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Abstract

Recent progress in neural machine transla-
tion is directed towards larger neural net-
works trained on an increasing amount of
hardware resources. As a result, NMT mod-
els are costly to train, both financially, due
to the electricity and hardware cost, and en-
vironmentally, due to the carbon footprint.
It is especially true in transfer learning for
its additional cost of training the “parent”
model before transferring knowledge and
training the desired “child” model. In this
paper, we propose a simple method of re-
using an already trained model for different
language pairs where there is no need for
modifications in model architecture. Our
approach does not need a separate parent
model for each investigated language pair,
as it is typical in NMT transfer learning. To
show the applicability of our method, we
recycle a Transformer model trained by dif-
ferent researchers and use it to seed models
for different language pairs. We achieve
better translation quality and shorter con-
vergence times than when training from ran-
dom initialization.

1 Introduction

Neural machine translation (NMT), the current
prevalent approach to automatic translation, is
known to require large amounts of parallel training
sentences and an extensive amount of training time
on dedicated hardware. The total training time sig-
nificantly increases, especially when training strong
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baselines, searching for best hyperparameters or
training multiple models for various language pairs.

Schwartz et al. (2019) analyzed 60 papers from
top AI conferences and found out that 80% of them
target accuracy over efficiency, and only a small
portion of papers argue for a new efficiency result.
They also noted that the increasing financial cost
of the computations could make it difficult for re-
searchers to engage in deep learning research or
limit training strong baselines. Furthermore, in-
creased computational requirements have also an
environmental cost. Strubell et al. (2019) estimated
that training a single Transformer “big” model pro-
duces 87 kg of CO2 and that the massive Trans-
former architecture parameter search produced 298
tonnes of CO2.1

However, a lot of research has been already in-
vested into cutting down the long training time by
the design of NMT model architectures, promot-
ing self-attentive (Vaswani et al., 2017) or convo-
lutional (Gehring et al., 2017) over recurrent ones
(Bahdanau et al., 2014) or the implementation of
heavily optimized toolkits (Junczys-Dowmunt et
al., 2018).

In this paper, we propose a novel view on re-
using already trained “parent” models without the
need to prepare a parent model in advance or mod-
ify its training hyper-parameters. Furthermore, we
propose a second method based on a vocabulary
transformation technique that makes even larger
improvements, especially for languages using an
alphabet different from the re-used parent model.
Our transfer learning approach leads to better per-
formance as well as faster convergence speed of
the “child” model compared to training the model
from scratch. We document that our methods are

1The paper reports numbers based on the U.S. energy mix.



not restricted only to low-resource languages, but
they can be used even for high-resource ones.

Previous transfer learning techniques (Neubig
and Hu, 2018; Kocmi and Bojar, 2018) rely on
a shared vocabulary between the parent and child
models. As a result, these techniques separately
train parent model for each different child language
pair. In contrast, our approach can re-use one parent
model for multiple various language pairs, thus
further lowering the total training time needed.

In order to document that our approach is not
restricted to parent models trained by us, we re-use
parent model trained by different researchers: we
use the winning model of WMT 2019 for Czech-
English language pair (Popel et al., 2019).

The paper is organized as follows: Section 2
describes the method of Direct Transfer learning,
including our improvement of vocabulary transfor-
mation. Section 3 presents the model, training data,
and our experimental setup. Section 4 describes the
results of our methods followed by the analysis in
Section 5. Related work is summarized in Section 6
and we conclude the discussion in Section 7.

2 Transfer Learning

In this work, we present the use of transfer learning
to reduce the training time and improve the per-
formance in comparison to training from random
initialization even for high-resource language pairs.

Transfer learning is an approach of using training
data from a related task to improve the accuracy of
the main task in question (Tan et al., 2018). One of
the first transfer learning techniques in NMT was
proposed by Zoph et al. (2016). They used word-
level NMT and froze several model parts, especially
embeddings of words that are shared between par-
ent and child model.

We build upon the work of Kocmi and Bojar
(2018), who simplified the transfer learning tech-
nique thanks to the use of subword units (Wu et
al., 2016) in contrast to word-level NMT transfer
learning (Zoph et al., 2016) and extended the appli-
cability to unrelated languages.

Their only requirement, and also the main disad-
vantage of the method, is that the vocabulary has
to be shared and constructed for the given parent
and child languages jointly, which makes the parent
model usable only for the particular child language
pair. This substantially increases the overall train-
ing time needed to obtain the desired NMT system
for the child language pair.

