sj) using Equation 1, where tq and ts
denote the vectors for the question and specifi-
cation terms, respectively. We consider (qi, sj)
pair positive if DUAL(qi, sj) ≥ θ and negative if
DUAL(qi, sj) < θ.

DUAL(qi, sj) =
1

|qi|
∑

tq∈qi

tq
T sj

‖ tq ‖‖ sj ‖
(1)

where

sj =
1

|sj |
∑

ts∈sj

ts
‖ ts ‖

(2)

We take Mobile dataset to create labelled train-
ing data since most of the questions come from
this vertical. We choose the threshold value (θ)
which gives the best accuracy on manually la-
belled balanced validation dataset consisting of
380 question and specification pairs. We train a
word2vec (Mikolov et al., 2013) model on our train-
ing dataset to get the embeddings of the words.
The word2vec model learns two weight matrices
during training. The matrix corresponding to the
input space and the output space is denoted as
IN and OUT word embedding space respectively.

Dataset Model HIT@1 HIT@2 HIT@3

AC

BERT-380 0.05 0.09 0.14
XLNet-380 0.20 0.32 0.39

Siamese 0.38 0.53 0.61
BERT 0.62 0.77 0.81
XLNet 0.69 0.77 0.80

Backpack

BERT-380 0.17 0.27 0.34
XLNet-380 0.27 0.41 0.48

Siamese 0.35 0.53 0.65
BERT 0.50 0.66 0.69
XLNet 0.49 0.67 0.70

Computer

BERT-380 0.14 0.16 0.22
XLNet-380 0.06 0.16 0.18

Siamese 0.5 0.6 0.72
BERT 0.68 0.80 0.90
XLNet 0.70 0.86 0.92

Shoes

BERT-380 0.22 0.40 0.55
XLNet-380 0.25 0.45 0.60

Siamese 0.42 0.55 0.62
BERT 0.60 0.72 0.84
XLNet 0.63 0.77 0.88

Watches

BERT-380 0.05 0.09 0.15
XLNet-380 0.24 0.36 0.45

Siamese 0.42 0.65 0.69
BERT 0.54 0.60 0.74
XLNet 0.60 0.76 0.84

Table 3: Performance comparison of different models.

Word2vec leverages only the input embeddings
(IN), but discards the output embeddings (OUT),
whereas DESM utilizes both IN and OUT embed-
dings. To compute the DUAL score of a question
and specification, we take OUT-OUT vectors as
it gives the best validation accuracy. We find that
for θ = 0.34, we gain maximum accuracy value of
0.72 on the validation set. This creates a labelled
training dataset D with 57, 138 positive pairs and
655, 290 negative pairs. For training, we take all
the positive data from D and we randomly sample
an equal number of negative examples from D.

To create the test datasets, domain experts manu-
ally annotate the correct specification for a question.
As the test datasets come from different verticals,
there is no product in common with the training set.
The details of different test datasets are shown in Ta-
ble 2. We analyze the questions in the test datasets
and find that the questions can be roughly cate-
gorized into three classes - numerical, yes/no and
others based upon the answer type of the questions.
For a question, we have a number of specifications
and only one of them is correct.

5.2 Training and Evaluation

We split the Mobile dataset into 80% and 20%
as training set and development set, respectively.
The Siamese model is trained for 20 epoch with
Stochastic Gradient Descent optimizer and learn-
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Question Siamese BERT XLNet

Is it single core
or multi core?

processor name core i3 internal mic single digital micro-
phone

number of cores 2

processor variant 7100u processor name core i3 processor name core i3
os architecture 64 bit number of cores 2 processor brand intel

Does 16 inch
laptop fit in to
it?

depth 13 inch compatible laptop size 15.4
inch

compatible laptop size 15.4
inch

width 9 inch laptop sleeve no depth 13 inch
height 19 inch depth 13 inch height 19 inch

Table 4: Top three specifications returned by different models for two questions. Correct specification is high-
lighted in bold.

ing rate 0.01. The fine-tuning of BERT and XL-
Net is done with the same experimental settings
as given in the original papers. In all the models,
we minimize the cross-entropy loss while training.
BERT-380 and XLNet-380 models are fine-tuned
on the 380 labeled validation dataset that was used
for creating the training dataset in Section 5.1.

During evaluation, we sort the question specifica-
tion pairs according to their relevance score. From
this ranked list, we compute whether the correct
specification appears within top k, k ∈ {1, 2, 3}
positions. The ratio of correctly identified speci-
fications in top 1, 2, and 3 positions to the total
number of questions is denoted as HIT@1, HIT@2
and HIT@3 respectively.

6 Results and Discussion

Table 3 shows the performance of the models on
different datasets3. BERT-380 and XLNet-380 per-
form very poorly, but when we use the train dataset
created with DESM, there is a large boost in the
models’ performance and it shows the effective-
ness of our semi-supervised method in generating
labeled dataset. Both BERT and XLNet outperform
the baseline Siamese model (Lai et al., 2018) by a
large margin, and retrieve the correct specification
within top 3 results for most of the queries. For
Backpack and AC, both BERT and XLNet are very
competitive. XLNet outperforms BERT in Com-
puter, Shoes, and Watches. Only in HIT@1 of AC,
BERT has surpassed XLNet with 0.07 points. We
see that all the models have performed better in
Computer compared to the other datasets. Com-
puter has the highest percentage of yes/no ques-
tions and this might be one of the reasons, as some
questions might have word overlap with correct
specification. Table 4 shows the top three spec-
ifications returned by different models for some

3Unsupervised DUAL embedding model gave very similar
results to Siamese model, and is not reported.

questions. We see that Siamese architecture returns
results which look similar to naı̈ve word match, and
retrieve wrong specifications. On the other hand,
BERT and XLNet are able to retrieve the correct
specifications.

Error Analysis: We assume that for each ques-
tion, there is only one correct specification, but
the correct answer may span multiple specifica-
tions and our models can not provide a full answer.
For example, in Backpack dataset, the dimension
of the backpack, i.e., its height, weight, depth is
defined separately. So, when user queries about
the dimension, only one specification is provided.
Some specifications are given in one unit, but users
want the answer in another unit, e.g., “what is the
width of this bag in cms?”. Since the specification
is given in inches, the models show the answer in
inches. So, the answer is related, but not exactly
correct. Users sometimes want to know the differ-
ence between certain specification types, what is
meant by some specifications. For example, con-
sider the questions “what is the difference between
inverter and non-inverter AC?”, “what is meant by
water resistant depth?”. While we can find the type
of inverter, the water resistant depth of a watch
etc. from specifications, the definition of the spec-
ification is not given. As we have generated train
data labels in semi-supervised fashion, it also con-
tributes to inaccurate classification in some cases.

7 Conclusion and Future Work

In this paper, we proposed a method to label
training data with little supervision. We demon-
strated that large pretrained language models such
as BERT and XLNet can be fine-tuned success-
fully to obtain product specifications that can help
answer user queries. We also achieve reasonably
good results even while testing on different verti-
cals.

We would like to extend our method to take into
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account multiple specifications as an answer. We
also plan to develop a classifier to identify which
questions can not be answered from the specifica-
tions.
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Abstract

In this work, we improve the intent classifica-
tion in an English based e-commerce voice as-
sistant by using inter-utterance context. For in-
creased user adaptation and hence being more
profitable, an e-commerce voice assistant is de-
sired to understand the context of a conversa-
tion and not have the users repeat it in every
utterance. For example, let a user’s first utter-
ance be ‘find apples’. Then, the user may say ‘i
want organic only’ to filter out the results gen-
erated by an assistant with respect to the first
query. So, it is important for the assistant to
take into account the context from the user’s
first utterance to understand her intention in
the second one. In this paper, we present our
approach for contextual intent classification in
Walmart’s e-commerce voice assistant. It uses
the intent of the previous user utterance to pre-
dict the intent of her current utterance. With
the help of experiments performed on real user
queries we show that our approach improves
the intent classification in the assistant.

1 Introduction

Recently, there has been a notable advancement in
the field of voice assistants1. Consequently, voice
assistants are being deployed heavily in lucrative
domains such as e-commerce (Mari et al., 2020),
customer service (Cui et al., 2017) and healthcare
(Mavropoulos et al., 2019). There are various e-
commerce based voice assistants available in the
market, including Amazon’s Alexa voice shopping
(Maarek, 2018) and Walmart’s on Google assis-
tant/Siri 2. Their goal is to free us from the tedious
task of buying stuff by visiting stores and websites.
A major challenge in the fulfilment of this goal
is their capability to precisely understand an utter-
ance in a dialog without providing much context

1https://bit.ly/2Xr71xv
2https://bit.ly/33TmwkN, https://bit.ly/2JqH9eO

in the utterance. For example, an assistant must
precisely understand that when a user says ‘five’
after a query to add bananas to her cart then she
intents to add five bananas to her cart. Whereas if
a user says ‘five’ as her first utterance to the shop-
ping assistant then her intention is unknown (i.e.,
it does not represent any e-commerce action at the
start of a conversation). Handling such scenarios re-
quire the Natural Language Understanding (NLU)
component in the assistants to utilize the context
while predicting the intent associated with an utter-
ance. The current intent prediction systems (Chen
et al., 2019; Goo et al., 2018; Liu and Lane, 2016)
do not focus on such contextual dependence. In
this work we integrate inter-utterance contextual
features in the NLU component of the shopping
assistant of Walmart company to improve its intent
classification.

There are four main aspects of a voice assis-
tant, namely, Speech-to-Text, NLU, Dialog Man-
agement (DM) and Text-to-Speech. The NLU com-
ponent (such as the one in Liu and Lane (2016))
identifies intent(s) and entities in a user utterance.
The dialog manager uses the output of the NLU
component to prepare a suitable response for the
user. The NLU systems in the currently available
voice enabled shopping assistants3 do not focus
on inter-utterance context and hence the onus of
context disambiguation lies upon the dialog man-
ager. Although it is possible to capture a small
number of such cases in the dialog manager, it be-
comes difficult for it to scale for large number of
contextually dependent utterances. For example,
let us consider the user utterance ‘five’ after the ut-
terance to add something to her cart. Then a dialog
manager can predict its intent by using the rule: if
previous intent = add to cart and the query is an
integer then intent = add to cart else intent = un-

3https://bit.ly/2ZAa5KA
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known. But such a general rule can not be created
for many other queries such as ‘organic please’
(previous intent = add to cart, intent = filter) and
‘stop please’ (previous intent = add to cart, intent
= stop).

In this paper, we present our work to improve
the intent classification in the shopping assistant of
Walmart company by using inter-utterance context.
Our work also reduces the contextual disambigua-
tion burden from the dialog manager. Here, we
implement our approach using two neural network
based architectures. With the help of experiments
we also compare the two implementations.

2 Related Work

Various intent classification works (Chen et al.,
2019; Goo et al., 2018; Liu and Lane, 2016) have
been proposed in the recent years. Most of them
mainly focus on the current utterance only and
try to predict its intent based on the information
present in it. We take it one step further and use the
context from the immediately previous utterance.

A work which focuses on the contextual infor-
mation while predicting the intents is mentioned
in Naik et al. (2018). It uses visual information as
context. Although it is useful in an assistant which
comes with a screen, it is not applicable for a voice
only assistant.

Another work (Mensio et al., 2018) uses an en-
tire conversation (intents of all the utterances and
all the replies from the assistant) as context. Al-
though it makes sense to use the entire conversation
as context in a general purpose chat-bot, we believe
that in the e-commerce domain a conversation be-
tween an assistant and a user is fragmented into
smaller goals such as ‘finding an item in the inven-
tory’ and ‘adding an item in cart’. Each such goal
should be defined by a small number of utterances
only. This is because the objective of the voice
assistant is to simplify the shopping experience for
the user instead of engaging her in a long conversa-
tion for a simpler task. So, in our work we use the
intent of the previous utterance only as the context
for the intent prediction of the current utterance.

3 Data Generation & Our Approach

In this section we provide the data generation de-
tails and a detailed overview of our context aware
intent classification implementations.

3.1 Contextual Data Generation
In this work our main goal is to improve the intent
classification for e-commerce related utterances.
We achieve this goal by using inter-utterance con-
text. There are various data sets (ATIS (Hemphill
et al., 1990), SNIPS (Coucke et al., 2018)) for in-
tent classification. None of them contain contex-
tual data instances. Furthermore, they do not focus
on e-commerce related data. So, as part of this
work we generated a context aware data set for
e-commerce specific queries. We used a template
based approach to generate the data. It was inspired
by our previous work as mentioned in Sharma et al.
(2018). Following are the two main steps in the
data generation phase.

• Step 1: A set of 1735 templates (correspond-
ing to 32 intents) are curated over a period
of time by product managers and data sci-
entists. An example of a template is “i
wanted [brand]” where [brand] is a
placeholder for a product’s brand (such as
Shamrock Farms). The templates are used
to generate template and intent combinations.
Each such combination contains a previous
intent, a template and the template’s correct
intent. For example, following are two of the
combinations generated with respect to the
above mentioned template, 1)

1. previous intent = search, template = i
wanted [brand], intent = filter,

2. previous intent = START, template
= i wanted [brand], intent =
unknown.

• Step 2: In this step the placeholders in the
template and intent combinations are replaced
with their possible values from predefined sets
to generate the data points. Multiple data
points are generated from each template com-
bination by using the placeholders’ values (10
distinct values for each placeholder in each
template). The possible values of the place-
holders are extracted from the products’ cata-
log of Walmart company.

3.1.1 Fixing Unbalanced Data
The data generated by using the above steps was
found to be unbalanced in the following two ways.

1. We found that the generated data contained
more instances corresponding to some intents than
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Figure 1: Deep Learning Architectures of the Implementations.
Implementation 1 is Bi-LSTM+FeedForward+GRU and Implementation 2 is Bi-LSTM+FeedForward

others. This is because the templates correspond-
ing to some intents (such as add to cart) contained
placeholders which were replaced by many possi-
ble values whereas the templates corresponding to
other intents (such as stopping a conversation) did
not contain any placeholders. To resolve this kind
of skewness we performed Random Oversampling
(ROS) (Rathpisey and Adji, 2019) with respect to
the intents with minimal data.

2. The contextual instances in the generated data
were overwhelmed by their non-contextual parts.
Let T be a contextual template such that its intent
is I iff the previous intent is P otherwise its intent
is unknown. Since there are a total of 32 intents,
T corresponds to 32 contextual template combina-
tions of previous intent and current intent. In 31
among those, the current intent of T is unknown
whereas only one corresponds to I. To resolve this
kind of imbalance we performed Random Over-
sampling (ROS) (Rathpisey and Adji, 2019) with
respect to the one combination mentioned above.

3.2 Our Approach
We used two different neural network architectures
for two separate implementations of our approach.
The two architectures are as shown in the Figure 1.
Following are the details of the architectures.

1. Bi-LSTM+FeedForward+GRU: The first ar-
chitecture is inspired by the work in Mensio et al.
(2018). It has two main components. First, a bi-
LSTM (Huang et al., 2015; Plank et al., 2016) en-

coder which generates a vector encoding of an in-
put utterance. The vector represents a summarized
version of the utterance. It is generated from the
embeddings of the words in the query. We experi-
mented with different pre-trained language models
(BERT (Devlin et al., 2018) and Glove (Pennington
et al., 2014)) to retrieve the initial word embedding.
Second component is a GRU (Chung et al., 2014)
layer whose inputs consist of the output of a feed
forward layer with respect to the embedding gen-
erated by the bi-LSTM encoder, along with the
one-hot encoding of the previous utterance’s intent.
The output of this layer is the intent of the input
utterance (See Figure 1).

2. Bi-LSTM+FeedForward: Similar to the first
architecture, the second one also has two compo-
nents, a bi-LSTM layer followed by a feed forward
layer. As in the first architecture, the bi-LSTM
layer generates a vector which represents a user
utterance. The output of the bi-LSTM layer is
then concatenated with the one-hot encoding of the
previous intent and entered as an input to a feed
forward layer (See Figure 1).

4 Evaluation & Results

The main goal of this work is to improve the intent
classification in the NLU component of Walmart’s
shopping assistant by using inter-utterance context.
In this section we present the quantitative details
of the data, the experiments and the analysis of the
results.
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Implementation Oversampling Intent Accuracy on User Logs (% correct)
Glove 6B Glove 840B BERT

Bi-LSTM+FeedForward+GRU
4 83.05 80.51 87.68
6 79.12 73.64 72.98

Bi-LSTM+FeedForward
4 86.5 86.67 86.34
6 82.58 83.39 70.57

Table 1: Evaluation results for Contextual Intent Classification on 2550 Real User Queries

4.1 Dataset Details
We followed the data generation steps mentioned
in the Section 3.1 with and without oversampling
to generate a set of 730K and 570K instances re-
spectively. Each set is split into training (85%) and
validation (15%). For testing the trained models we
used the real user queries which were taken from
the live logs of Walmart’s shopping assistant. We
selected all the queries from two weeks of live logs.
Then we filtered the retrieved queries by keeping
only the unique ones. By following the above steps,
we got 2550 unique user queries in our test set.

4.2 Experiment 1
The hypothesis that led to this work states that con-
textual evidence is needed to find the correct intent
of a user utterance in an e-commerce voice assis-
tant. To test the hypothesis, in this experiment we
analyzed the set of 2550 unique user utterances
from user logs. 40.11% of those (i.e., 1023) were
found to be contextual. For example ‘give me a
smaller size’ is one such contextual query which
when appears after an add to cart utterance, im-
plies filtering the results of the previous utterance
whereas when appeared first in a conversation be-
tween a user and a voice assistant, does not make
sense (or unknown intent). The add to cart and
search intents are most popular among the logs.
We found that 1005 out of 1023 contextual queries
were related to those intents. This emphasizes the
importance of contextual disambiguation even fur-
ther. 917 (approx. 90%) among 1023 were cor-
rectly classified by the best performing version
(BERT based) of our implementations (see Table
1). The current, non-contextual intent classifier of
the Walmart’s shopping assistant classifies all the
contextual queries as one intent (say abc). The con-
textual disambiguation burden lies on the dialog
manager by using rules (as mentioned in the Sec-
tion 1). Presently, a total of 12 rules exist to handle
contextual templates corresponding to one intent
(out of 32) only. We also found that out of 1023

contextual queries, about 88% are classified by the
non-contextual intent classifier as abc.