The method of Kocmi and Bojar (2018) con-
sists of three steps: (1) construct the vocabulary
from both the parent and child corpora, (2) train
the parent model with the shared vocabulary until
convergence, and (3) continue training on the child
training data.

Neubig and Hu (2018) call such approaches
warm-start, where we use the child language pair
to influence the parent model. In our work, we
focus on the so-called cold-start scenario, where
the parent model is trained without a need to know
the language pair in advance. Therefore we cannot
make any modifications of the parent training to
better handle the child language pair. The cold-start
transfer learning is expected to have slightly worse
performance than the warm-start approach. How-
ever, it allows reusing one parent model for multiple
child language pairs, which reduces the total train-
ing time in comparison to the use of warm-start
transfer learning.

We present two approaches: Direct Transfer that
ignores child-specific vocabulary altogether; and
Transformed Vocabulary, which modifies vocabu-
lary of the already trained parent. Thus, one parent
model can be used for multiple child language pairs.

2.1 Direct Transfer

Direct Transfer can be seen as a simplification of
Kocmi and Bojar (2018). We ignore the specifics
of the child vocabulary and train the child model
using the parent vocabulary. We suppose that the
subword vocabulary can handle the child language
pair, although it is not optimized for it.

We take an already trained model and use it as
initialization for a child model using a different
language pair. We continue the training process
without any change to the vocabulary or hyper-
parameters. This applies even to the training param-
eters, such as the learning rate or moments.

This method of continued training on different
data while preserving hyper-parameters is used un-
der the name “continued training” or “fine-tuning”
(Hinton and Salakhutdinov, 2006; Miceli Barone et
al., 2017), but it is mostly used as a domain adapta-
tion within a given language pair.

Direct Transfer relies on the fact that the current
NMT uses subword units instead of words. The sub-
words are designed to handle unseen words or even
characters, breaking the input into shorter units, pos-
sibly down to individual bytes as implemented, for
example, by Tensor2Tensor (Vaswani et al., 2018).



Child-specific EN-CS vocab.
Avg. # per: Sent. Word Sent. Word
Odia 95.8 3.7 496.8 19.1
Estonian 26.0 1.1 56.2 2.3
Finnish 22.9 1.1 55.9 2.6
German 27.4 1.3 55.4 2.5
Russian 33.3 1.3 134.9 5.3
French 42.0 1.6 65.7 2.5

Table 1: Average number of tokens per sentence (column
“Sent.”) and average number of tokens per word (column
“Word”) when the training corpus is segmented by child-
specific or parent-specific vocabulary. “Child-specific” repre-
sents the effect of using vocabulary customized for examined
language. “EN-CS” corresponds to the use of English-Czech
vocabulary.

Segmented sentence
Original Сьерра-Леоне
EN-RU Сьерра_ -_ Леоне_
EN-CS С ь ер ра _ -_ \ 10 51 ; е о не_

Figure 1: Illustration of segmentation of Russian phrase
(gloss: Sierra Leone) with English-Czech and English-Russian
vocabulary from our experiments. The character represents
splits.

This property ensures that the parent vocabulary
can, in principle, serve for any child language pair,
but it can be highly suboptimal, segmenting child
words into too many subwords.

We present an example of a Russian phrase
and its segmentation based on English-Czech or
English-Russian vocabulary in Figure 1. When
using child-specific vocabulary, the segmentation
works as expected, splitting the phrase into three
tokens. However, when we use a vocabulary that
contains only the Cyrillic alphabet2 and not many
longer sequences of characters, the sentence is
split into 13 tokens. We can notice that English-
Czech wordpiece vocabulary is missing a character
“Л” , thus it breaks it into the byte representation
“\1051;”.

We examine the influence of parent-specific vo-
cabulary on the training dataset of the child. Table 1
documents the segmenting effect of different vocab-
ularies. If we compare the child-specific and parent-
specific (“EN-CS”) vocabulary, the average number
of tokens per sentence or per word increases more
than twice. For example, German has twice as many
tokens per word compared to its child-specific vo-
cabulary, and Russian has four times more tokens

2This happened solely due to noise in the Czech-English parent
training data.

Input: Parent vocabulary (an ordered list of
parent subwords) and the training cor-
pus for the child language pair.

Generate child-specific vocabulary with the
maximum number of subwords equal to the
parent vocabulary size;

for subword S in parent vocabulary do
if S in child vocabulary then

continue;
else

Replace position of S in the parent vo-
cabulary with the first unused child
subword not contained in the parent;

end
end
Result: Transformed parent vocabulary

Algorithm 1: Transforming parent vocabulary to
contain child subwords and match positions for
subwords common for both of language pairs.

due to Cyrillic. Odia is affected even more.
Thus, we see that ignoring the vocabulary mis-

match introduces a problem for NMT models in the
form of an increasing split ratio of tokens. As ex-
pected, this is most noticeable for languages using
different scripts.

2.2 Vocabulary Transformation

Using parent vocabulary roughly doubles the num-
ber of subword tokens per word, as we showed in
the previous section. This problem would not hap-
pen with child-specific vocabulary. However, we
are using an already trained parent with its vocab-
ulary. Therefore, we propose a vocabulary trans-
formation method that replaces subwords in the
parent wordpiece (Wu et al., 2016) vocabulary with
subwords from the child-specific vocabulary.

NMT models associate each vocabulary item
with its vector representation (embedding). When
transferring the model from the parent to the child,
we decide which subwords should preserve their
embedding as trained in the parent model and which
embeddings should be remapped to new subwords
from the child vocabulary. The goal is to preserve
embeddings of subwords that are contained in both
parent and child vocabulary. In other words, we
reuse embeddings of subwords common to both
parent and child vocabularies and reuse the vocabu-
lary entries of subwords not occurring in the child



data for other, unrelated, subwords that the child
data need. Obviously, the embeddings for these
subwords will need to be retrained.

Our Transformed Vocabulary method starts by
constructing the child-specific vocabulary with the
size equal to the parent vocabulary size (the parent
model is trained, thus it has a fixed number of em-
beddings). Then, as presented in Algorithm 1, we
generate an ordered list of child subwords, where
subwords known to the parent vocabulary are on
the same positions as in the parent vocabulary, and
other subwords are assigned arbitrarily to places
where parent-only subwords were stored.

We experimented with several possible mappings
between the parent and child vocabulary. We tried
to assign subwords based on frequency, by random
assignment, or based on Levenshtein distance of
parent and child subwords. However, all the ap-
proaches reached comparable performance; neither
of them significantly outperformed the others. One
exception is when assigning all subwords randomly,
even those that are shared between parent and child.
This method leads to worse performance, having
several BLEU points lower than other approaches.
Another approach would be to use pretrained sub-
word embeddings similarly as proposed Kim et al.
(2019). However, in this paper, we focus on show-
ing, that transfer learning can be as simple as not
using any modifications at all.

3 Experiments

In this section, we first provide the details of the
NMT model used in our experiments and the ex-
amined set of language pairs. We then discuss the
convergence and a stopping criterion and finally
present the results of our method for recycling the
NMT model as well as improvements thanks to the
vocabulary transformation.

3.1 Parent Model and its Training Data

In order to document that our method functions
in general and is not restricted to our laboratory
setting, we do not train the parent model ourselves.
Instead, we recycle two systems trained by Popel et
al. (2019), namely the English-to-Czech and Czech-
to-English winning models of WMT 2019 News
Translation Task. It is important to note, that we use
two parent models and for experiments we always
use the parent model with English on the same side,
e.g. English-to-Russian child has English-to-Czech
as a parent. We leave experimenting with different

parents or various combinations for future works,
because the goal of this work is to make approach
most simple.

We decided to use this model for several rea-
sons. It is trained to translate into Czech, a high-
resource language that is dissimilar from any of the
languages used in this work.3 At the same time,
it is trained using the state-of-the-art Transformer
architecture as implemented in the Tensor2Tensor
framework.4 (Vaswani et al., 2018). We use Ten-
sor2Tensor in version 1.8.0.

The model is described in Popel (2018). It is
based on the “Big GPU Transformer” setup as de-
fined by Vaswani et al. (2017) with a few modifica-
tions. The model uses reverse square root learning
rate decay with 8000 warm-up steps and a learning
rate of 1. It uses the Adafactor optimizer, the batch
size of 2900 subword units, disabled layer dropout.

Due to the memory constraints, we drop training
sentences longer than 100 subwords. We use child
hyper-parameter setting equal to the parent model.
However, some hyper-parameters like learning rate,
dropouts, optimizer, and others could be modified
for the training of the child model. We leave these
experiments for future work.

We train models on single GPU GeForce 1080Ti
with 11GB memory. In this setup, 10000 training
steps take on average approximately one and a half
hours. Popel et al. (2019) trained the model on
8 GPUs for 928k steps, which means that on the
single GPU, the parent model would need at least
7424k steps, i.e. more than 45 days of training.