4.3 Experiment 2

In this experiment, we tested our implementations
with respect to different input word embedding
and data (with oversampling and without oversam-
pling). We used BERT’s huggingface4 pretrained
embedding (length=768), and Glove5 6 billion and
840 billion pre-trained embedding (length=300).
The evaluation results are as shown in the Table 1.
Each model was trained for 10 epochs. The BERT
embedding of a word was calculated by taking an
average of the last 4 layers in the 12-layer BERT
pre-trained model5.

4.4 Results Analysis

The results of experiment 1 show the usefulness of
contextual intent classification.

The results of experiment 2 show that the Bi-
LSTM and GRU based implementation performs
best with an overall accuracy of 87.68% on all
the live user logs and approximately 90% on the
contextual logs.

Inference speed plays an important role
in production deployment of models. Al-
though the performance of BERT based Bi-
LSTM+FeedForward+GRU is better than the
Glove (840B) based Bi-LSTM+FeedForward, the
latency of first (450 milliseconds, averaged over
2550 queries on CPU) one is considerably more
than the second (5 milliseconds on CPU). See Table
2 for inference speeds of the different models.

We observed that many (about 50%) errors in
both the implementations were caused by the inabil-
ity of the training data to represent real user data.
A way to address such errors is by using real user
queries also to train the models. It requires manual
effort to label user logs. We are currently in the
process of such an effort through crowd workers.

4https://github.com/huggingface/transformers
5https://nlp.stanford.edu/projects/glove/
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Implementation Word Embedding Inference Speed (CPU)
Bi-LSTM+FeedForward+GRU Glove 6B ≈ 5 ms
Bi-LSTM+FeedForward+GRU Glove 840B ≈ 5 ms
Bi-LSTM+FeedForward+GRU BERT ≈ 450 ms
Bi-LSTM+FeedForward Glove 6B ≈ 5 ms
Bi-LSTM+FeedForward Glove 840B ≈ 5 ms
Bi-LSTM+FeedForward BERT ≈ 450 ms

Table 2: Inference Speed of Different Models (Averaged Over 2550 Real User Queries)

We believe that using a combination of templates
based and real user data will improve the accuracy
of the implementations even further.

5 Conclusion & Future Work

In this paper, we presented our work of improving
intent classification in Walmart’s shopping assis-
tant. We used previous utterance’s intent as context
to identify current utterance’s intent. The contex-
tual update in the NLU layer (intent classification)
also takes the burden of intent based contextual
disambiguation away from a dialog manager. As
hypothesized, the experimental results show that
our approach improves the intent classification by
handling contextual queries. We presented two im-
plementations of our approach and compared them
with respect to live user logs.

Though, in this work our main focus was on the
contextual disambiguation of intents, the entities
are also contextually dependent. For example ‘five’
uttered after ‘add bananas’ may refer to the quan-
tity five whereas if uttered after ‘pick a delivery
time’ may refer to the time of day five (am/pm).
In future we would like to use contextual features
to disambiguate between entities and improve the
entity tagging as well.
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Abstract

In this paper, we present a semi-supervised
bootstrapping approach to detect product or
service related complaints in social media.
Our approach begins with a small collection
of annotated samples which are used to iden-
tify a preliminary set of linguistic indicators
pertinent to complaints. These indicators are
then used to expand the dataset. The expanded
dataset is again used to extract more indicators.
This process is applied for several iterations
until we can no longer find any new indica-
tors. We evaluated this approach on a Twitter
corpus specifically to detect complaints about
transportation services. We started with an an-
notated set of 326 samples of transportation
complaints, and after four iterations of the ap-
proach, we collected 2,840 indicators and over
3,700 tweets. We annotated a random sam-
ple of 700 tweets from the final dataset and
observed that nearly half the samples were
actual transportation complaints. Lastly, we
also studied how different features based on
semantics, orthographic properties, and senti-
ment contribute towards the prediction of com-
plaints.

1 Introduction

Social media has lately become one of the primary
venues where users express their opinions about
various products and services. These opinions
are extremely useful in understanding the user’s
perceptions and sentiment about these services.
They are also useful in identifying potential de-
fects (Abrahams et al., 2012) and thus critical to
the execution of downstream customer service re-
sponses. Therefore, automatic detection of user
complaints on social media could prove beneficial
to both the clients and the service providers. To
build such detection systems, we could employ su-
pervised approaches that would typically require a
large corpus of labeled training samples. However,

labeling social media posts that capture complaints
about a particular service is challenging because
of their low prevalence and also the vast amounts
of inevitable noise (Kietzmann et al., 2011; Lee,
2018). Additionally, social media platforms are
also likely to be plagued with redundancy, where
the posts are rephrased or structurally morphed be-
fore being re-posted (Ellison et al., 2011; Harrigan
et al., 2012).

Prior work in event detection (Ritter et al., 2012)
has demonstrated that simple linguistic indicators
(phrases or n-grams) can be useful in the accurate
discovery of events in social media. Though user
complaints are not the same as events, more of a
speech act (Preotiuc-Pietro et al., 2019), we posit
that similar indicators can be used in complaint
detection. To pursue this hypothesis, we propose
a semi-supervised iterative approach to identify
social media posts that complain about a specific
service.

In our approach, we first begin with a small, man-
ually curated dataset containing samples of social
media posts complaining about a service. We then
identify linguistic indicators (phrases or n-grams)
that serve as strong evidence of this phenomenon.
These indicators are then used to extract more posts
from the unannotated corpus. This newly obtained
data is then used to create a new set of indicators.
This process is repeated until it reaches a certain
convergence point. Since the set of indicators is
growing after each iteration, they are re-evaluated
continuously in terms of their relevance. This pro-
cess is similar to the mutual bootstrapping approach
for information extraction proposed in (Riloff et al.,
2003).

We employ this approach to the problem of com-
plaint detection for transportation services on Twit-
ter. Transportation and its related logistic services
are critical aspects of every economy as they ac-
count for nearly 40% of the value of international
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trade (Rodrigue, 2007). As with most businesses
(Gallaugher and Ransbotham, 2010; Gottipati et al.,
2018), transportation also often relies on social me-
dia to ascertain feedback and initiate appropriate
responses (Stelzer et al., 2016, 2014). In our ex-
perimental work, we started with an annotated set
of 326 samples of transportation complaints, and
after four iterations of the approach, we collected
2,840 indicators and over 3,700 tweets. We anno-
tated a random sample of 700 tweets from the final
dataset and observed that over 47% of the samples
were actual transportation complaints. We also
characterize the performance of basic classification
algorithms on this dataset. In doing so, we also
study how different linguistic features contribute
to the performance of a supervised model in this
domain.

The main contributions of this paper are as fol-
lows:

• We propose a semi-supervised iterative ap-
proach to collect user complaints about a ser-
vice from social media platforms.

• We evaluate the proposed approach for the
problem of complaint detection for transporta-
tion services on Twitter.

• We annotate a random sample of the resulting
dataset to establish that nearly half the tweets
were actual complaints.

• We release a curated dataset for the task of
traffic-related complaint detection in social
media1.

• Lastly, we characterize the performance of
basic classification algorithms on the dataset.

2 Related Work

Complaints are often considered dialogue acts used
to express a mismatch between the expectation and
reality (Olshtain and Weinbach, 1985). The prob-
lem of complaint detection is of great interest to the
marketing and research teams of various service
providers. Previous works on complaint identifica-
tion have applied text mining with LDA and senti-
ment analysis on user-generated content (Liu et al.,
2017; Duan et al., 2013). Prior works have also
focused on leveraging data streamed from social

1The dataset can be found at https://github.com/midas-
research/transport-complaint-detection

media platforms for outage and complaint detec-
tion as they are publicly available (Augustine et al.,
2012; Kursar and Gopinath, 2013).

(Yang et al., 2019) inspected customer support
dialogue for support. Different complaint expres-
sions have been explored by analyzing variations
across cultures (Cohen and Olshtain, 1993), socio-
demographic traits (Boxer, 1993) and temporal
representations (Raghavan, 2014). However, men-
tioned works on user-generated content have fo-
cused on static data repositories only. These have
not been robust to linguistic variations (Shah and
Zimmermann, 2017) and morphological changes
(Abdul-Mageed and Korayem, 2010). Our pipeline
builds on linguistic identifiers to expand on lexical
cues in order to identify complaint relevant posts.

Researches have proposed many semi-
supervised architectures for identification of
events pertaining to societal and civil unrest (Hua
et al., 2013), using speech modality (Serizel et al.,
2018; Wu et al., 2014; Zhang et al., 2017) and
Hidden Markov Models (Zhang, 2005). These
have been documented to give better performance
as compared against their counterparts (Lee
et al., 2017; Zheng et al., 2017) with minimal
intervention (Rahimi et al., 2018). For our analysis,
the semi-supervised approach has been preferred as
opposed to supervised ones because: (a) usage of
supervised approach relies on carefully choosing
the training set making it cumbersome and less
attractive for practical use (Watanabe, 2018) and
(b) imbalance between the subjective and objective
classes lead to poor performance (Yu et al., 2015).

3 Methods and Data

Our proposed approach begins with a large corpus
of transport-related tweets and a small set of anno-
tated complaints. We use this labeled data to create
a set of seed indicators that drive the rest of our
iterative complaint detection process.

3.1 Seed Data
We focused our experimentation over the period
of November 2018 to December 2018. Our
first step towards creating a corpus of transport-
related tweets is to identify linguistic markers re-
lated to the transport domain. To this end, we
scraped random posts from transport-related web
forums2. These forums involve users discussing
their grievances and raising awareness about a wide

2https://www.theverge.com/forums/transportation
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array of transportation-related issues. We then
processed this data to extract words and phrases
(unigrams, bigrams, and trigrams) with high tf-idf
scores. We then had human annotators prune them
further to remove duplicates and irrelevant items.
This resulted in a lexicon of 75 unique phrases.
Some examples include cabs, discount, tickets, un-
derground, luggage, transit, parking, neighbor-
hood, downtown, traffic, Uber.

We used Twitter’s public streaming API to query
for tweets that contained any of the 75 phrases
over the chosen time range. We then excluded
non-English tweets and any tweets with less than
two tokens. This resulted in a collection of 19,300
tweets. We will refer to this collection as corpus C.
We chose a random sample of 1,500 tweets from
this collection for human annotation. We employed
two human annotators to identify traffic-related
complaints from these 1,500 tweets. Following are
some high-level details of the annotation task.

We instructed the annotators to identify any
tweets that contain first-hand accounts of a com-
plaint or a grievance related to a public/private
mode of transport. Following is a sample tweet
from this instruction: “@[UserHandle] can you
please make sure that compartment A-6 is at least
clean before public use.” We also instructed them
to identify tweets that provide verifiable sources
of information (news) about transport-related ser-
vices. Sample tweet: “4 hour jam in [place] area
due to rain and poor management of traffic po-
lice.”. Lastly, we also explicitly asked them to
exclude tweets that contain announcements or ad-
vertisements about transportation services. Sample
tweet: “Please use [name] cabs, you will get 60%
discount on your first 3 rides.”

The two annotators worked independently, and
when we finally tallied their responses, we ob-
served that they had an inter-annotator agreement
rate of κ = 0.81 (Cohen kappa). In cases where
the annotators disagreed, the labels were resolved
through a discussion. After the disagreements were
resolved, the final seed dataset had 326 samples of
traffic-related complaints. We will refer to this as
Ts. Table 1 shows some examples of tweets that
were annotated as complaints.

3.2 Iterative Complaint Detection

Our proposed iterative approach is summarized in
Algorithm 1. First, we use the seed data Ts to
build a set of linguistic indicators I for complaints.

We then use these indicators to get potential new
complaints Tl from the corpusC. We merge Ts and
Tl to build our new dataset. We then use this new
dataset to extract a new set of indicators Il. The
indicators are combined with the original indicators
I to extract the next version of Tl. This process
is repeated until we can no longer find any new
indicators.

Algorithm 1: Iterative Complaint Detec-
tion
Given: Corpus: C, Seed data: Ts
Get indicators I from Ts
T = Ts
Complaint Detection loop
Step 1: Select set Tl from C using I
Step 2: T = T ∪ Tl
Step 3: Get indicators Il from T
Step 4: I = I ∪ Il
Step 4: C = C − Tl

3.2.1 Extracting linguistic indicators
As shown in Algorithm 1, extracting linguistic in-
dicators (n-grams) is one of the most important
steps in the process. These indicators are critical
to identifying tweets that are most likely domain-
specific complaints. We employ two different ap-
proaches for extracting these indicators. For seed
data, Ts, which is annotated, we just select n-grams
with the highest tf-idf scores. In our experimental
work, Ts had 326 annotated tweets. We identi-
fied 50 n-grams with the highest tf-idf scores to
initialize I . Some examples include: problem, sta-
tion, services, toll-fee, reply, fault, provide infor-
mation, driver, district, passenger. In subsequent
iterations, when we are handling unannotated sam-
ples, we use a more advanced domain relevance
criterion for extracting the indicators.

When extracting indicators from Tl, which is
not annotated, it is possible that there could be fre-
quently occurring phrases that are not necessarily
indicative of complaints. These phrases could lead
to a concept drift in subsequent iterations. To avoid
these digressions, we use a measure of domain rel-
evance when selecting indicators. This is defined
as the ratio of the frequency of an n-gram in Tl to
that of in Tr. Tr is a collection of randomly chosen
tweets that do not intersect with C. In our exper-
imental work, we defined Tr as a random sample
of 5,000 tweets from a different time range than
that of C. We also wanted to quantitatively en-
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Samples of transport-related complaints.
1. No metro fares will be reduced, but proper fare structure needs to be introduced .... right?.
2. It takes [name] govt. longer to refund charges, but it took them a few mins to remove that bus stop.
You can’t erase the problem[name].
3. I tried to lodge a complaint on [url] but see the results. Sir if 8 A.C’s are not working in this coach
, why have you attached that coach.
4. [name] Is that for when people can’t travel due to your staff having to strike to keep everyone safe?
Or perhaps short formed trains that you cant get on.

Table 1: Sample tweets annotated as transport-related complaints.

sure that the lexicon in Tr is different from that
of C. Namely, we calculated the cosine similarity
between the two datasets in the tf-idf space. The co-
sine similarity at a value of 0.028 was statistically
significant with a Pearson correlation coefficient
value 0.012 (p-value 0.0034) (Schober et al., 2018).

3.2.2 Selection of tweets
Given a set of indicators I , the process of select-
ing tweets from corpus C is fairly straightforward.
It only requires to identify all the tweet that con-
tains any of the indicators. The only caveat here is
to reduce the redundancy in the dataset. For this,
we just filtered out tweets that have a cosine sim-
ilarity of more than 0.85 with any other tweet in
the tf-idf space (Albakour et al., 2013). This pro-
cess also helped remove tweets, which are exact
matches, sub-strings, or differing by some punc-
tuation. Removal of these redundant tweets also
helps in diversifying the lexicon for subsequent
iterations.

3.2.3 Complaints dataset
Our iterative approach converged in four rounds,
after which it did not extract any new indicators.
Figure 1 shows the counts of indicators and the
number of tweets after each iteration. After four
iterations, this approach chose 3,732 tweets and
generated 2,840 unique indicators. We also man-
ually inspected the indicators chosen during the
process. We observed that only indicators with a
domain relevance score of ≥ 2.5 were chosen for
subsequent iterations. Table 2 provides a few exam-
ples of strong and weak indicators acquired after
the first iteration. In this figure, strong indicators
are those with a domain relevance score ≥ 2.5.

We chose a random set of 700 tweets from the
final complaints dataset T and annotated them man-
ually to help understand the quality. We used the
same guidelines as discussed in section 3.1 and also
employed the same annotators as before. The anno-
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Figure 1: Number of indicators and tweets collected
after each iteration.

tators once again obtained a high agreement score
of κ = 0.83. After resolving the disagreements,
we observed that 332 tweets were labeled as com-
plaints. This accounts for 47.4% of the sampled
700 tweets. This demonstrates that nearly half the
tweets selected by our semi-supervised approach
were traffic-related complaints. This is a signifi-
cantly higher proportion in the original seed data
Ts, where only 21.7% were actual complaints.

4 Modeling

We conducted a series of experiments to under-
stand if we can automatically build simple machine
learning models to detect complaints. These ex-
periments also helped us evaluate the quality of
the final dataset. Additionally, this experimental
work also studies how different types of linguistic
features contribute to the detection of social me-
dia complaints. For these experiments, we used
the annotated sample of 700 posts as a test dataset.
We built our training dataset by selecting another
2,000 posts from the original corpus C, and anno-
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Strength Indicator

Strong car travel (5.80), your complaint (3.62), technical problem (3.59), report officer (3.44),
traffic control (3.33), make apologies(3.29)

Weak you go (0.55), sure (0.51), please (0.49), take this (0.44), with you (0.42), therefore (0.39),
make him (0.36)

Table 2: Examples of some strong and weak indicators. The numbers in brackets denote the respective domain
relevance score.

Feature Accuracy(%) F1-score
Semantic Features

Unigrams 75.3 0.70
POS Tags 70.1 0.66

Word2Vec cluster 72.1 0.67
Pronoun Types 69.6 0.65

Sentiment Features
MPQA 68.2 0.61
NRC 67.9 0.59

VADER 68.0 0.62
Stanford Sentiment 68.7 0.63

Orthographic Features
Textual Meta-data 69.3 0.62

Intensifiers 72.5 0.67
Request Features

Request Model 70.1 0.66
Politeness Markers 70.4 0.63

Table 3: Predictive accuracy and F1-score associated
with different types of features.

tated them once again per guidelines discussed in
section 3.1. In this sample, we observed that the an-
notators had similar agreements scores of κ = 0.79,
and there were 702 instances of complaints.

4.1 Features

We also wanted to understand the predictive power
of different types of linguistic features towards the
detection of complaints. These features can be
broadly broken down into four groups. (i) The first
group of features are based on simple semantic
properties such as n-grams, word embeddings, and
part of speech tags. (ii) The second group of fea-
tures are based on pre-trained sentiment models
or lexicons. (iii) The third group of features use
orthographic information such as hashtags, user
mentions, and intensifiers. (iv) The last group of
features again use pre-trained models or lexicons
associated with request, which is a closely related
speech act (Švárová, 2008).

4.1.1 Semantic features
We experimented with four different semantic fea-
tures:

Unigrams: Each tweet (Wallach, 2006) is repre-
sented as sparse vector of tf-idf values correspond-

ing to the constituent tokens.
Word2Vec Clusters: We follow the same ap-

proach as in (Preoţiuc-Pietro et al., 2015), where
words are clustered using pair-wise similarities in
Word2Vec space (Mikolov et al., 2013). Each tweet
is then represented as a distribution over these clus-
ters; the values are proportional to the number of
tokens belonging to a cluster. These clusters have
previously been demonstrated to have great inter-
pretability (Preoţiuc-Pietro et al., 2015, 2017; Zou
et al., 2016).

POS Tags: We used the Stanford POS Tagger
(Manning et al., 2014) to represent tweets as a
dense frequency vector over five main POS tags:
nouns, adjectives, adverbs, verbs, pronouns.

Pronoun Types: Pronouns are often used in
complaints and suggestions to reveal personal in-
volvement or to add intensity to an opinion (Clar-
idge, 2007; Meinl, 2013). We identify various pro-
noun types (first person, second person, third per-
son, demonstrative, indefinite) using dictionaries
and use their counts as features.

4.1.2 Sentiment features
We expect sentiment to contribute strongly to-
wards the prediction of complaints. We experi-
ment with two pre-trained models: Stanford Sen-
timent (Socher et al., 2013) and VADER (Hutto
and Gilbert, 2014). Namely, we use the scores
predicted by these models as representations of
tweets. Likewise, we also experiment with two sen-
timent lexicons: MPQA (Wilson et al., 2005), NRC
(Mohammad et al., 2013) for assigning sentiment
scores to tweets.

4.1.3 Orthographic features
Our first set of orthographic feature uses counts of
URLs, hashtags, user mentions, and special sym-
bols used in the post. The second set of ortho-
graphic features try to identify potential intensifiers
such as capitalization and repeated use of exclama-
tion or question marks. These types of intensifiers
are often used to express anger or strong opinions
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(Meinl, 2013).

4.1.4 Request features
A request is a speech act very closely related
to complaints. Often, the main motivation be-
hind a complaint on a social media platform is
to get a correction or reparation from the service
providers (Blum-Kulka and Olshtain, 1984). We
use the model presented in (Danescu-Niculescu-
Mizil et al., 2013) to detect if a given tweet is
a request. Requests might also often include po-
lite phrases in expectation of better service. They
are coded using various dictionaries e.g, down-
graders (little), down-toners (just), hedges (some-
what). Apology markers have the same effect as
politeness markers, they may include greetings at
the start (Good Morning), direct start (e.g so), sub-
junctive phrases (could you) (Švárová, 2008). We
utilize pre-defined dictionaries to determine the
presence of politeness identifiers along with the
politeness score of the tweet based on the model in
(Danescu-Niculescu-Mizil et al., 2013).

4.2 Results
We trained a logistic regression model for com-
plaint detection using each one of the features de-
scribed in section 4.1. Table 3 summarizes the
results in terms of accuracy and macro averaged
F1-score. The best performing model is based on
unigrams, with an accuracy of 75.3%. There is
not a significant difference in the performance of
different sentiment models. It is also interesting
to observe that simple features like the counts of
different pronoun types and counts of intensifiers
have strong predictive ability. Overall, we observe
that most of the features studied here have some
ability to predict complaints.

5 Conclusion and Future Work

In this paper, we presented a semi-supervised iter-
ative approach for the detection of complaints in
social media platforms. The process begins with
a small sample of annotated examples, and then
iteratively builds more linguistic identifiers to ex-
pand the dataset. We evaluated this approach on
the domain of transportation on Twitter, starting
with a sample of 326 annotated tweets. After four
iterations, we were able to construct a corpus with
over 3,700 tweets. Annotation of random samples
established that nearly half the tweets were actual
complaints. We evaluated the predictive power
based on semantic, orthographic, and sentiment

features. We observed that complaint is a complex
speech act, which is related to many other linguistic
properties.

Automatic detection of complaints is not only
useful to service providers as feedback; it could
also prove helpful in improving service providers’
operations and in downstream applications such as
developing chat-bots. Additionally, it could also
be of interest to linguists in understanding how
humans express grievances and criticism.

This proposed methodology could be applied
to many other products or services to detect com-
plaints. This would only additionally require some
lexicons and a small annotated dataset. We also
expect it would be fairly straightforward to adapt
this technique to many other types of speech acts.
Further investigation is necessary to understand
how this method compares against supervised or
completely unsupervised techniques.
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Cindy Mayas. 2016. Improving service quality in
public transportation systems using automated cus-
tomer feedback. Transportation Research Part E:
Logistics and Transportation Review, 89:259–271.
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Abstract

In e-commerce, recommender systems have
become an indispensable part of helping users
explore the available inventory. In this work,
we present a novel approach for item-based
collaborative filtering, by leveraging BERT to
understand items, and score relevancy between
different items. Our proposed method could
address problems that plague traditional rec-
ommender systems such as cold start, and
”more of the same” recommended content. We
conducted experiments on a large-scale real-
world dataset with full cold-start scenario, and
the proposed approach significantly outper-
forms the popular Bi-LSTM model.

1 Introduction

Recommender systems are an integral part of e-
commerce platforms, helping users pick out items
of interest from large inventories at scale. Tra-
ditional recommendation algorithms can be di-
vided into two types: collaborative filtering-based
(Schafer et al., 2007; Linden et al., 2003) and
content-based (Lops et al., 2011; Pazzani and
Billsus, 2007). However, these have their own
limitations when applied directly to real-world e-
commerce platforms. For example, traditional user-
based collaborative filtering recommendation al-
gorithms (see, e.g., Schafer et al., 2007) find the
most similar users based on the seed user’s rated
items, and then recommend new items which other
users rated highly. For item-based collaborative
filtering (see, e.g., Linden et al., 2003), given a
seed item, recommended items are chosen to have
most similar user feedback. However, for highly
active e-commerce platforms with large and con-
stantly changing inventory, both approaches are
severely impacted by data sparsity in the user-item
interaction matrix.

Content-based recommendation algorithms cal-
culate similarities in content between candidate

items and seed items that the user has provided
feedback for (which may be implicit e.g. clicking,
or explicit e.g. rating), and then select the most sim-
ilar items to recommend. Although less impacted
by data sparsity, due to their reliance on content
rather than behavior, they can struggle to provide
novel recommendations which may activate the
user’s latent interests, a highly desirable quality for
recommender systems (Castells et al., 2011).

Due to the recent success of neural networks in
multiple AI domains (LeCun et al., 2015) and their
superior modeling capacity, a number of research
efforts have explored new recommendation algo-
rithms based on Deep Learning (see, e.g., Barkan
and Koenigstein, 2016; He et al., 2017; Hidasi et al.,
2015; Covington et al., 2016).

In this paper, we propose a novel approach for
item-based collaborative filtering, by leveraging the
BERT model (Devlin et al., 2018) to understand
item titles and model relevance between different
items. We adapt the masked language modelling
and next sentence prediction tasks from the nat-
ural language context to the e-commerce context.
The contributions of this work are summarized as
follows:

• Instead of relying on unique item identifier
to aggregate history information, we only
use item’s title as content, along with token
embeddings to solve the cold start problem,
which is the main shortcoming of traditional
recommendation algorithms.

• By training model with user behavior data,
our model learns user’s latent interests more
than item similarities, while traditional rec-
ommendation algorithms and some pair-wise
deep learning algorithms only provide similar
items which users may have bought.

• We conduct experiments on a large-scale e-
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commerce dataset, demonstrating the effec-
tiveness of our approach and producing rec-
ommendation results with higher quality.

2 Item-based Collaborative Filtering
with BERT

As mentioned earlier, for a dynamic e-commerce
platform, items enter and leave the market contin-
uously, resulting in an extremely sparse user-item
interaction matrix. In addition to the challenge of
long-tail recommendations, this also requires the
recommender system to be continuously retrained
and redeployed in order to accommodate newly
listed items. To address these issues, in our pro-
posed approach, instead of representing each item
with a unique identifier, we choose to represent
each item with its title tokens, which are further
mapped to a continuous vector representation. By
doing so, essentially two items with the same title
would be treated as the same, and can aggregate
user behaviors accordingly. For a newly listed item
in the cold-start setting, the model can utilize the
similarity of the item title to ones observed before
to find relevant recommended items.

The goal of item-based collaborative filtering is
to score the relevance between two items, and for
a seed item, the top scored items would be recom-
mended as a result. Our model is based on BERT
(Devlin et al., 2018). Rather than the traditional
RNN / CNN structure, BERT adopts transformer
encoder as a language model, and use attention
mechanism to calculate the relationship between
input and output. The training of BERT model can
be divided into two parts: Masked Language Model
and Next Sentence Prediction. We re-purpose these
tasks for the e-commerce context into Masked Lan-
guage Model on Item Titles, and Next Purchase
Prediction. Since the distribution of item title to-
kens differs drastically from words in natural lan-
guage which the original BERT model is trained
on, retraining the masked language model allows
better understanding of item information for our
use-case. Next Purchase Prediction can directly be
used as the relevance scoring function for our item
collaborative filtering task.

2.1 Model

Our model is based on the architecture of BERTbase

(Devlin et al., 2018). The encoder of BERTbase

contains 12 Transformer layers, with 768 hidden
units, and 12 self-attention heads.

2.1.1 Next Purchase Prediction
The goal of this task is to predict the next item
a user is going to purchase given the seed item
he/she has just bought. We start with a pre-trained
BERTbase model, and fine-tune it for our next pur-
chase prediction task. We feed seed item as sen-
tence A, and target item as sentence B. Both item
titles are concatenated and truncated to have at
most 128 tokens, including one [CLS] and two
[SEP] tokens. For a seed item, its positive items
are generated by collecting items purchased within
the same user session, and the negative ones are
randomly sampled. Given the positive item set Ip,
and the negative item set In, the cross-entropy loss
for next purchase prediction may be computed as

Lnp = −
∑

ij∈Ip
log p(ij)−

∑

ij∈In
log(1− p(ij)).

(1)

2.1.2 Masked Language Model
As the distribution of item title tokens is differ-
ent from the natural language corpus used to train
BERTbase, we further fine-tune the model for the
masked language model (MLM) task as well. In
the masked language model task, we follow the
training schema outlined in Devlin et al. (2018)
wherein 15% of the tokens in the title are chosen
to be replaced by [MASK], random token, or left
unchanged, with a probability of 80%, 10% and
10% respectively. Given the set of chosen tokens
M , the corresponding loss for masked language
model is

Llm = −
∑

mi∈M
log p(mi). (2)

The whole model is optimized against the joint loss
Llm + Lnp.

2.1.3 Bi-LSTM Model (baseline)
As the evaluation is conducted on the dataset hav-
ing a complete cold-start setting, for the sake of
comparison, we build a baseline model consisting
of a title token embedding layer with 768 dimen-
sions, a bidirectional LSTM layer with 64 hidden
units, and a 2-layer MLP with 128 and 32 hidden
units respectively. For every pair of items, the two
titles are concatenated into a sequence. After go-
ing through the embedding layer, the bidirectional
LSTM reads through the entire sequence and gener-
ates a representation at the last timestep. The MLP
layer with logistic function produces the estimated
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Method Prec
@1

Prec
@10

Recall
@10

NDCG
@10

Bi-LSTM 0.064 0.029 0.295 0.163
BERTbase w/o MLM 0.263 0.057 0.572 0.408
BERTbase 0.555 0.079 0.791 0.669

Table 1: Result on ranking the item

probability score. The baseline model is trained
using the same cross-entropy loss shown in Eq. 1.

2.2 Dataset

We train our models on an e-commerce website
data. We collected 8,001,577 pairs of items, of
which 33% are co-purchased (BIN event) within
the same user session, while the rest are randomly
sampled as negative samples. 99.9999% of entries
of the item-item interaction matrix is empty. The
sparsity of data forces the model to focus on gener-
alization rather than memorization. The rationale
would be further explained with the presence of the
statistics of our dataset. Another 250,799 pairs of
items are sampled in the same manner for use as
a validation set, for conducting early stopping for
training.

For testing, in order to mimic the cold-start sce-
nario in the production system wherein traditional
item-item collaborative filtering fails completely,
we sampled 10,000 pairs of co-purchased items
with the seed item not present in the training set.
For each positive sample containing a seed item
and a ground-truth co-purchased item, we paired
the seed item with 999 random negative samples,
and for testing, we use the trained model to rank
the total of 1000 items given each seed item.

3 Results

The results of our evaluation are presented in Ta-
ble. 1. We do not consider the traditional item-to-
item collaborative filtering model (Linden et al.,
2003) here since the evaluation is conducted as-
suming a complete cold-start setting, with all seed
items unobserved in the training set, resulting in
complete failure of such a model. Following the
same reason, other approaches relying on unique
item identifier (e.g. itemId) couldn’t be considered
either in our experiment. We believe its a practical
experiment setting, as for a large-scale e-commerce
platform, a massive amount of new items would
be created every moment, and ignoring those items
from the recommender system would be costly and
inefficient.

We observe that the proposed BERT model
greatly outperforms the LSTM-based model. When
only fine-tuned for the Next Purchase Prediction
task, our model exceeds the baseline by 310.9%,
96.6%, 93.9%, and 150.3% in precision@1, preci-
sion@10, recall@10, and NDCG@10 respectively.
When fine tuning for the masked language model
task is added, we see the metrics improved further
by another 111.0%, 38.6%, 38.3%, and 64.0%.

From the experiment, the superiority of proposed
BERT model for item-based collaborative filter-
ing is clear. It is also clear that adapting the to-
ken distribution for the e-commerce context with
masked language model within BERT is essential
for achieving the best performance.

In order to visually examine the quality of rec-
ommendations, we present the recommended items
for two different seed items in Table. 2. For the first
seed item ’Marvel Spiderman T-shirt Small Black
Tee Superhero Comic Book Character’, most of the
recommended items are T-shirts, paired with cloth-
ing accessories and tableware decoration, all hav-
ing Marvel as the theme. For the second seed item
’Microsoft Surface Pro 4 12.3” Multi-Touch Tablet
(Intel i5, 128GB) + Keyboard’, the recommended
items span a wide range of categories including
tablets, digital memberships, electronic accessories,
and computer hardware. From these two examples,
we see that the proposed model appears to auto-
matically find relevant selection criteria without
manual specification, as well as make decisions be-
tween focusing on a specific category and catering
to a wide range of inventory by learning from the
data.

4 Summary

In this paper, we adapt the BERT model for the
task of item-based recommendations. Instead of
directly representing an item with a unique identi-
fier, we use the item’s title tokens as content, along
with token embeddings, to address the cold start
problem. We demonstrate the superiority of our
model over a traditional neural network model in
understanding item titles and learning relationships
between items across vast inventory.
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A Appendix

Seed: Marvel Spiderman T-shirt Small Black Tee Superhero Comic Book Character

Title Score

Marvel Black Panther Character Men’s Superhero Socks Black 0.9999
Marvel SPIDERMAN HOMECOMING Birthday Party Range Tableware Supplies Decorations 0.9999
Marvel Compression Leggings Superhero T-shirts Long Pants Spiderman Sportswear 0.9999
Venom T-Shirt Funny Baby Venom Spiderman Black T-Shirt for Men and Women 0.9998
SPIDERMAN HOMECOMING LOGO T-SHIRT 0.9998
Marvel Comics Books Avengers The Incredible Hulk Transforming Tee Shirt Black 0.9998
Mens Short Sleeve T Shirt Slim Fit Casual Tops Tee Batman Iron Man Spider-Man 0.9998
MEMORIES Stan Lee Marvel Superhero T-Shirt Artwork Spiderman Avengers Mens Top 0.9998
Marvel Spider-Man Superior Spider-Man Mens Black T-Shirt 0.9998
Marvel Spider-Man: Far From Home Red Glow Mens Graphic T Shirt 0.9998

Seed: Microsoft Surface Pro 4 12.3” Multi-Touch Tablet (Intel i5, 128GB) + Keyboard

Title Score

Microsoft Surface 2 1573 ARM Cortex-A15 1.7GHz 2GB 64GB SSD 10.8” Touch 0.9998
Microsoft Xbox Live 3 Month Gold Membership Instant Delivery, Retail $24.99 0.9998
Genuine OEM 1625 AC Power Charger Adapter For Microsoft Surface Pro 3 0.9997
For Sale Microsoft Surface Pro LCD display Touch Screen Digitizer Glass Assembly 0.9997
65W AC Adapter For Microsoft Surface Book/ Pro 4 Q4Q-00001 1706 15V 4A 0.9997
4GB 8GB 16GB DDR3 1333 MHz PC3-10600 DIMM 240Pin Desktop Memory Ram 0.9995
Samsung Galaxy Tab A 10.1” Tablet 16GB Android OS - Black (SM-T580NZKAXAR) 0.9994
For Microsoft Surface Pro 4 1724 Touch Screen LCD Flex Cable Ribbon X937072-001 0.9993
RSIM 12+ 2018 R-SIM Nano Unlock Card Fits for iPhone XS MAX/XR/X/8/ 0.9993
Intel Core i5-4570S Quad-Core Socket LGA1150 CPU Processor SR14J 2.90GHz 0.9993

Table 2: Sample recommended items with seeds
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Abstract

Product reviews are a huge source of nat-
ural language data in e-commerce applica-
tions. Several millions of customers write re-
views regarding a variety of topics. We cat-
egorize these topics into two groups as ei-
ther “category-specific” topics or as “generic”
topics that span multiple product categories.
While we can use a supervised learning ap-
proach to tag review text for generic topics,
it is impossible to use supervised approaches
to tag category-specific topics due to the sheer
number of possible topics for each category. In
this paper, we present an approach to tag each
review with several product category-specific
tags on Indonesian language product reviews
using a semi-supervised approach. We show
that our proposed method can work at scale
on real product reviews at Tokopedia1, a ma-
jor e-commerce platform in Indonesia. Man-
ual evaluation shows that the proposed method
can efficiently generate category-specific prod-
uct tags.