In our experiments, we train all child models up
to 1M steps and then take the model with the best
performance on the development set. Because some
of the language pairs, especially the low-resource
ones, converge within first 100k steps, we use a
weak early stopping criterion that stops the training
whenever there was no improvement larger than
0.5% of maximal reached BLEU over the past 50%
of training evaluations (minimum of training steps
is 100k). This stopping criterion makes sure that no
model is stopped prematurely.

3The linguistically most similar language of our language se-
lection is Russian, but we do not transliterate Cyrillic into
Latin script. Therefore, the system cannot associate similar
Russian and Czech words based on appearance.
4https://github.com/tensorflow/
tensor2tensor



Language pair Pairs Training set Development set Test set
EN - Odia 27k Parida et al. (2018) Parida et al. (2018) Parida et al. (2018)
EN - Estonian 0.8M Europarl, Rapid WMT dev 2018 WMT 2018
EN - Finnish 2.8M Europarl, Paracrawl, Rapid WMT 2015 WMT 2018
EN - German 3.5M Europarl, News commentary, Rapid WMT 2017 WMT 2018
EN - Russian 12.6M News Commentary, Yandex, and UN Corpus WMT 2012 WMT 2018

EN - French 34.3M Commoncrawl, Europarl, Giga FREN,
News commentary, UN corpus WMT 2013 WMT dis. 2015

Table 2: Corpora used for each language pair. The names specify the corpora from WMT 2018 News Translation Task data.
Column “Pairs” specify the total number of sentence pairs in training data.

Language pair Baseline Direct Transfer Transformed Vocab
BLEU Steps BLEU Steps BLEU Steps ∆ BLEU Speed-up

English-to-Odia 3.54 45k 0.26 47k 6.38 ‡* 38k 2.84 16 %
English-to-Estonian 16.03 95k 20.75 ‡ 75k 20.27 ‡ 75k 4.24 21 %
English-to-Finnish 14.42 420k 16.12 ‡ 255k 16.73 ‡* 270k 2.31 36 %
English-to-German 36.72 270k 38.58 ‡ 190k 39.28 ‡* 110k 2.56 59 %
English-to-Russian 27.81 1090k 27.04 630k 28.65 ‡* 450k 0.84 59 %
English-to-French 33.72 820k 34.41 ‡ 660k 34.46 ‡ 720k 0.74 12 %

Estonian-to-English 21.07 70k 24.36 ‡ 30k 24.64 ‡* 60k 3.57 14 %
Russian-to-English 30.31 980k 23.41 420k 31.38 ‡* 700k 1.07 29 %

Table 3: Translation quality and training time. “Baseline” is trained from scratch with its own vocabulary and child corpus only.
“Direct Transfer” is initialized with parent model using the parent vocabulary and continues training. “Transformed Vocab” has
the same initialization but merges the parent and child vocabulary as described in Section 2.2. Best score and lowest training
time in each row in bold. The statistical significance is computed against the baseline (‡) or against “Direct Transfer” (*). Last
two columns show improvements of Transformed Vocabulary in comparison to the baseline.

3.2 Studied Language Pairs

We use several child language pairs to show that
our approach is useful for various sizes of corpora,
language pairs, and scripts. To cover this range of
situations, we select languages in Table 2. Future
works could focus also on languages outside from
Indo-European family, such as Chinese.

Another decision behind selecting these language
pairs is to include language pairs reaching vari-
ous levels of translation quality. This is indicated
by automatic scores of the baseline setups ranging
from 3.54 BLEU (English-to-Odia) to 36 BLEU
(English-to-German)5, see Table 3.

The sizes of corpora are in Table 2. The small-
est language pair is English-Odia, which uses the
Brahmic writing script and contains only 27 thou-
sand training pairs. The largest is the high-resource
English-French language pair.

For most of the language pairs, we use training
data from WMT (Bojar et al., 2018).6 We use the
training data without any preprocessing, not even

5The systems submitted to WMT 2018 for English-to-German
translation have better performance than our baseline due to
the fact, that we decided not to use Commoncrawl, which
artificially made English-German parallel data less resourceful.
6http://www.statmt.org/wmt18/

tokenization.7 See Table 2 for the list of used cor-
pora for each language pair. For some languages,
we have opted out from using all available corpora
in order to experiment on languages containing var-
ious magnitudes of parallel sentences.

For high-resource English-French language pair,
we perform a corpora cleaning using language de-
tection Langid.py (Lui and Baldwin, 2012). We
drop all sentences that are not recognized as the cor-
rect language. It removes 6.5M (15.9 %) sentence
pairs from the English-French training corpora.

4 Results

All reported results are calculated on the test data
and evaluated with SacreBLEU (Post, 2018). The
results are in Table 3. We discuss separately the
training time, automatically assessed translation
quality using the parent and the Transformed Vocab-
ulary, and comparison to Kocmi and Bojar (2018)
in the following sections.

Baselines use the same architecture, and they
are trained solely on the child training data with
the use of child-specific vocabulary. We compute

7While the recommended best practice in past WMT evalua-
tions was to use Moses tokenizer. It is not recommended for
Tensor2Tensor with its build-in tokenizer any more.



statistical significance with a paired bootstrap re-
sampling (Koehn, 2004). We use 1000 samples and
a confidence level of 0.05. Statistically significant
improvements are marked by ‡.

4.1 Direct Transfer Learning
First, we compare the Direct Transfer learning in
contrast to the baseline. We see that Direct Transfer
learning is significantly better than the baseline in
both translation directions in all cases except for
Odia and Russian, which we will discuss later. We
get improvements for various language types, as
discussed in Section 3.2. The largest improvement
is of 4.72 BLEU for the low-resource language
pair of Estonian-English, but we also get an im-
provement of 0.69 BLEU for the high-resource pair
French-English.

The results are even more surprising when we
take into account the fact that the model uses the
parent vocabulary, and it is thus segmenting words
into considerably more subwords. This suggests
that the Transformer architecture generalizes very
well to short subwords. However, the worse per-
formance of English-Odia and English-Russian can
be attributed to the different writing script. The
Odia script is not contained in the parent vocabu-
lary at all, leading to segmenting of each word into
individual bytes, the only common units with the
parent vocabulary. Therefore, to avoid problems
with filtering, we increase the filtering limit of long
sentences during training from 100 to 500 subwords
for these two language pairs (see Section 3.1).

4.2 Results with Transformed Vocabulary
As the results in Table 3 confirm, Transformed Vo-
cabulary successfully tackles the problem of the
child language using a different writing script. We
see “Transformed Vocab” delivering the best per-
formance for all language pairs except for English-
to-Estonian, significantly improving over baseline
and even over “Direct Transfer” in most cases.

4.3 Training Time
In the introduction, we discussed that recent devel-
opment in NMT focuses mainly on the performance
over efficiency (Schwartz et al., 2019). Therefore,
in this section, we discuss the amount of training
time required for our method to converge. We are
reporting the number of updates (i.e. steps) needed
to get the model used for evaluation.8

8Another possibility would be to report wall-clock time. How-
ever, that is influenced by server load and other factors. The

Language Transf. Warm
pair Baseline vocab Start

B
L

E
U

To Estonian 16.03 20.27 20.75
To Russian 27.81 28.65 29.03 ‡
From Estonian 21.07 24.64 26.00 ‡
From Russian 30.31 31.38 31.15

St
ep

s To Estonian 95k 75k 735k
To Russian 1090k 450k 1510k
From Estonian 70k 60k 700k
From Russian 980k 700k 1465k

Table 4: Comparison of our Transformed Vocabulary method
with Kocmi and Bojar (2018) (abridged as “Warm Start”). The
top half of table compares results in BLEU, the bottom half
the number of steps needed to convergence. Steps of Kocmi
and Bojar (2018) method are reported as the sum of parent and
child training, due to the nature of the method.

We see in Table 3 that both our methods con-
verged in a lower number of steps than the baseline.
For the Transformed Vocabulary method, we get a
speed-up of 12–59 %. The reduction in the number
of steps is most visible in English-to-German and
English-to-Russian. It is important to note that the
number of steps to the convergence is not precisely
comparable, and some tolerance must be taken into
account. It is due to the fluctuation in the training
process. However, in neither of our experiments,
Transformed Vocabulary is slower than baseline.
Thus we conclude that our Transformed Vocabulary
method takes fewer training steps to finish training
than training a model from scratch.

4.4 Comparison to Kocmi and Bojar (2018)
We replicated the experiments of Kocmi and Bojar
(2018) with the identical framework and hyperpa-
rameter setting in order to compare their method
to ours. We experiment with Estonian-English and
Russian-English language pair in both translation
directions. Their approach needs an individual par-
ent for every child model, so we train four models:
two English-to-Czech and two Czech-to-English on
the same parent training data as Kocmi and Bojar
(2018). All vocabularies contain 32k subwords. We
compare their method with our Transformed Vocab-
ulary. Furthermore, the results of Direct Transfer in
Table 3 are also comparable with this experiment.