1 Introduction

E-commerce product reviews are a rich source of
direct feedback from the customers. Written in
free text natural language, product reviews contain
a significant amount of information regarding a
variety of topics that are important to prospective
buyers.

Tokopedia conducted customer survey research
to understand the sources of information that po-
tential buyers assess while making a purchase deci-
sion. This internal research shows that around 15%
customers consider product reviews as the most
important source of information and it is the third

1www.tokopedia.com

highest among all 20 possible information sources.
Internal analysis of the “click rate” of various com-
ponents on the platform’s product listing page also
shows that components related to product reviews
have the second highest click rate which further
emphasises the importance of product reviews for
prospective buyers.

Although reviews are important information
sources, manually filtering relevant information is
a cumbersome process for a buyer when making a
purchase decision. Tokopedia has several hundreds
of millions of customer reviews, generated by mil-
lions of users over the years. Therefore, extracting
relevant tags for each product so that prospective
buyers can quickly filter the most relevant reviews
based on their topic of interest becomes important
to make a quick purchase decision and improve
buyer engagement on the platform.

We categorize topics in reviews into two types.
The first type of topics are the generic topics that
exist in reviews of products from any category, and
they are about the generic information that cus-
tomers care about. In the e-commerce platform, for
example, the generic topics are “customer service”,
“delivery, “packaging quality”, “price”, and so on.
The second type of topics are the category-specific
topics. These topics are detailed description of the
product specific attributes. Since different products
have different attributes, the category-specific top-
ics are very different for products from different
categories. For example, for products in Phone
Case category, the category-specific topic could be
“cable hole”, while for products in Herbal Medicine
category, the category-specific topic would be “in-
gredients”. The focus of this paper is to generate
tags of category-specific topics for products across
different categories.
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There are several challenges for this work.
Firstly, the category-specific topics are widely
different among products of different categories.
Therefore, it’s impossible to get labeled data to ap-
ply supervised methods which are normally used
when generating tags. Secondly, we work on in-
formal Indonesian language. Though Indonesian
language shares the same alphabet with English,
Indonesian language differs from English in certain
significant ways such as different sentence struc-
ture, prefix and suffix modifiers and slang spellings.
Also since we work on reviews, the texts are infor-
mal, and contain a mixture of Indonesian, English,
abbreviations and slang, which further increases
the difficulty.

The focus of this work is to address the above
mentioned challenges. We proposed a semi-
supervised method, and successfully applied it to
product reviews from different categories in the e-
commerce platform. We also evaluated our results
with manually labeled data.

The rest of this paper is organized as follows. We
describe related work in the literature in Section 2.
We then describe our approach to extract category-
specific tags from Indonesian language review text
in Section 3. Experiments and results are discussed
in Section 4.

2 Related Work

While we can use a supervised learning approach to
get generic topics from product reviews, it is impos-
sible to use supervised approaches with “category-
specific” topics due to the sheer number of possible
topics for each product category. Therefore, we
use an unsupervised method to extract topics from
product reviews in this paper.

One of the earliest unsupervised method to ex-
tract keywords from text is the statistics based
method. Frequency or Term Frequency - Inverse
Document Frequency (TF-IDF) score is calculated
on the n-grams of all the reviews. The n-grams with
higher score will be extracted as tags. Graph-based
methods (Mihalcea and Tarau, 2004; Altuncu et al.,
2019) can also used to extract keywords, where
each token is a vertex and an edge is defined when
two tokens are in the same context window. Both
methods however, fail to group n-grams of similar
meaning together.

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) and it’s variants (Yan et al., 2013; Xiong and
Guo, 2019) are popular methods to group words

into topics. However LDA processes a document as
a bag of words with the assumption that each word
is independent of each other. Therefore this method
loses valuable occurrence information. Clustering
method like k-means, DBSCAN can group sim-
ilar words based on word embedding. However,
word embedding is high dimensional data and clus-
tering fails to work well on it due to the curse of
dimensionality.

A neural network model was proposed by He
et al. (2017) to group phrases into topics. It over-
comes the drawbacks of LDA and clustering meth-
ods by utilizing the embedding information with
attention mechanism to attend to important tokens
in the sentence. We use this model in this paper.

3 Category-specific Tag Generation
Approach

In this section we describe how the category-
specific topic and the product tags are generated.
The pipeline is shown in Figure. 1.

3.1 Phrase Extraction

We extract phrases from each text review using
Stanford NLP’s dependency parser (Manning et al.,
2014). Among all the extracted dependencies
(Nivre et al., 2016), we choose three kinds as shown
in Table 1. These dependencies are about nouns, as
the phrases extracted by them are more likely to be
about the products. Examples of dependencies that
are not selected such as verb, adverb and so on is
shown in Table 2.

UDP meaning example

amod adjectival modifier

nsubj nominal subject

compound compound

Table 1: Universal Dependency Relations (UDP) cho-
sen to extract phrases from product reviews. (https:
//universaldependencies.org/u/dep/) (We
show examples in English.)

We further drop phrases which contain stop
words derived from NLTK Indonesian stop word
list (https://www.nltk.org/), and a list that is
manually labeled by an internal product team. We
only remove stopwords after phrase extraction,
since phrase extraction needs the complete sen-
tence input to extract phrases more accurately.
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Figure 1: Category-specific topic extraction and product tagging pipelines

UDP meaning example

advmod adverb modifier

obj object

csubj casual object

Table 2: Examples of the dependencies not selected for
phrase extraction. (We show examples in English.)

3.2 Topic Generation

A topic is a group of phrases sharing a similar
concept. Different topics, on the other hand, are
separate groups of phrases of different concepts.
On the phrases from each product category, we
apply the Unsupervised Aspect Extraction (UAE)
model (He et al., 2017) to extract topics. The UAE
model generates topics by first learning K topic
embeddings, the number of topics K is predefined.
Phrases within a product category are then grouped
to the topic that is closest in embedding.

As shown in Figure 2, the model has three lay-
ers: the embedding layer, the attention layer and
the auto-encoder layer. We concatenate the review

Figure 2: UAE Model Structure

phrases from one product as the input to the em-
bedding layer. The embedding layer is initialized
with a word2vec embedding of dimension d, that
is trained on all the reviews of this category. Since

StanfordNLP dependency parser generates phrases
with two tokens, concatenating the embeddings of
each token in the phrase gives us a phrase embed-
ding of dimension 2d.

The attention layer takes these phrase embed-
dings, and calculates a weighted sum of the phrases,
as zs =

∑n
i=1 aiewi , where ewi ∈ IR1×2d is the

embedding for the ith input phrase, and ai is the
weight computed by the attention layer based on
both the relevance of the filtered phrase to the K
aspects and the relevance to the whole sentence
which is trained with the following formulas.

ai =
exp(di)∑n
j=1 exp(dj)

di = eTwi
·M · ys

ys =
1

n

n∑

i=1

ewi

In the auto-encoder layer, the encoder com-
presses zs to a vector of probabilities pt with
pt = softmax(W · zs + b) and the decoder recon-
structs a sentence embedding with rs = TT · pt.
Here T ∈ IRK·2d is the learned aspect embedding
matrix, which is in the same embedding space as
the phrase embedding.

The loss function of the model is defined as
L(θ) = J(θ) + λU(θ), where θ represents the
model parameter, J(θ) is proportional to the hinge
loss between rs and zs, and U(θ) is the regulariza-
tion term which encourages orthogonality among
the rows in the aspect embedding T .

3.3 Category-specific Topic Filtering
Category-specific topics are unique to each product
category and not generic. To sift out the general
topics from all the generated topics, we use a su-
pervised method.

As the generic topics are similar across all prod-
uct categories, we made a general word list which
contains the frequent words in general phrases. Ex-
amples from the general word list are berfungsi,
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semoga, bonus, sis, kwalitas, oke, super, boss.
(The English translations are function, hopefully,
bonuses, sis, quality, okay, super, boss.)

A phrase is considered a general phrase if both
words in the phrase are in the general word list. If
more than a certain percentage η of all the phrases
in one topic are general phrases, the topic is con-
sidered a general topic, otherwise the topic is a
generated category-specific topic, which will be
used in the next step.

After supervised filtering, manual labeling is ap-
plied to each phrase on the generated category-
specific topics. Since we’ve already applied topic
extraction and supervised filtering, the number of
phrases to be manually labeled is reduced dramati-
cally. For each phrase, we label it either as generic,
incoherent or category-specific. Generic phrases
are those phrases about general aspects, including
delivery, fits description, packing quality, customer
service, price. General descriptions about the prod-
uct quality are also general phrases, these phrases
can be used to describe products from most of other
categories as well, such as produk bagus (good
product). Incoherent phrases are those that are not
about the same concept as the majority of the other
phrases in the same topic. And category-specific
phrases are the phrase about the category-specific
aspects of the category, and they are coherent with
the majority of the phrases in the same topic.

The category-specific phrases in each topic will
be used for tag generation as will be described in
Section 3.4. And the frequent words in the generic
phrases will be added to the general word list for
use in supervised filtering of future topics.

3.4 Category-specific Tag Generation

With the filtered category-specific topics, we gen-
erate the category-specific tags.

For each product, we group the review phrases
to corresponding topics as discussed in Section 3.1
and Section 3.2. We use supervised method shown
in Section 3.3 to filter category-specific topics from
all the generated topics. Then, we rank the phrases
in each topic according to the frequency of phrases
in the reviews of this product and choose the one
with highest ranking as the tag of this topic for
this product. The results are uploaded to a data
warehouse.

4 Experimental Setup

In this section, we apply our proposed method to
product reviews from Tokopedia. We demonstrate
the experimental results, and show the evaluation
results of the generated category-specific topics.

4.1 Data
We use reviews from 89.5 Million products across
18 product categories as the dataset. The average
number of reviews in each category, and the aver-
age string length of reviews in shown in Table 3
(column: “#reviews” and “average length”).

Category
English # reviews Average

length
#

topics
average
p@100

topic
rate

Handphone
Charger

518890 58.03 5 69 100%

Men
Sneakers

474767 55.28 3 63 50%

Men Analogue
Clock

461819 58.96 5 64 83%

Plant seeds 309374 58.47 7 78 88%

Table 3: Product review statistics and evaluation re-
sults for 4 sample categories.

4.2 Model Result
After doing phrase extraction, we applied UAE
model for topic extraction. We performed the
same preprocessing as He et al. (2017) and used
word2vec to train the word embeddings with dimen-
sion d = 200. We modified the model structure
to accept phrase input as described in Section 3.2,
and we shared the same parameter settings as He
et al. (2017). We apply our method to each cate-
gory separately, and we set the number of topics
as K = 14 for topic generation. Then, we apply
category-specific filter on the extracted topics for
all categories with η = 40%. The general word list
we used contains 127 words.

The average time to get generated category-
specific topics on extracted phrases is 2 hours per
category with around 0.5M reviews. On average,
we generate 5 category-specific topics for each cat-
egory. We show the number of generated category-
specific topics for each category in Table 3 (col-
umn: “#topics”). We show some of these gener-
ated category-specific topics in Table 4.

4.3 Evaluation
The most essential part of this work is the auto-
matic generation of category-specific topics. In
this section, we show the evaluation results for the
quality of the category-specific topic generation.
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Category English Topic Example
Handphone

Charger
Id android hp,sony hp,lenovo hp,mini ipad
En android hp,sony hp,lenovo hp,mini ipad

Men
Sneakers

Id sesuai model,sesuai size,sesuai bentuk
En fit models, fit sizes, fit shapes

Men Analogue
Clock

Id automatic jam, pria jam,jutaan jamm
En automatic clocks,men clocks,millions of hours

Plant Seeds
Id semi tumbuh,bismillah tumbuh,daya tumbuh
En spring grows, bismillah grows, power grows

Table 4: Example of generated category-specific topics
in Indonesian language (Id) for four selected categories
and their English (En) translations.

4.3.1 Evaluation Metric
An internal product team labeled the results from
supervised filtering. They label each phrase as
category-specific, general or incoherent as de-
scribed in Section 3.3. On average, it took one
person 3 minutes to label all the phrases of one
topic. We apply the evaluation metrics used in
He et al. (2017) and Chen et al. (2014). Follow-
ing their setting, we get the score precision@n
(p@n) for each generated category-specific topic,
as the number of category-specific phrases among
the top n phrases. We show the average p@100 for
sample categories in Table 3 (column: “average
p@100”). From the result, we can see the majority
of the phrases in the generated topics are category-
specific in meaning.

We define any topic with p@n > 60 as a
category-specific topic, and we define topic rate
as

topic rate =
#category-specific topics

#generated category-specific topics

We show the topic rate for selected category in
Table 3 (column: “topic rate”). We can see more
than half of the generated category-specific topics
will be selected after manual filtering, thus, human
labeling will be very efficient on the automatically
generated category-specific topics.

5 Conclusion

In this paper, we described a pipeline for category-
specific review tagging using phrase extraction,
topic generation, category-specific topic filtering
and tag generation. Given the product reviews,
the pipeline generates the category-specific tags
for each product and customers can filter product
reviews with these tags. The pipeline is being im-
plemented on product reviews at Tokopedia, and
proved to be successful when scaled to large num-
ber of reviews. We also evaluated the quality of

the generated category-specific topics with man-
ual labeling and results show that the pipeline can
generate coherent category-specific topics.

References
M Tarik Altuncu, Eloise Sorin, Joshua D Symons,

Erik Mayer, Sophia N Yaliraki, Francesca Toni, and
Mauricio Barahona. 2019. Extracting information
from free text through unsupervised graph-based
clustering: an application to patient incident records.
arXiv preprint arXiv:1909.00183.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014.
Aspect extraction with automated prior knowledge
learning. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 347–358, Balti-
more, Maryland.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2017. An unsupervised neural attention
model for aspect extraction. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics, pages 388–397, Vancouver,
Canada.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, pages 404–411, Barcelona, Spain.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659–1666.

Ao Xiong and Qing Guo. 2019. Chinese news keyword
extraction algorithm based on textrank and topic
model. In International Conference on Artificial In-
telligence for Communications and Networks, pages
334–341. Springer.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi
Cheng. 2013. A biterm topic model for short texts.
In Proceedings of the 22nd International Confer-
ence on World Wide Web, pages 1445–1456, Rio de
Janeiro, Brazil.

63



Proceedings of the 3rd Workshop on e-Commerce and NLP (ECNLP 3), pages 64–68
Online, July 10, 2020. c©2020 Association for Computational Linguistics

ACL 2020 ECNLP3 
 

1 
 
 

000 
00100 
00101 
00102 
00103 
00104 
00105 
00106 
00107 
00108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 

000 
001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 
032 
033 
034 
035 
036 
037 
038 
039 
040 
041 
042 
043 
044 
045 
046 
047 
048 
049 
 

 

050 
051 
052 
053 
054 
055 
056 
057 
058 
059 
060 
061 
062 
063 
064 
065 
066 
067 
068 
069 
070 
071 
072 
073 
074 
075 
076 
077 
078 
079 
080 
081 
082 
083 
084 
085 
086 
087 
088 
089 
090 
091 
092 
093 
094 
095 
096 
097 
098 
099 

 
 
 
 
 

 

Abstract 

In e-commerce system, category prediction 
is to automatically predict categories of 
given texts. Different from traditional 
classification where there are no relations 
between classes, category prediction is 
reckoned as a standard hierarchical 
classification problem since categories are 
usually organized as a hierarchical tree. In 
this paper, we address hierarchical category 
prediction. We propose a Deep 
Hierarchical Classification framework, 
which incorporates the multi-scale 
hierarchical information in neural networks 
and introduces a representation sharing 
strategy according to the category tree. We 
also define a novel combined loss function 
to punish hierarchical prediction losses. 
The evaluation shows that the proposed 
approach outperforms existing approaches 
in accuracy. 

1 Introduction 

Category Prediction (CP), which aims to 
recognize the intent categories of given texts, is 
regarded as one of the most fundamental machine 
learning tasks in e-commerce system (Ali et al., 
2016). For example, this predicted category 
information will influence product ranking in 
search and recommendation system. 

Different from the traditional classification 
(Yann et al., 1998; Larkey and Croft, 1996) CP is 
formally categorized as a hierarchical 
classification task since categories in most e-
commerce websites are organized as a hierarchical 
tree (we consider the situation that the categories 
are organized as a hierarchical tree, but not a 
directed acyclic graph). Figure 1.(a) shows a 
simplified fragment of one category architecture. 
Apart from CP, there are also many other tasks 
belonging to hierarchical classification, e.g., image 
classification shown in Figure 1.(b). 

For simplicity, most practical approaches ignore 
the relation information between classes (hereafter 
referred to as flat classification). These approaches 
are easily implemented, but disadvantage in 
accuracy (Rohit et al., 2013). In academy, the 
hierarchical classification problem is not well-
studied as well (Silla and Freitas., 2011). Except 
these flat approaches, published studies are mainly 
divided into two directions: the local approaches, 
and the global approaches (Carlos and Freitas., 
2009). The local approaches learn multiple 
independent classifiers, each classifier either for 
per node, or for per parent node or for per layer. 
Taking the local approach for per layer as an 
example, for Figure 1.(b) it will train two 
independent classifiers for layer_1 and layer_leaf, 
respectively. The global approaches regard all 
none-root nodes as the classes to predict. Only one 
classifier is trained for all these none-root classes. 
We argue that all these approaches either do not 
consider the hierarchical structure at all (i.e., the 
flat approaches), or take implicit or tiny 
consideration of the class hierarchy. 

 
Figure 1. Hierarchical Classification Tasks  

The main challenges in hierarchical 
classification are at two aspects: hierarchical 
representation in classification model and 
hierarchical inconsistency in training process. 
Hierarchical representation means researchers may 
select Naive Bayesian (Larkey and Croft, 1996), 
Support Vector Machine (Chang and Lin, 2009), 
and Neural Networks (Jurgen Schmidhuber, 2015) 
as their classification models. But the hierarchical 
information fails to be explicitly incorporated in 
these models. Consequentially, it is hard for these 
models to learn the complex hierarchical 
information. The hierarchical inconsistency means 

Deep Hierarchical Classification for Category  
Prediction in E-commerce System 
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if a text is predicted as “appeal” in the layer_1, but 
as “laptop” in the leaf layer during training phase 
in Figure 1.(a), none approach can deal with this 
inconsistency as far as we known. 

To solve these two problems, we propose a 
general Deep Hierarchical Classification (DHC) 
framework. Firstly, according to hierarchical 
representation, our DHC approach directly 
incorporates class hierarchy information in neural 
network. DHC first generates one hierarchical 
layer representation for per layer. Inspired by the 
idea that sibling classes under one parent class 
must share certain common information, we 
introduce a hierarchical representation sharing 
strategy that the representation of one lower layer 
should include the representation information 
about its upper layer. This sharing strategy is 
recursively carried on in a top-down manner 
according to the class hierarchy. As a result, the 
classification model is forced to learn this structure 
information, and the class hierarchy information is 
“explicitly” involved in the model. Secondly, 
according to hierarchical inconsistency, we define 
a hierarchical loss function composed of the layer 
loss and the dependence loss. The layer loss 
defines the training loss within layers, which is the 
same to the loss in traditional flat classification. 
The proposed dependence loss defines the loss 
between layers. When predictions of two 
successive layers are inconsistent (i.e., these two 
predicted classes are not in a parent-child 
relationship), we will add an additional 
dependence loss to compel the classification model 
to learn this relation information. The dependence 
loss function is hierarchy-related and is regarded as 
a punishment when predictions are not consistent 
with the category structure. By this way, we can 
deal with the hierarchical inconsistency during the 
training process.  

DHC can be regarded as a general hierarchical 
classification framework, we evaluate it with text 
and image classification. For text classification, we 
collect query-category and title-category pairs 
from one e-commence website. For image 
classification we adopt the commonly-used 
cifar100 dataset. Taking advantage of hierarchical 
representation and hierarchical loss function, the 
DHC approach significantly improves the 
accuracy. Our main contributions include the novel 
DHC framework and the hierarchical 
representation and hierarchical loss which are first 

proposed as far as we know. All of them will be 
detailed in the following sections. 

2 Deep Hierarchical Classification 

Mathematically, the hierarchical classification task 
can be formulated as: Given: 
Input 𝑋: 𝑋 can denote the text or the image inputs. 
Category tree 𝒯 : Categories are organized by a 
category tree 𝒯  with L hierarchical layers. The 
categories (i.e., classes to predict) are denoted by 
𝑌. Categories of different layers are dependent as 
𝑌$ ⇒ 𝑌$&' ⇒ ⋯ ⇒	𝑌' ( ⇒  denotes the IS-A 
relation in category tree 𝒯.)  
Output: Categories of input 𝑋: Predict categories 
of the given input 𝑋 . Since categories are 
hierarchically related, it is possible to predict the 
leaf class and infer the classes of all the other layers 
according to category tree 𝒯. 

In the DHC approach, we defines a neural 
network model 𝒩(𝜃) where 𝜃 are the parameters 
to be estimated. Taking a three-layer hierarchical 
classification problem as an example, we show the 
DHC neural network in Figure 2. The neural 
network is composed of three parts: Flat Neural 
Network (FNN), Hierarchical Embedding 
Network (HEN) and Hierarchical Loss Network 
(HLN). We will further discuss these three parts. 

 
Figure 2. Deep Hierarchical Classification (Take three-
layer hierarchical classification as example) 

2.1 Flat Neural Network 

Given an input 𝑋, FNN is used to generate a root 
representation. For our main contributions lay in 
the HEN and HLN, we can adopt a state-of-the-art 
neural network in practice. Let 𝒩./01(𝜃./01) 
denote this flat neural network, the output is 
viewed as the root representation 𝑅3 

𝑹𝟎 = 𝓝𝒇𝒍𝒂𝒕(𝑿, 𝜽𝒇𝒍𝒂𝒕) (1) 
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2.2 Hierarchical Embedding Network 

With the root representation, HEN aims to produce 
hierarchical representations for every layers. For 
the 𝑙@A  layer, we first produce the independent 
representation 𝑅/B , i.e., 

𝑹𝒍B = 𝑾𝒓𝒍 ∗ 𝑹𝟎 (2) 
where 𝑊G/  represents the weights for the 
independent layer representation. The independent 
layer representation is hierarchical-free. As 
mentioned, classes belonging to the same parent 
class share certain common information. The 
representation of one lower layer should include 
the representation information about its upper 
layer. Thus, the hierarchical representation 𝑅/  is 
computed by concatenating the independent 
representations of all previous layers denoting by 

𝑹𝒍 = 𝑹𝒍&𝟏⨁𝑹𝒍B				𝒇𝒐𝒓	𝒍 ≠ 𝟏 
𝑹𝒍 = 𝑹𝒍B																	𝒇𝒐𝒓	𝒍 = 𝟏 (3) 

For the 	𝑙th layer prediction, the hierarchical 
representation 𝑅/  is passed into a softmax 
regression layer. The output of the softmax 
regression layer is denoted by  

𝒚O𝒍𝒊 =
𝒆𝑾𝒔𝒍𝒊𝑹𝒍

∑ 𝒆𝑾𝒔𝒍𝒌𝑹𝒍|𝒍|
𝒌V𝟏

 (4) 

where 𝑊W/  are the parameters of the	𝑙@A  softmax 
regression layer. 	𝑦Y/Z  denotes the prediction 
probability of the 𝑖@A class in the 𝑙@A  hierarchy 
layer. |𝑙| denotes the number of classes in the 𝑙@A 
hierarchy layer. 

2.3 Hierarchical Loss Network 

According to hierarchical layer representations and 
document true classes, HLN will compute the 
hierarchical loss to estimate the neural network 
parameters. We propose two types of losses, i.e., 
the layer loss and the dependency loss. Concretely, 
the 𝑙@A layer loss function 𝑙𝑙𝑜𝑠𝑠/ is defined as  

𝒍𝒍𝒐𝒔𝒔𝒍 = −_𝒚𝒍𝒋𝐥𝐨𝐠	(𝒚O𝒍𝒋)
|𝒍|

𝒋V𝟎

 (5) 

𝑦/d is the expected output of the 𝑗@Aclass in the 𝑙@A 
hierarchy layer. To measure the prediction errors 
between layers, we propose a dependence loss. If 
the predicted classes of two successive layers are 
not parent-child relation, a dependence loss 
appears to punish the learning model for it does not 
predict the classes according to the hierarchy 

                                                             
1 https://www.cs.toronto.edu/~kriz/cifar.html 

structure. The 𝑙@A layer dependence loss 𝑑𝑙𝑜𝑠𝑠/  is 
defined as  

𝒅𝒍𝒐𝒔𝒔𝒍 = −h𝒑𝒍𝒐𝒔𝒔(𝒍&𝟏)j
𝔻𝒍𝕀𝒍m𝟏(𝒑𝒍𝒐𝒔𝒔𝒍)𝔻𝒍𝕀𝒍 (6) 

where 𝔻/  and 𝕀/  denote that whether the model 
predictions conflict category structure, especially 

𝔻𝒍 = n𝟏				𝒊𝒇	𝒚o𝒍 ⇏ 𝒚o𝒍&𝟏
𝟎																	𝒆𝒍𝒔𝒆

 

𝕀𝒍 = n𝟏				𝒊𝒇	𝒚o𝒍 ≠ 𝒚𝒍
𝟎													𝒆𝒍𝒔𝒆

 
(7) 

Here 𝑦q/ = max
Z
𝑦Y/Z  denotes the predicted class, 

and 𝑦/  is the true label of the query. 𝔻/  denotes 
whether the predicted label in the 𝑙@A layer is a child 
class of the predicted class in the 𝑙 − 1@Alayer. 𝕀/ 
denotes whether the 𝑙@A layer prediction is correct. 
𝑝𝑙𝑜𝑠𝑠/  is a dependence punishment to force the 
neural network to learn structure information from 
the category structure. 𝑝𝑙𝑜𝑠𝑠/  can be set as a 
constant or related to the prediction error. 

Finally, the total loss is defined as the weighted 
summation of the layer losses and the dependence 
losses, i.e.,  

𝑱(𝜽) =_𝜶𝒊𝒍𝒍𝒐𝒔𝒔𝒊

𝑳

𝒊V𝟏

+_𝜷𝒊𝒅𝒍𝒐𝒔𝒔𝒊

𝑳

𝒊V𝟐

 (8) 

where 𝛼	and	𝛽	(0 ≤ 𝛼, 𝛽 ≤ 1)  are the loss 
weights of different layers. 

In the inference phase, there are mainly three 
methods to determine the category of one text, the 
heuristic method, the greedy method and the beam 
search method (Wu et al., 2016). We adopt the 
greedy method in our experiments for fair 
comparison. 

Datasets Sample 1st&2nd layer 
Query-Category 1.3millions 39/742 
Title-Category 30.7millions 39/742 

Cifar1001 60thousands 20/100 
Table 1. Information of experiment datasets 

3 Experiments 

3.1 Datasets 

As DHC is a general hierarchical classification 
framework, we experiment on text classification 
and image classification with both industry and 
public datasets, respectively. For text classification, 
we collect two datasets, i.e., <Query-Category> 
(user query and the category of one user-clicked 
product) and <Title-Category> (product title and 
its category). For image classification, we 
experiment on the cifar100 dataset, in which the 
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fine and coarse labels are organized by a three-
layer hierarchical tree. The information of these 
three datasets (e.g., sample numbers and class 
numbers) are shown in Table 1. 

For text classification, query-category and title-
category corpus are randomly divided into ten 
equal parts. Nine parts are used in the training 
phase and the other one is used in the test phase. 
For image classification, we use the official 
training/testing parts. Accuracy is selected to 
evaluate the performances (Kiritchenko and Stan, 
2005; Kiritchenko and Stan, 2006). 
Accuracy Query-Category Title-Category 

1st layer 2nd layer 1st layer 2nd layer 
SVM 88.1% 67.99% 85.34% 60.13% 
HSVM 89.98% 68.59% 88.14% 63.59% 
FastText 90.10% 67.64% 88.06% 61.62% 
TextCNN 90.11% 68.29% 89.10% 64.31% 
HiNet 91.54% 72.98% 90.69% 65.10% 
DHC 92.10% 73.37% 91.21% 69.02% 
Table 2. Accuracy evaluation of SVM, HSVM, 
FastText, TextCNN, HiNet and DHC approaches for 
text classification 

Accuracy Cifar100 
1st layer 2nd layer 

KerasCNN 89.23% 67.89% 
HiNet 90.11% 72.23% 
DHC 92.21% 75.91% 

Table 3. Accuracy evaluation of baseline, HiNet and 
DHC approaches for image classification 

3.2 Evaluation of baseline and existing 
approaches 

In this set of experiments, we compare our 
approach with the existing approaches. 

For text classification, SVM (Chang and Lin, 
2009), FastText (Joulin et al., 2016), and TextCNN 
(Yoon Kim, 2014) are selected as the flat baselines 
and we train two classifiers for the two layers, 
respectively. HSVM (Tsochantaridis et al., 2005) 
and HiNet (Wu and Saito, 2017) are selected as 
hierarchical baselines. For fair competition, HiNet 
and DHC are adopted the same network 
architecture with TextCNN as the base model. The 
purpose is to verify the effectiveness of our DHC 
framework, but not the based model. 

With the limited space, the standard neural 
network (KerasCNN)2 and HiNET are adopted as 
the flat and hierarchical baselines in image 
classification, respectively. HiNET and DHC keep 
the same network architecture and hyper-
parameters with KerasCNN. We also focus on the 

                                                             
2 https://keras.io/examples/cifar10_cnn/ 

comparison of the DHC framework, rather than the 
base model. 

The accuracies of these four approaches are 
shown in Table 2 and Table 3, which shows that 
DHC outperforms all the other approaches. The 
layer representation sharing and hierarchical loss 
computation help the improvement in 
performance. Meanwhile, we find that the 
accuracy increase of the leaf layer is greater than 
that of the layer_1. This is because the 
classification for the layer_1 is much easier than 
that for the leaf layer. The classifiers can learn 
comparable models for the layer_1, but DHC 
shows its powerful ability in the leaf layer 
classification. 

3.3 Evaluation of HEN and HLN 

This set of experiments is to reveal the influence of 
HEN and HLN. HiNet is adopted as the baseline 
approach and the experiments are conducted on 
title-category dataset for simplicity. 

 
Figure 3. Accuracy evaluation of HiNet, DHC_HEN 
( 𝛽 = 0  in Equation 8), DHC_HLN ( 𝑅/ = 𝑅/B  in 
Equation 3) and DHC approaches 

Figure 3 illustrates the accuracy changes of the 
leaf layer prediction in the training iteration. 
Compared to HiNet, it indicates that both HEN and 
HLN have the positive influence for hierarchical 
classification. HEN contributes more than HLN. 
We find that the definition of the hierarchical loss 
function affects the robustness and accuracy of the 
classification a lot. A proper hierarchical loss 
function definition is still an open question.  

4 Conclusions 

In sum, we extensively address the two challenges 
(i.e., hierarchical representation and hierarchical 
inconsistency) in hierarchical classification and 
propose the DHC approach to solve these two 
problems. Experiments both on text and image 
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classification demonstrate the effectiveness of our 
proposed DHC approach.  

References  
Cevahir Ali and Murakami Koji. 2016. Large-scale 

Multi-class and Hierarchical Product 
Categorization for an E-commerce Giant. In 
Proceedings of the 26th International Conference 
on Computational Linguistics: Technical Papers 
22(1): 525-535. 

Silla Jr. Carlos and Alex A Freitas. 2009. A Global-
Model Naive Bayes Approach to the Hierarchical 
Prediction of Protein Functions. In Proceedings of 
the 2009 Ninth IEEE International Conference on 
Data Mining. 

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: 
A Library for Support Vector Machines. ACM 
Transactions on Intelligent Systems and 
Technology. 2(3):1-27 

Armand Joulin, Edouard Grave, Piotr Bojanowski, 
Matthijs Douze, Herve Jegou and Tomas Mikolov. 
2016. FastText.zip: Compressing Text 
Classification Models. arXiv preprint 
arXiv:1612.03651 

Svetlana Kiritchenko and Matwin Stan. 2005. 
Functional Annotation of Genes using Hierarchical 
Text Categorization. In Proceedings of the ACL 
workshop on linking biological literature, 
ontologies and databases: Mining Biological 
Semantics. 

Svetlana Kiritchenko and Matwin Stan. 2006. 
Learning and Evaluation in the Presence of Class 
Hierarchies: Application to Text Categorization. In 
Proceedings of the 19th Canadian conference on 
Artificial Intelligence, lecture Notes in Artificial 
Intelligence. 4013:542-545 

Leah S. Larkey and Bruce W. Croft. 1996. Combining 
Classifiers in Text Categorization. In Proceedings of 
the 19th annual international ACM SIGIR 
Conference. 

Babbar Rohit, Partalas Ioannis, Gaussier Eric and 
Amini Massih-Reza. 2013. On Flat Versus 
Hierarchical Classification in Large-scale 
Taxonomies. In Advances in Neural Information 
Processing Systems:1824-1832.  

Jurgen Schmidhuber. 2015. Deep Learning in Neural 
Networks. Journal Neural Networks. 61(C):85-117 

Carlos N. Silla and Alex A. Freitas. 2011. A Survey of 
Hierarchical Classification Across Different 
Application Domains. Data Mining and Knowledge 
Discovery 22(1): 31-72. 

Ioannis Tsochantaridis, Thorsten Joachinms, Thomas 
Hofmann, Yasemin Altun. 2005. Large Margin 

Methods for Structured and Interdependent Output 
Variables. Journal of Machine Learning Research. 
6(2005):1453-1484 

LeCun Yann, Bottou Leon, YoshuaB engio and Haffner 
Patrick. 1998. Gradient-based Learning Applied to 
Document Recognition. In Proceedings of the 
IEEE. 86(11):2278-2324 

Yonghui Wu, Schuster Mike, Zhifeng Chen, Quoc V. 
Le and Mohammad Norouzi. 2016. Google’s Neural 
Machine Translation System: Bridging the Gap 
between Human and Machine Translation. arXiv 
preprint arXiv:1609.08144. 

Yoon Kim. 2014. Convolutional Neurual Networks for 
Sentence Classification. In Proceedings of the 2014 
Conference on Empirical Methods on Natural 
Language Processing. 

Zhenzhou Wu and Sean Saito. 2017. HiNet: 
Hierarchical Classification with Neural Network. In 
the workshop of the International Conference on 
Learning Representations. 

 

 

68



Proceedings of the 3rd Workshop on e-Commerce and NLP (ECNLP 3), pages 69–76
Online, July 10, 2020. c©2020 Association for Computational Linguistics

SimsterQ: A Similarity based Clustering Approach to Opinion Question
Answering

Aishwarya Ashok ∗

Dept of Comp Science & Engg
University of Texas at Arlington

Arlington, TX, USA
aishwarya.ashok@mavs.uta.edu

Ganapathy S. Natarajan ∗

Dept of MEIE
University of Wisconsin - Platteville

Platteville, WI, USA
natarajang@uwplatt.edu

Ramez Elmasri
Dept of Comp Science & Engg
University of Texas at Arlington

Arlington, TX, USA
elmasri@cse.uta.edu

Laurel Smith-Stvan
Dept of Linguistics and TESOL
University of Texas at Arlington

Arlington, TX, USA
stvan@uta.edu

Abstract

In recent years, there has been an increase in
online shopping resulting in an increased num-
ber of online reviews. Customers cannot delve
into the huge amount of data when they are
looking for specific aspects of a product. Some
of these aspects can be extracted from the prod-
uct reviews. In this paper we introduced Sim-
sterQ - a clustering based system for answer-
ing questions that makes use of word vectors.
Clustering was performed using cosine similar-
ity scores between sentence vectors of reviews
and questions. Two variants (Sim and Me-
dian) with and without stopwords were eval-
uated against traditional methods that use term
frequency. We also used an n-gram approach
to study the effect of noise. We used the re-
views in the Amazon Reviews dataset to pick
the answers. Evaluation was performed both
at the individual sentence level using the top
sentence from Okapi BM25 as the gold stan-
dard and at the whole answer level using re-
view snippets as the gold standard. At the
sentence level our system performed slightly
better than a more complicated deep learning
method. Our system returned answers similar
to the review snippets from the Amazon QA
Dataset as measured by the cosine similarity.
Analysis was also performed on the quality of
the clusters generated by our system.

1 Introduction

In the recent years, the volume of online shop-
ping has increased rapidly. This has resulted in
the increase in availability of online reviews and
question-answers related to a product.Traditional
Question Answering (QA) systems are factual in
nature. For example, “Which year did World War I

∗* These authors contributed equally to this project and
paper.

end?” 1918. In opinion QA, answers to questions
are based on the customers’ opinions. The cus-
tomers’ opinions help other users to decide whether
to purchase a product. This process is time consum-
ing for the users to look at thousands of reviews to
find the required information. Our paper aims at
answering questions, users have, using customer
reviews. We used the product reviews to extract the
relevant sentences, with minimal to no overlap in
meaning, and present it to the user. We make use of
the AmazonQA dataset to answer binary (yes/no)
questions.

The main focused contribution of this paper are:

1. Using an unsupervised clustering based sys-
tem (SimsterQ) with five different variants to
answer binary questions using information in
the product reviews. To the best of our knowl-
edge, we do not know of other systems that
have used clustering to answer opinion based
questions using product reviews.

2. Provide evidence of an unsupervised simple
system having a performance akin or exceed-
ing deep learning systems.

2 Related Work

Early work in opinion question answering ad-
dressed separating facts from opinions (Yu and
Hatzivassiloglou, 2003), and the authors used a
Naı̈ve Bayes classifier to identify polarity of the
opinions. Kim and Hovy (2005) aimed at identify-
ing the opinion holder of the opinions.

Stoyanov et al. (2005) explained the differences
between fact based and opinionated answers and
how traditional QA systems will not be able to han-
dle multiple perspectives for answers. Some works
aimed at using community based question-answers
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to provide unique answers to questions (Liu et al.,
2007; Somasundaran et al., 2007). Moghaddam
and Ester (2011) made use of online reviews to
answer questions on aspects of a product. Li et al.
(2009) and Yu et al. (2012) used graphs and trees
to answer opinion questions. Wan and McAuley
(2016) modeled ambiguity and subjectivity in opin-
ion QA using statistical models.

Gupta et al. (2019) give baselines for answer
generation systems given the question and reviews.
We use their results as the baseline for our evalu-
ation. We also discuss the dataset from this paper
in 4.2. While most systems used in the works de-
scribed above are supervised learning models, our
system used unsupervised learning to answer bi-
nary (yes/no) questions.

3 System Description

The answer selection process to get the top k sen-
tences has the following steps:

1. Relevant reviews selection: We group all re-
views by the asin/product id. We pick those
reviews with the same product id as the ques-
tions.

2. Sentence level similarity: We process the re-
views by removing punctuation and html tags.
We split the reviews by sentences and find the
cosine similarity between each sentence and
the question.

3. Filtering sentences below threshold: We filter
the above set by removing sentences below a
threshold. The threshold is set to 0.5 so that
sentences that have minimal to no similarity
with the question are removed from consider-
ation as candidate sentences.

4. Grouping sentences with similar mean-
ing/information: We order the sentences by
the similarity score in descending order. We
then form clusters by picking the top sentence
and grouping it with sentences that have high
similarity (threshold value = 0.9). We repeat
this until all sentences are clustered. Note
that some clusters will have only one sentence
at this point and some clusters may just be
empty. In essence, the algorithm self selects
the appropriate number of clusters.

5. Selecting top k-sentences: We then pick our
top k = 10 answers from our top 10 clusters.

These 10 clusters in essence have the highest
similarity scored sentences with the question.
We either pick the first sentence in each cluster
or we pick the sentence with median length
from each cluster.

Our system is not limited to separate n observa-
tions into k clusters, like the k-means algorithm.
N observations are naturally partitioned into up
to k clusters. The algorithm naturally selects the
appropriate number of clusters by grouping highly
similar sentences into each cluster. We present only
the sentences from the top 10 clusters; the k may
be varied depending on the task at hand. In this
research k was selected to be 10, so that we can
compare our results with Gupta et al. (2019).

The order of the sentences in the review does
not matter. We find the cosine similarity between
each sentence and the question and order it from
highest to lowest cosine similarity. So, the order in
which the sentences occur in the review does not
affect the results from our system. We use cosine
similarity as it is a commonly used measure to find
closeness of sentences using their angles in a vector
space.

For the cosine similarity calculation,we use
word2vec to calculate the sentence vector as sum
of the word vectors of the words in the sentence.
The calculation of sentence vector was to take
advantage of the compositionality property us-
ing word2vec (Mikolov et al., 2013). We used
word vectors of dimension 100 trained on the 2015
wikidump.

4 Experimental Setup

4.1 Methods Used
In our paper given a question about a product, we
collected all the reviews available for that product.
We then split the reviews into sentences(we will re-
fer to these as candidate sentences) and performed
five different methods of selecting candidate sen-
tences.

Similarity (sim) made use of cosine similarity
between the question and candidate sentences. The
other methods were variants of this method. Sim-
ilarity no stopwords (sim ns) used the similarity
method but without stopwords. Similarity median
(sim med) made use of the sentence with median
length in a cluster versus the first sentence in the
cluster as in sim. Similarity Median no stopwords
(sim med ns) used the similarity median but with-
out stopwords.
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Function Similarity (question,reviews):
sentences← split(reviews)
sentences← list(ordered by cosine sim)
return sentences, cosine sim

Function Cluster (sentences, cosine sim,
threshold, median):

answers← empty
c = 0
while sentences not empty do

c+=1
cluster[c].append(sentences[0])
for i← 1 to num(sentences) do

if sim
(sentences[0],sentences[i]) >
threshold then

cluster[c].append(sentences[i])

end
end
if median == False then

answers.add(cluster[c][0])
// Sim Variant

else
answers.add(cluster[c].median)

// Median Variant

end
Remove sentences added to cluster c

from sentences
end
return answers

Algorithm 1: SimsterQ Algorithm

The last method was the 3-gram method (3g).
In this we split the question into 3-grams and we
used the same method as sim. We used 3-gram
since the shortest question in the dataset is three
words long. From the clusters, we picked only sen-
tences that have been returned by at least half the
n-gram phrases. The 3-gram model was done with
the idea that splitting longer questions into smaller
parts will help grasp the meaning, i.e. we expected
shorter phrases to incorporate more information
than the whole sentence. Sim, sim ns, sim med,
sim med ns, and 3g all use the SimsterQ system de-
scribed in Algorithm 1. In all methods we returned
the top k, where k = 10 or the maximum number
of sentences available, whichever is smaller.

4.2 Dataset

The AmazonQA dataset was used in this study
(Gupta et al., 2019). The dataset has both yes/no
(binary) and open-ended questions. The fields we
used are question id, question Type, question Text,
answers, review snippets, asin/ product id, and cat-
egory. The dataset was built based on previous
parallel datasets provided by Wan and McAuley
(2016).

The first dataset consists of question on Amazon
for products and the answers provided by users who
bought those products. The second dataset was
the Amazon Reviews Dataset. Amazon Reviews
dataset contains 142.8 million reviews for different
products in 24 product categories.

The problem with using the parallel datasets was
that the evaluation was a difficult task. The answer
generation by our model was using the product re-
views but the gold standard is from answers written
by Amazon users. For the same reason we do not
use the answers as the gold standard.

The AmazonQA bridges this gap by providing
relevant review snippets for each question. In ad-
dition, the dataset has a variable to identify if the
question can be answered satisfactorily using the
reviews alone. We found this more appropriate
for our task since our intention is to provide top
k sentences from the reviews that will answer a
question.

We used five categories of products in our re-
search. The five categories were Automotive, Baby,
Beauty, Pet Supplies, and Tools and Home Im-
provement. We chose these categories as they are
likely to have products that are not similar and
likely to have questions that do not overlap.

We randomly picked 200 questions from each
category for a total of 1000 questions. We took the
reviews from the Amazon Reviews dataset since
we already worked on this dataset for our previous
research. The reviews were used to provide an-
swers using the different variants of the SimsterQ
system.

5 Evaluation

Evaluations were performed at both the sentence
level and at the whole answer level.

5.1 Cluster Quality

Our algorithm performs clustering of sentences to
find the answers. As previously mentioned, the
algorithm self selects the appropriate number of
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clusters. However, we need to measure the quality
and the number of clusters returned. Two com-
monly used measures to evaluate cluster quality
are Silhouette score and Calinski-Harabasz score.
These metrics were calculated for each question
separately.

Each answer cluster was decided based on the
cosine similarity with the question and the cosine
similarity with the top sentence within each cluster.
So, in calculating the cluster quality metrics, cosine
similarity with question and cosine similarity with
first sentence in the cluster were used as the features
and the cluster number was used as the labels.

Silhouette score works based on distances and
Calinski-Harabasz score works based on dispersion
measured as squared distances (sum of squares). So
we are reporting both the scores in our analysis.

5.1.1 Silhouette Score
Silhouette score measures cohesion over dispersion
of each data point and provides an average measure
as a normalized score between -1 and +1. Cohesion
is a measure of intra-cluster distance and dispersion
is a measure of inter-cluster distance. Values closer
to +1 mean separated well defined clusters and
values closer to -1 mean highly overlapping clusters
- defeating the general purpose of clustering. If ‘a’
is the mean distance between a point and every
other point in the same cluster, and if ‘b’ is the
mean distance between a point and every other
point in the nearest cluster, then the silhouette score
for that point is defined as:

s =
b− a

max(a, b)
(1)

The average s for all points is the Silhouette score
for the clustering output.

5.1.2 Calinski - Harabasz Score
Calinski-Harabasz (CH) score is also called the
Variance Ratio Criterion. This index provides a
score calculated based on the co-variance. CH
score is calculated as:

CH =
tr(Bk)

tr(Wk)

n− k

k − 1
(2)

where, Bk - co-variance matrix between clusters,
Wk - co-variance matrix within clusters, n - sample
size, k - number of clusters, and tr - trace of the
matrix.

A higher CH score is better. The lowest possible
CH score is 0 which indicates no dispersion among
the clusters.

5.2 Sentence Level Evaluation

At the sentence level, we pick the top 1 sentence, us-
ing Okapi BM25, as the gold standard. To retrieve
the top 1 sentence using Okapi BM25, we used the
question as the query and the product reviews as
the documents. Okapi BM25 is still widely used
as a benchmark in similar tasks (Fan et al., 2019).
An advantage of using the Okapi BM25 is that it
provides us with a tf-idf based benchmark (Sixto
et al., 2016). Word vectors aim to reduce problem
complexity by moving away from tf-idf methods
which requires us to one-hot-encode the entire vo-
cabulary.

For each sentence in the answers returned by
our system, we use the top sentence as the gold
standard to calculate ROUGE-1 and ROUGE-L
scores. This may seem biased, but in the absence
of a gold standard we chose the proven and widely
used Okapi BM25.

The average of the ROUGE scores with the max
ROUGE-L F-score for each instance is reported. In
addition to providing the F1 scores, Precision and
Recall scores are also reported. In QA tasks, the
relevance of the answers may be more important
than how well the answers capture the essence of
the question (a common benchmark for question
answering and summarization tasks). So, P and R
scores are reported to better interpret the results.

ROUGE is usually used to evaluate summariza-
tion task and may not be the best metric to mea-
sure our system performance which does a opinion
based QA task which are different from the tradi-
tional QA systems. So cosine similarity was used
as a metric to evaluate our system generated answer
sentences against the gold standard. Three different
metrics were calculated based on how well our sys-
tem was able to exceed a cosine similarity threshold
of 0.7 when compared against the gold standard.

To establish the cosine similarity threshold value
0.7, we used 75 questions from the Musical In-
struments category (used only for bench marking
purposes) and used top 5 answers that our model
returns for each question. We then calculated co-
sine similarity between the sentences our model
returned and the answer provided in the Amazon
QA dataset. We took the 75th percentile value,
which was 0.7, as the threshold.

5.2.1 Accuracy

Accuracy was calculated based on the total number
of all answer sentences. In our case, accuracy for
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each method was the fraction of the sentences that
had a cosine similarity, with the gold standard, of
more than 0.7.

5.2.2 Correct Answer
Correct Answer was found as the fraction of ques-
tions for which our methods returned at least one
answer that had a cosine similarity, with the gold
standard, of more than 0.7 . This was a measure of
how reliable the methods were in returning at least
one relevant answer based on the reviews.

5.2.3 At least 50%
At least 50% correct answers for each question was
the third evaluation metric. This was calculated
as the fraction of questions for which our methods
returned more than 50% of answer sentences that
had a cosine similarity, with the gold standard, of
more than 0.7.

The correct answer and at least 50% were in-
spired by the accuracy @ x% approach used by
different authors working with the Amazon dataset
and performing similar tasks (Fan et al., 2019;
McAuley and Yang, 2016; Yu and Lam, 2018). In
accuracy @ x% the commonly used measure is ac-
curacy @ 50%. This approach helps in identifying
the top answers crossing a threshold and has better
relationship in real world applications (Fan et al.,
2019).

5.3 Answer Level Evaluation
At the answer level, we use the review snippets
returned by the AmazonQA authors as the gold
standard. We calculate the ROUGE scores and
cosine similarity between the gold standard and
each of the five methods.

6 Results

6.1 Cluster Quality
Cluster quality was measured using the Silhouette
score and the Calinski-Harabasz (CH) score. For
each question, both these scores were calculated.
Silhouette score cannot be calculated when there
are less than two clusters. This situation arises for
questions where the number of review sentences
are limited. These occurrences were removed for
analyzing cluster quality. All results presented on
cluster quality uses a n = 647.

Figure 1a and Figure 1b show the Silhouette
score and CH score for every single question. The
algorithm naturally selects between 2 and 6 clus-
ters for most of the questions and both the scores

are high in this range. Benchmarks for Silhouette
scores vary by task and the hockey-stick or elbow
curve is looked at to make decisions about optimal
cluster sizes.

Figure 1c and Figure 1d show the mean scores
plotted as a function of the number of clusters. Our
algorithm naturally limits the clusters to the opti-
mal in most cases. The optimal number of clusters
is between 2 and 6, with the CH score indicating 10
clusters having a better mean. Figure 2 shows that
of the 647 questions 80% of the questions have the
appropriate number of clusters. Using the Pareto
(80-20) rule, our algorithm’s clustering quality is
good, as it chooses the appropriate number of clus-
ters 80% of the time.

6.2 Sentence Level

The sentence level evaluation was performed using
the Okapi BM25 top sentence as the gold stan-
dard. Of the methods based on our system, the
sim method consistently performs better than the
other methods, as shown in Table 1. Except for the
Correct Answer metric, sim method has the highest
values in all other cases.

Our system outperforms the R-Net baseline
(Rouge-L: 40.22) used by Gupta et al. (2019). Our
system is supposed to be applied at the sentence
level and the results indicate that a unsupervised
system such as ours could outperform more compli-
cated deep learning models. If there is a trade-off
sought between computing time and accuracy, our
system performs similar to or better than the base-
line used by Gupta et al. (2019)

ROUGE score is not the best metric for tasks
such as opinion question answering. We believe the
cosine similarity is a better metric to measure how
close the retrieved answer is to the gold standard.
Overall the sim method is able to provide an answer
more than 70% similar to the gold standard answer
91.5% of the time. From the sentences returned
by our system as candidate answers, 72% of the
time at least half the candidate sentences are good
answers. This shows that our system is consistent
and accurate at providing good answers.

6.3 Answer Level

At the answer level the top candidate sentences
(up to 10) returned by our system were compared
against the review snippets as the gold standard.
The review snippets were top review sentences re-
turned by the system used by Gupta et al. (2019)
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(a) Silhouette Score for Each Question (b) CH Score for Each Question

(c) Mean Silhouette Score for Different Number of Clusters (d) Mean CH Score for Different Number of Clusters

Figure 1: Clustering Quality Results

Table 1: Sentence Level Results

Score Metric
Methods

sim sim ns sim med sim med ns 3g

ROUGE-1
F 45.86 42.41 42.64 38.98 37.23
P 45.94 43.17 43.04 39.88 38.72
R 49.97 45.43 46.01 42.45 39.51

ROUGE-L
F 42.26 38.66 38.85 35.21 33.56
P 44.46 41.63 41.22 38.18 36.90
R 48.36 43.91 43.96 40.63 37.65

R-Net* ROUGE-L F 40.22

Similarity
Accuracy 91.50 82.60 91.30 82.80 87.10

Correct Answer 83.60 72.40 83.70 72.90 75.50
At least 50% 79.77 72.05 79.47 79.24 72.66

*This score is based on the work by (Gupta et al., 2019)

Average ROUGE scores are reported in Table
2. Both systems aim at providing the best candi-
date sentences. Looking at the precision scores,
it is clear that our system performance is good in

terms of returning relevant sentences, similar in
content to the gold standard. The sim method still
is the best performing method. We say this because,
ROUGE-L looks for the longest common sub se-
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Table 2: Answer Level Results

Score Metric
Methods

sim sim ns sim med sim med ns 3g

ROUGE-1
F 38.58 34.31 38.63 34.24 34.89
P 63.00 65.99 62.33 65.04 61.96
R 28.46 24.20 28.58 24.26 25.20

ROUGE-L
F 29.66 25.15 29.78 25.16 26.09
P 59.72 63.28 58.99 62.18 58.74
R 27.00 23.09 27.08 23.07 23.89

Similarity Accuracy 95.94 91.02 96.36 91.19 93.88

Figure 2: Pareto Chart for Number of Clusters

quence and penalizes shorter sentences. The sim
method performs better with thh ROUGE-L and
the accuracy metrics. Sim med is better only with
respect to the ROUGE-1 score.

Looking at the similarity scores, it is clear that
the candidate sentences returned by our system is
almost exactly similar to the sentences returned by
Gupta et al. (2019). Once again our system is able
to perform on par with a more complicated system.

7 Conclusions and Future Work

This paper introduced SimsterQ - a unsupervised
clustering based system to answer questions about
products by accessing the reviews of the products.
Five different variants of this system were eval-
uated using 1000 yes/no questions. At the sen-
tence level sim performed better with the highest
ROUGE and Similarity scores. Sim method re-
turns the top sentence from each of the 10 clusters
created.

When evaluating the entire answer, our system
performed better than the baseline ROUGE score
from the R-Net method.

In future SimsterQ will be used with open-ended
questions. The challenge with open-ended ques-
tions will be the evaluation. Perspectives expressed

in the reviews need not necessarily match the per-
spectives in the gold standard answer. We want
to evaluate the performance of SimsterQ on other
datasets.

In the Amazon question/answer data set not ev-
ery question has a good relevant answer. The an-
swers are sometimes a single user’s opinion. Sim-
sterQ will be used to provide a new gold standard
answer to the binary questions.
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Abstract

In recent years, the focus of e-Commerce re-
search has been on better understanding the
relationship between the internet marketplace,
customers, and goods and services. This has
been done by examining information that can
be gleaned from consumer information, recom-
mender systems, click rates, or the way pur-
chasers go about making buying decisions, for
example. This paper takes a very different
approach and examines the companies them-
selves. In the past ten years, e-Commerce gi-
ants such as Amazon, Skymall, Wayfair, and
Groupon have been embroiled in class ac-
tion security lawsuits promulgated under Rule
10b(5), which, in short, is one of the Securi-
ties and Exchange Commission’s main rules
surrounding fraud. Lawsuits are extremely ex-
pensive to the company and can damage a com-
pany’s brand extensively, with the sharehold-
ers left to suffer the consequences. We exam-
ined the Management Discussion and Analysis
and the Market Risks for 96 companies using
sentiment analysis on selected financial mea-
sures and found that we were able to predict
the outcome of the lawsuits in our dataset us-
ing sentiment (tone) alone to a recall of 0.8207
using the Random Forest classifier. We be-
lieve that this is an important contribution as
it has cross-domain implications and poten-
tial, and opens up new areas of research in
e-Commerce, finance, and law, as the settle-
ments from the class action lawsuits in our
dataset alone are in excess of $1.6 billion dol-
lars, in aggregate.

1 Introduction

Since 1990, over four thousand securities class ac-
tion lawsuits have been filed alleging violations
of Section 10b of the Securities Exchange Act of
1934. While 10b is a very broad section, its main
foci are manipulative and deceptive practices in
relation to securities. In their communications with

stakeholders, companies often refer to financial
measures that do not conform with the Generally
Accepted Accounting Principles (GAAP). These
non-GAAP measures (NGMs) have been shown to
positively increase a document’s tone, which could
be overinflating the company’s prospective perfor-
mance. Consequently, if actual performance falls
short, overly favourable wording could be part of
the instigation of securities lawsuits.

To evaluate if we could use a NGMs approach to
classifying securities class action lawsuits, we use
the financial filings submitted to the U.S. Securities
and Exchange Commission (SEC) for ninety six
random lawsuits, half settled and half dismissed,
over the alleged damage period, as our dataset. We
propose a novel use of sentiment analysis by ex-
amining a key section of the quarterly and annual
reports submitted to the SEC in two states: first,
the unaltered report as filed with the SEC (X′), and
second, the report without selected NGMs (X). We
then calculated the change in the tone or sentiment
(as we use these terms interchangeable) as (X - X′)
for each report and used it as an input to our predic-
tion model. We found that we are able to predict the
outcome of the lawsuits for the aggregate dataset
with a recall of 0.8207 using the calculated senti-
ment (tone) change alone using the Random Forest
classifier. When the tone change is used in conjunc-
tion with other features, we find that we are able to
predict the outcome with a recall of 0.9142, again
using the Random Forest classifier.

Securities lawsuits are extremely expensive to
companies: the settlements from our sample alone
are in excess of $1.6 billion dollars, in aggregate.
To our knowledge, this use of Natural Language
Processing, in particular the change in Sentiment
Analysis of the NGMs in financial reports and ap-
proach to potential lawsuit classification has not
been done before. We believe that this is an im-
portant contribution as it has cross-domain impli-
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cations and potential, and opens up new areas of
research in e-Commerce, finance, and law.

2 Related Work

The recurring theme of research that supports the
use of NGMs is altruism — that they provide
additional, relevant information that GAAP can-
not (Black et al., 2018; Boyer et al., 2016; Bhat-
tacharya et al., 2003; Frankel et al., 2004). These
measures are everywhere in the financial ecosphere
and have become accepted as part of the fundamen-
tal financial narrative. While the use of NGM has
its supporters, there are many more detractors who
cite evidence that strongly suggests that the motives
are opportunistic rather than altruistic. Earnings
targets are a fundamental part of measuring corpo-
rate goals. Companies set these objectives to help
the company grow, but also demonstrably com-
municate to investors that the company is worth
investing in. Researchers have found that there is a
higher percentage of companies that are meeting or
beating their earnings targets relative to those that
do not. This strongly suggests that there is some
degree of financial “management” (Burgstahler and
Dichev, 1997; Brown and Caylor, 2005; Graham
et al., 2005; Roychowdhury, 2006; Lougee and
Marquardt, 2004; Bhattacharya et al., 2003; Davis
and Tama-Sweet, 2012; Doyle et al., 2013; Black
et al., 2018), and one of the tools available to do
that are NGMs.

Research has also found NGMs, even as sup-
plementary measures, are misleading given their
persuasive nature (Fisher, 2016; Asay et al., 2018)
as the company is essentially implying, through
the adjustments that they make, that its actual per-
formance is different (and in some cases starkly
different) from its audited performance. Alee et al.
also raises the concern that non-GAAP earnings,
in particular, may confuse and mislead the average
investor (Allee et al., 2007) when non-GAAP prof-
its are created through adjustments from what was
originally a GAAP loss (Young, 2014). Kang et
al. found that when management discloses infor-
mation to stakeholders, it tends to use “flexibility”
in the tone in order to limit the damage by fram-
ing the negativity in positive ways (Kang et al.,
2018; Li, 2016), which speaks to corporate motiva-
tion. Loughran-McDonald (2011) found that this
motive entices writers to re-frame negativity into
positivity because the impact of negative words
on shareholders (or potential shareholders) is inex-

orable (Loughran and McDonald, 2011a). There-
fore, careful use of word constructs can help to
avoid, or at least, significantly limit the pervasive
affect brought on by negative wording. This idea
is also echoed by Rogers et al. (2011) who indi-
cate that overly optimistic tones can be catalysts
for Securities Class Action Lawsuits (Rogers and
Van Buskirk, 2009).

Wongchaisuwat, Klabjan, and McGinnis used
clustering classification models to determine the
likelihood of patent litigation. If litigation was de-
termined to be likely, SEC financial data was then
incorporated into the model to predict the timeline
to litigation (Wongchaisuwat et al., 2017). Grugin-
skie and Vaccaro also researched lawsuit lead time
based on data provided by the Tribunal Regional
Federal da 4a Regiã from 2016 (Gruginskie and
Vaccaro, 2018). Their model was broken down into
four time frames: Up to 1 Year; From 1 to 3 Years;
From 3 to 5 years; and More than 5 Years. Over-
all, Support Vector Machines and Random Forest
returned the best F1 measure performance of 83.85
and 83.33, respectively, for results Up to 1 Year.

Alexander et al. examined features extracted
from source documents such as the lawsuit itself,
the trial docket, summary judgments, and the mag-
istrate’s report to predict the outcomes of a series of
lawsuits (Alexander et al., 2018). Using a random
forest model, they varied the number of features
used in prediction to see which model would pro-
vide the most insight. The model that used the full
range of features provided the best performance,
resulting in 94% accuracy (Alexander et al., 2018).

3 Research Design

3.1 Methodology
Rogers, Van Buskirk, and Zechman used plantiff
complaints to determine which corporate disclo-
sures were most likely to put a firm at risk of liti-
gation (Rogers et al., 2011). Although Rogers et
al. did not not disclose which companies were in-
cluded in their dataset, we based the main idea of
our methodology on their work and used lawsuit in-
formation and corporate disclosures in conjunction
with well-known dictionaries to create our dataset.

We randomly selected 96 lawsuits from the heat
map on Stanford’s Securities Class Action Clear-
inghouse (SCAC). 16 lawsuits were gathered from
each of the Top 3 sectors (Technology, Service, and
Financial) and 16 lawsuits from each of the Bottom
3 sectors (Utilities, Transportation, and Conglomer-
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ates) during the period beginning in 1990 to 2017.
The following criteria were used for a company’s
inclusion in the dataset:

• the company had to be a public company in
order for us to be able to access the company’s
10-K and 10-Q reports from the SEC;

• the lawsuits had to be drawn from the Top 3
and the Bottom 3 sectors in the SCAC heat
map;

• the class action lawsuit had to be promulgated
under Rule 10b; and

• the lawsuit’s status had to be either “settled”
or “dismissed”.

Note: Rule 10b, which is most often addressed
under Section 5, addresses deception and making
false statements, among other things. (Congress,
1951).

We then reviewed the information on the infor-
mation on the SCAC to determine the alleged dam-
age period and the length of the lawsuit. Both of
these characteristics were then added to the dataset.
The 10-K and 10-Q reports were gathered for each
company that corresponded to the alleged damage
period. Our focus was solely on the Management
Discussion & Analysis (MD&A) and the Market
Risks (following the research of (Loughran and
McDonald, 2011a), so we parsed those sections out
of the 10-K and 10-Q reports.

We curated a list of NGMs to target by using
common NGMs published by Deloitte (Deloitte,
2019) as our starting point. The SEC has very
specific rules regarding NGMs. In certain cases,
what is normally considered to be a non-GAAP
measure is, under SEC regulations, determined to
be not non-GAAP in certain prescribed circum-
stances (Securities and Commission, 2018). Any
NGMs that required contextualization to determine
if the measure was actually non-GAAP or not non-
GAAP under SEC regulation were removed. The
following list of NGMs are considered to be always
non-GAAP under any circumstances:

• Revised Net Income

• Earnings Before Interest and Taxes (EBIT)

• Earnings Before Interest, Taxes, and Depreci-
ation (EBITDA)

• Earnings Before Interest, Taxes, Depreciation,
Amortization, and Rent/Restructuring (EBIT-
DAR)

• Adjusted Earnings Per Share

• Free Cash Flow (FCF)

• Core Earnings

• Funds From Operations (FFO)

• Unbilled Revenue

• Return on Capital Employed (ROCE)

• Non-GAAP

• Reconciliation

Note: “Revised” or “Adjusted” variants of mea-
sures, such as “Adjusted EBIT” were also included,
as were commonly accepted variations of naming
of the NGMs such as “debt-free cash flow” and
“unlevered free cash flow”. Also, we added the
word “reconciliation” into our short list.

Using this list, sentences in the MD&A and Mar-
ket Risks that contained the NGMs were then re-
moved. Our rationale for taking this approach is
that the non-GAAP measure is the focus of the
sentence, and therefore, the words in that sentence
exist only for discussing that measure.

To illustrate that point, we offer the following:
“Our EBITDA decreased 2% for the first quarter of
fiscal 2012 compared to the first quarter of fiscal
2011, due to a slight decrease in net revenues and a
slight increase in operating expenses.” (Taken from
TD Ameritrade’s 10-Q filing made on 2012-02-
08.) If we take a Bag-of-Words (BoW) approach
to this sentence and only remove the NGM — in
this case EBITDA — that leaves the rest of the
words in the sentence. Yet, without the NGM, the
sentence no longer makes sense: “Our decreased
2% for the first quarter of fiscal 2012 compared
to the first quarter of fiscal 2011, due to a slight
decrease in net revenues and a slight increase in
operating expenses.”

Therefore, using the BoW approach, the words
from the second non-sensical sentence would be
left in when calculating the sentiment (as only the
NGM keyword EBITDA would be removed). In
reality, all of the words left in the sentence exist
only to discuss and contextualize the NGM and
need to be removed. Using both versions of the re-
port — one with the NGMs and one without — we
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conducted a sentiment analysis and calculated the
change in the sentiment (tone) between the MD&A
and Market Risks from the report as filed with the
SEC and the report with the NGMs removed (X -
X′).

3.2 Dictionaries used for Sentiment Analysis
in R

The financial lexicon and jargon used by profes-
sionals, which subsequently appears in reports,
financial statements and filings (such as the 10-
K and 10-Q reports we examined for our re-
search), can be quirky and nuanced. As noted by
Loughran-McDonald (Loughran and McDonald,
2011b), there are a lot of words which, out of the
financial context, elicit emotional responses that
may not be warranted. The word “debt” (which is
a financial liability) is a good example. When used
in a business context, the word itself is neutral; it is
expected that businesses will have debt and, until
that debt has been contextualized by taking into ac-
count the rest of the facts, figures, and discussions,
it is not appropriate to assign it a tonal label.

We used four dictionaries provided in R to con-
duct our sentiment analysis, as follows:

• Harvard-IV: Psychological dictionary. The
implementation of this dictionary in R is
strictly a binary classification. There are 1,316
positive words and 1,746 negative words.
Words such as debt, interest and taxes are
negative words in this dictionary, and are as-
signed a score of −1 (Feuerriegel and Proel-
lochs, 2019)

• QDAP: Collection of dictionaries that include
subsets of Harvard-IV, Hu-Liu (Hu and Liu,
2004), Dolch’s 220 most common words by
reading level (Dolch, 1936), census data col-
lected by the U.S. Government, among others
(Feuerriegel and Proellochs, 2019). The R
implementation of this dictionary is a binary
classification and 1,208 positive words and
2,952 negative words. Words such as debt,
interest, and taxes are negative words in this
dictionary, and are assigned a score of −1
(Feuerriegel and Proellochs, 2019).

• Henry: Financially oriented dictionary. This
dictionary has a binary classification with 53
positive words and 44 negative words. Words
such as debt, interest, and taxes are, by omis-

sion, neutral words in this dictionary, and are
assigned a score of 0 (Henry, 2008).

• Loughran-McDonald: Financially oriented
dictionary. The R implementation of this dic-
tionary is a binary classification only, with 145
positive and 885 negative words. Words such
as debt, interest, and taxes are neutral words
in this dictionary, and are assigned a score of
0 (Feuerriegel and Proellochs, 2019). The au-
thors have noted, “Language is dynamic” and
to keep up with that dynamism, they update
this dictionary on an annual basis. Since 2012,
no words have been deleted from their dictio-
nary, but 343,606 words have been added and
265 words have been reclassified (Loughran
and McDonald, 2018).

3.3 Dataset Characteristics
Characteristics of our prediciton model are as fol-
lows:

1. Date (date that the company filed the report
with the SEC). This date is then compared
to the alleged damage period, to determine
which SEC filings are relevant to the lawsuit.

2. Central Index Key (“CIK” which acts as the
company number for the SEC). The CIK is
used to ensure that the reports and informa-
tion gathered are for the correct company. It
also facilitates calculation of the length of the
lawsuit.

3. cgi (change the tone for the General Inquirer
dictionary)

4. che (change in tone for the Henry dictionary)

5. clm (change in tone for the Loughran-
McDonald dictionary)

6. cqdap (the change in the tone for the QDAP
dictionary)

Notes: Tone changes for each dictionary is calcu-
lated as (X - X′). Also, the number of documents
included in the dataset for each company was de-
pendent on the length of the alleged damage period.

The class being predicted was the outcome of the
class action lawsuit as either settled or dismissed.
Please see Table 1 for the specific composition of
the dataset.
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Characteristic Number/Length/Dollar Value

Total Number of Documents 2, 170

Number of documents per Sector:
(Top 3) Services 468

(Top 3) Financial 542

(Top 3) Technology 536

(Bottom 3) Utilities 218

(Bottom 3) Transportation 248

(Bottom 3) Conglomerates 158

Longest Damage Period 46 months
Shortest Damage Period 1 month

Largest Settlement $410 million
Smallest Settlement $1.5 million

Table 1: Dataset Characteristics

3.4 Experiments and Evaluation Methods
We performed two different main experiments to
test our model, both using 10 fold cross-validation.

The first experiment used aggregated data (all six
sectors — Top 3 and Bottom 3) only and leveraged
all of the dictionaries. Using Naı̈ve Bayes (NB),
Random Forest (RF), and Support Vector Machines
(SVM) for our predictive models, we ran a series
of tests, varying the number of features used in the
class prediction to determine the predictive capac-
ity of each algorithm. In the first run, we used all
features in the dataset, as outlined above to predict
the outcome. We decreased the number of features
used in the second run to only the sentiment and
period to predict the outcome. For the third (and
final run), we used only the sentiment to predict
the outcome. We were particularly interested in the
results for the use of sentiment alone given that the
change in the sentiment score was driven by the
removal of the NGM sentences.

The second experiment used the exact same pa-
rameters, reasoning, and interest as the first, with
the exception of the data used. Here, we rolled
up each individual sector into its major constituent
of either Top 3 (Technology, Service, and Finan-
cial) or Bottom 3 (Utilities, Transportation, and
conglomerates).

Class action lawsuits are inherently expensive
(regardless of outcome). The settlements from the
class action lawsuits in our dataset alone are in
excess of $1.6 billion dollars, in aggregate. As
indicated in Table 1, the largest individual company
settlement was $410 million dollars. Our focus has
been on corporate disclosure in the MD&A and

Market Risks sections of the 10-K and 10-Q reports
filed with the SEC. These disclosures have been
meticulously reviewed by company executives, and
likely auditors and the company’s legal team as
well before dissemination to the public. That also
means that if a company is to adjust its disclosure to
help shield itself from legal action, it has to be done
in the drafting and (subsequent) approval stage of
the MD&A and Market Risks before release to
stakeholders.

From a business point of view, if the cost of
acting is high (such as making a considerable in-
vestment), then precision is the most appropriate
measure. But, if the cost of not acting is high
(such as taking steps to avoid an overly optimistic
disclosure tone prior to release), then recall is the
most appropriate. Therefore, we chose recall as the
most appropriate measure to evaluate our models.

We also make a distinction here between Infor-
mation Retrieval (IR) and Classification. In IR, a
trade-off can be made between precision and re-
call in that it we can simply return all documents
in order to get a high recall, but a very low preci-
sion (Manning, Christopher D. and Schütze, Hin-
rich, 1999). However, in our classification model,
we recognize that there is a corporate cost to every
action that a company takes — including writing
and distributing corporate disclosures. Given this,
we see no tangible value for companies and in-
vestors alike if all documents are returned in order
to trade precision for recall.
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3.5 Results
The full results from our experiments can be found
in Table 2. The Aggregate data results used in
Experiment 1 are presented first, followed by the
major constituents of Top 3 and Bottom 3. The
number of features ranges from all to just sentiment
alone to predict the outcome (class), as denoted in
the table.

Keeping in mind that recall is the measure that
we are focusing on, we see that Random Forest
(RF) is predominantly the best algorithm for this
data. The results returned using RF are quite robust,
returning a recall of 0.9142 for the Aggregate using
all features, and 0.9938 and 0.9407 for the Top 3
and Bottom 3, respectively. When using the tone
change alone, the results are robust as well, return-
ing a recall of 0.8207 for the aggregate dataset. At
each node, this algorithm is designed to choose the
best among randomly chosen predictors to make its
decision, and then move on, to prevent overfitting.
RF also works well with both numerical and cate-
gorical data, which we have. As well, because it
employs a boot-strapping method (i.e. that samples
are selected and then replaced to be selected again
the future), and therefore makes the random tree
more robust.

We varied the number of attributes used between
tests, determining how far we could strip down the
features in the model until the prediction dropped
off significantly. The ensemble nature of this algo-
rithm is particularly well suited to this classification
task as it uses prediction by committee to overcome
the shortcomings of the individual trees.

NB performed the best of all of the algorithms
when classifying the Aggregate using the Senti-
ment Score, the Period, and the Outcome, result-
ing in a recall of 0.9794. NB also outperformed
RF again when classifying both the Top 3 and the
Bottom 3 sectors using just the Sentiment and the
Outcome. We believe that this is due to the tenet of
NB, which is that all of the variables are assumed
to be conditionally independent. It also works well
with small datasets, which we have.

SVM performed the worst out of the algorithms.
The highest recall was 0.6600, was for the Bottom 3
Sectors using the Sentiment, Period, and Outcome,
but was still far off the best performing classifiers.
In our dataset, there are a number of filings where
the change between the “before” and “after” was
zero. This means that the company did not use
any of the non-GAAP measures in our extraction

list. We believe that due to the fact that this type of
paired data cannot be easily separated, that SVM
is not well suited to our type of data.

3.6 Why This Matters
The arrival of e-Commerce changed the global mar-
ketplace forever, giving consumers access to prod-
ucts and services that before they would not have
necessarily had access to. e-Commerce also altered
the way that businesses do business as informa-
tion that was not readily accessible like shopping
habits, tools to infer decision-making, and search
history, became available, allowing businesses a
keen eye into who their customer really is. The
economy has also folded in e-Commerce so well,
that it is now, more than ever, dependent on it; the
global pandemic COVID-19 has made this very
clear. Businesses who, before the pandemic, had
shied away from, or even made the conscious deci-
sion not to engage in e-Commerce have been thrust
online, forcing those businesses to pivot quickly
for survival.

Investors need to be appropriately protected from
adverse financial investment where possible in or-
der for the economy to stay health and strong. e-
Commerce is a mainstay in the marketplace, rang-
ing from buying goods and services online to in-
vesting online. It is, therefore, important that e-
Commerce companies are scrutinized, alongside
traditional business, to ensure the investment is
sound. Sentiment analysis is an excellent tool for
such scrutiny as it affords the ability to capture
and demonstrate the power of sentiment of both
financial professionals and the average financial
investor, while allowing research to show the di-
chotomy that financial language and jargon have on
each group’s interpretation of company health, risk,
and the soundness of an investment. Our research
can have an impact on the different understandings
of language and how it can help consumers make
decisions. It also opens up new avenues of research
within the domains of e-Commerce, finance, and
law.

4 Conclusion

Our research provided the novel approach of per-
forming an extractive sentiment analysis using the
tone change between financial reports containing
NGMs with those that do not for prediction of the
outcome of Securities Class Action lawsuits pro-
mulgated under Rule 10b(5). We conducted our
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Algorithm and Features Used Precision Recall F1 Accuracy
Aggregate (All Features)

Naı̈ve Bayes 0.6049 0.8822 0.7424 0.7973

Random Forest 0.9123 0.9142 0.9133 0.9210

Support Vector Machine 0.6610 0.6390 0.6100 0.6439

Aggregate (Sentiment, Period)
Naı̈ve Bayes 0.6597 0.9794 0.7884 0.8172

Random Forest 0.8100 0.8879 0.8472 0.8668

Support Vector Machines 0.6235 0.6280 0.6057 0.6090

Aggregate (Sentiment)
Naı̈ve Bayes 0.5581 0.7152 0.6270 0.6803

Random Forest 0.6977 0.8207 0.7542 0.7481

Support Vector Machines 0.2693 0.5194 0.3543 0.2734

Top 3 (All Features Used)
Naı̈ve Bayes 0.6409 0.8822 0.7424 0.7973

Random Forest 0.9493 0.9938 0.9710 0.9754

Support Vector Machines 0.6220 0.6240 0.6021 0.6137

Top 3 (Sentiment, Period)
Naı̈ve Bayes 0.6054 0.8761 0.7160 0.7812

Random Forest 0.8149 0.9446 0.8750 0.8990

Support Vector Machines 0.6235 0.6280 0.6057 0.6090

Top 3 (Sentiment)
Naı̈ve Bayes 0.5248 0.9610 0.6789 0.7445

Random Forest 0.8089 0.8468 0.8274 0.8434

Support Vector Machines 0.5492 0.5492 0.4793 0.4636

Bottom 3 (All Features)
Naı̈ve Bayes 0.6478 0.8067 0.7185 0.7798

Random Forest 0.8819 0.9407 0.9104 0.9104

Support Vector Machines 0.6884 0.6568 0.6453 0.6426

Bottom 3 (Sentiment, Period)
Naı̈ve Bayes 0.6149 0.8306 0.7067 0.7785

Random Forest 0.8542 0.9111 0.8817 0.8817

Support Vector Machines 0.6905 0.6600 0.6491 0.6555

Bottom 3 (SentimentS)
Naı̈ve Bayes 0.5248 0.9610 0.6789 0.7445

Random Forest 0.8156 0.7986 0.8070 0.7993

Support Vector Machines 0.4965 0.5119 0.4040 0.5002

Table 2: Case Study Machine Learning Results

experiments on 96 random lawsuits selected from
the Stanford SCAC heat map (organized by sector)
from the Top 3 and Bottom 3 sectors, equating to
16 lawsuits per sector. We found that using the
calculated change in the sentiment (X - X′) alone
was sufficient to predict the outcome of the securi-
ties class action lawsuits to a recall of 0.8207, and
when sentiment was combined with other features,

recall rose to 0.9142 - both using RF.

4.1 Future Work
Taking an extractive sentiment approach, rather
than a classical BoW approach, has provided new
avenues of research. In this paper, we only exam-
ined the 10-K and 10-Q reports provided to the
SEC. It would be valuable to apply this methodol-
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ogy on different aspects of e-Commerce, such as
buying decisions, based on different user-groups
understanding and interpretations of keywords, and
how words that characterize and contextualize af-
fect sentiment.

We also suggest that the paradigm be shifted
from focusing intently on how customer informa-
tion can be used to drive bottom-line performance,
to incorporating how e-Commerce companies com-
municate with their stakeholders to determine if
there is alignment between what the company says
and, ultimately, does, as evidenced in their regula-
tory and financial filings.
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Abstract

In this paper, we study the applicability
of Bayesian Parametric and Non-parametric
methods for user clustering in an E-commerce
search setting. To the best of our knowledge,
this is the first work which presents a compara-
tive study of various Bayesian clustering meth-
ods in the context of product search. Specif-
ically, we cluster users based on their topical
patterns from their respective product search
queries. To evaluate the quality of the clusters
formed, we perform collaborative query rec-
ommendation task. Our findings indicate that
simple parametric model like Latent Dirich-
let Allocation (LDA) outperforms more so-
phisticated non-parametric methods like Dis-
tance Dependent Chinese Restaurant Process
and Dirichlet Process based clustering in both
tasks.

1 Introduction

Online retail business has been on an unprece-
dented growth since last few years, with a market
share of 600 Billion dollars last year in the United
States 1. To cope up with such an epochal growth,
product discovery becomes an important aspect for
any e-commerce platform. It is an important as-
pect to help customers navigate an ever increasing
inventory of products.

Product search is an important aspect of E-
Commerce discovery, where displaying relevant
and personalized products in answer to an user
query is directly tied to customer satisfaction (Su
et al., 2018; Moe, 2003).

Personalizing search results entails mining
search behavior logs to represent individual user’s
search intent. However, due to the large variance
in individual user’s preference, finding a good rep-
resentation is often difficult. In the context of web

1https://www.digitalcommerce360.com/
article/us-ecommerce-sales/

Figure 1: Query Distribution across users.

search, search intent mining has been extensively
studied (Teevan et al., 2008; White and Drucker,
2007; Joachims et al., 2017).

However, despite it’s apparent importance, per-
sonalization in product search is not very well stud-
ied. There has been some attempts to model user’s
search intent based on her past product interactions.
Qingyao et al. (Ai et al., 2017) jointly learn repre-
sentations of user, query and users’ product reviews
for personalization. In a follow-up work, Qingyao
et al. (Ai et al., 2019), learn a ’zero-attention’
model for representation learning to account to
cold-start problem in new product categories. How-
ever, it should be noted that both work attempt to
model search interest at the granularity of individ-
ual users, which are highly spare in nature.

Fig. 1 is the distribution of queries across users
in the Amazon Product Search Dataset (Ai et al.,
2017). The distribution is skewed towards left side
of the distribution. It shows that query distribution
across users is sparse, with very few users have
high number of queries and subsequently few in-
teractions as-well. This makes it challenging to
model search interests at the granularity of individ-
ual users.

By modelling each user separately, we are also
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missing on the chance to capture the heterogeneity
in the user’s search interests. Modelling user’s
jointly can aid in learning individual user’s interest,
as-well as aid in handling sparsity through sharing
statistical strength within the group. Towards this
end, we study various Bayesian clustering methods
to model latent user cohorts by mining user’s search
query patterns.

To the best of our knowledge, this is the first
work in the domain of E-Commerce search to study
the application of bayesian methods for modelling
user cohorts. The aim of this paper is to present a
comparative study of different bayesian parametric
and non-parametric methods in the domain of prod-
uct search. Product search system designers can
benifit from this study by making an informed deci-
sion when designing E-commerce personalization
system.

2 Related Work

There has been plenty of work in web search for
modelling user cohorts for learning an effective
ranking function. Previous studies (Bian et al.,
2010; Giannopoulos et al., 2011) propose a K-
means clustering of queries and then a learn a rank-
ing function within each sub-group to capture query
patterns in each group.

However, the focal unit of the previous work is
queries, whereas we are interested in modelling
user. The closest to our work is by Yan et al. (Yan
et al., 2014), where they model user cohorts based
on Click-Through Rates (CTR) and Open Directory
Project (ODP) based topics. However, instead of
relying on human curated ODP based topics, we
use probabilistic topic models to identify topics
from user’s log data and further use it for clustering.

Towards this end, in this work, we study the prob-
lem of user cohorting by clustering user’s queries
in the probabilistic topic space. Specifically, we
study application of various probabilistic topic
models like Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), Hierarchical Dirichlet Process
(HDP) (Wang et al., 2011; Teh, 2006), Dirichlet
Process Gaussian Mixture Model (DPGMM) (Teh,
2010) and the more recent Distance Dependent Chi-
nese Restaurant Process (ddCRP) (Blei and Frazier,
2011). To the best of our knowledge, this is the first
work in product search which studies application
of probabilistic topic models for user cohorting.

3 User Cohorting using Probabilistic
Topic Models

In this section, we will formally define the problem
statement followed by a brief description of the
non-parametric ddCRP user clustering method.

3.1 Problem Statement:

We define the search log D as : D = {u, q, p},
where u is the individual user identifier, q is the
product search query and p is the unique id of the
product purchased by the user in the context of
the query q fired. As part of pre-processing, we
aggregate the queries fired by user as basic rep-
resentation unit. Each user ui is represented as,
ui = {q1, q2, ...., qn}, where each query qj is rep-
resented by bag-of-words of of basic search tokens.
Here, the user can be treated as a document of
search tokens. The goal is to cluster users’ based
on topical representation.

3.2 ddCRP for user clustering

In this section, we will describe the ddCRP method
for user clustering.

The ddCRP is an extension of the popular
Bayesian Non-parametric method Chinese Restau-
rant Process (CRP). Like CRP, it is defined as a dis-
tribution over all possible partitions of a set (users
in our case). Customer (user ui in our case) enter
the restaurant in a sequence and select a table zi fol-
lowing another customer (user) uj based on some
probability and sits on that table. This is unlike
CRP, where the probability of a customer choos-
ing a seat is proportional to number of customers
already seated on that seat.

Formally, the ddCRP process can be summarized
by the following mathematical notation:

p(zi = j|D,α) ∝
{
f(dij), if i 6= j

α, otherwise
(1)

where zi is the latent table assignment for the
customer i. zi = j represents that the customer i is
linked to customer j with probability defined above.
D is the matrix of all pairwise distances (defined in
the next section) and alpha is the hyper-parameter
of the model. f is the decay function and dij is
the pre-defined distance between user ui and the
user uj . R(u1:N ) defines the clustering structure
by traversing the final user linking generated by the
model.
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The generative story of the ddCRP model is de-
fined as below:

1. For i ∈ [1 : N ], sample zi ∼ddCRP(α, f,D).

2. For i ∈ [1 : N ]

(a) Draw parameter from the base distribu-
tion, θi ∼ G0

(b) For each of the M words in the user query
chain, draw wi ∼ F(θi).

Here, since we are dealing with bag-of-words
model of text, we choose G0 as a dirichlet distribu-
tion and F to be a Multinomial distribution, which
can generate the words in the user’s query chain.

3.3 Defining the Distance Function

To fully specify the ddCRP model, we need to de-
fine the distance function. In our case, to define the
distance between two users as Hellinger distance
between their LDA topic distribution.

4 Experiments

In this section, we will describe the experimental
results from our study.

4.1 Dataset

For experiments, we use the product search dataset
described by Qingyao et. al (Ai et al., 2017). They
use the Amazon product review dataset and ex-
tract queries from the user’s product reviews and
use the purchased product as the relevant prod-
uct. The dataset is generated for multiple product
categories, we choose two of them for our exper-
iments: 1) Compact Discs (CDs) and Vinyls. 2)
Kindle Dataset. We removed users with atleast 200
queries, which leaves us with 1300 users in both
datasets.

We select the following two tasks to evaluate per-
formance of the clustering method: 1) Collabora-
tive Query Recommendation and 2) Collaborative
Document Recommendation.

For each user, we select a random sample of 5%
queries as test queries and 95% for training. Simi-
larly for products. We train LDA model on query
chain constructed from training queries of each
user. Specifically, we treat a simple concatenation
of queries in user’s training queries as a document
and the collective query chain of all users as the
corpus.

4.2 Collaborative Query Recommendation:

Once the users are segmented into various groups,
we compute frequency of queries in each group.
Each user is recommended top-K queries computed
from his respective group. We treat user’s test query
as relevant queries and compute the performance
of recommended queries against the relevance set.

Method Prec@5 Prec@10

LDA 0.071934 0.088187
HDP 0.044093 0.058691

ddCRP 0.040030 0.056057
LDA + IGMM 0.007073 0.008202
LDA + GMM 0.017156 0.020767

Table 1: Query Recommendation Performance for CDs
data

Method Prec@5 Prec@10

LDA 0.072863 0.088133
HDP 0.069046 0.079751

ddCRP 0.054440 0.063734
LDA + IGMM 0.031701 0.027718
LDA + GMM 0.009627 0.011535

Table 2: Query Recommendation Performance for the
Kindle data

5 Results

We present some preliminary results on the query
recommendation task on the two datasets men-
tioned above. We compare the following methods:

1) LDA: We use the MAP estimates from the
posterior over topics for each user to get the cluster
assignment.

2) HDP: Similar to LDA, we use MAP estimates
from the posterior to get the cluster assignment.

3) LDA + GMM: We perform Gaussian Mixture
Model (GMM) clustering with LDA topic distribu-
tion as feature vector.

4) LDA + IGMM: We use Infinite Gaussian Mix-
ture model, which is a non-parameteric model to
perform clustering over user’s topic distributions.

From the results, it is clear that LDA outperforms
more sophisticated Non-parameteric methods in
terms of Precision metric.
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6 Conclusion

This paper can serve as a starting point of discus-
sion around the use of Bayesian Non-parametric
models for user cohorting. The prelimary results
weigh in favor of simple parametric model like
LDA, however, we believe that with further inves-
tigation, ddCRP method’s performance can be im-
proved. More specifically, if we perform clustering
in the space of recently proposed neural embed-
ding methods, instead of conventional topic model
space, it’s performance can be improved. We hope
this paper can start that discussion.
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