In Table 4, we see that their method reaches
a slightly better performance in three translation
models, where English-to-Russian and Estonian-
to-English are significantly (‡) better than Trans-
formed Vocabulary technique; the other two are
on par with our method, which is understandable.
The Transformed Vocabulary cannot outperform

number of steps is better for the comparison as long as the
batch size stays the same across experiments.
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Figure 2: Child BLEU scores when trained with some parameters frozen. The left plot shows English-to-Estonian and the right
is Estonian-to-English. In both plots, the first two groups are experiments where one component is frozen and the second two are
when all components but one are frozen.

the warm-start technique since the warm-start par-
ent model has the advantage of being trained with
the vocabulary prepared for the investigated child.

However, when we compare the total number of
steps needed to reach the performance, both our
approaches are significantly faster than Kocmi and
Bojar (2018). The most substantial improvements
are roughly ten times faster for Estonian-to-English,
and the smallest difference for English-to-Russian
is two times faster. This is mostly because their
method first needs to train the parent model that is
specialized for the child, while our method can di-
rectly re-use any already trained model. Moreover,
we can see that their method is even slower than the
baseline model.

5 Analysis by Freezing Parameters

To discover which transferred parameters are the
most helpful for the child model and which need to
be changed the most, we follow the analysis used
by Thompson et al. (2018): When training the child,
we freeze some of the parameters.

Based on the internal layout of the Transformer
model in Tensor2Tensor, we divide the model into
four components. (i) Word embeddings (shared
between encoder and decoder) map each subword
unit to a dense vector representation. (ii) The en-
coder component includes all the six feed-forward
layers converting the input sequence to the deeper
representation. (iii) The decoder component con-
sists again of six feed-forward layers preparing the
choice of the next output subword unit. (iv) The
multi-head attention is used throughout encoder and
decoder, as self-attention layers interweaved with
the feed-forward layers.

We run two sets of experiments: either freeze

only one out of the four components and leave the
rest of the model updating or freeze everything but
the examined component. We also test it on two
translation directions: English-to-Estonian in the
left hand part of Figure 2 and Estonian-to-English
in the right hand part. In both cases, English-Czech
(in the corresponding direction, i.e. with English
on the correct side) serves as the parent. We dis-
cuss individual components separately, indexing
the experiments 1© to 8©.

Similarly to Thompson et al. (2018) in domain
adaptation, we observe that parent embeddings
serve well in Direct Transfer, freezing them has
a minimal impact compared to the baseline in 1©
and 5©. The frozen embeddings in Transformed Vo-
cabulary ( 2©, 6©) results in significant performance
drops which can be attributed to the arbitrary as-
signment of embeddings to new subwords.

The comparison of all but embeddings frozen in
4© and 8© (Transformed Vocabulary) is interesting.

In 8©, the performance of the network can be recov-
ered close to the baseline by retraining either parent
source embeddings or the encoder. These two com-
ponents can compensate for each other. This differs
from the case with English reused in the source ( 4©)
where updating embeddings to the child language
is insufficient: the decoder must be updated to pro-
duce fluent output in the new target language and
even with the decoder updated, the loss compared
to the baseline is quite substantial.

The most important component for transfer learn-
ing is generally the component handling the new
language: decoder in English-to-Estonian and en-
coder in the reverse. With this component fixed, the
performance drops the most with this component
fixed ( 1©, 2©, 5©, 6©) and among the least with this



component free to update ( 3©, 4©, 7©, 8©). This con-
firms that at least for examined language pair, the
Transformer model lends itself very well to encoder
or decoder re-use.

Other results in Figure 2 reveal that the archi-
tecture can compensate for some of the training
deficiencies. Freezing the encoder 1©, 2© (resp. de-
coder for Estonian-to-English 5©, 6©) or attention
is not that critical as the frozen decoder (resp. en-
coder). The bad result of the encoder 3©, 4© (resp.
decoder 7©, 8©) being the only non-frozen compo-
nent shows that model is not capable of providing
all the needed capacity for the new language, unlike
the self-attention where the loss is not that large.
This behaviour correlates with our intuition that
the model needs to update the most the component
that handles the differing language with the parent
model (in our case Czech).

All in all, these experiments illustrate the robust-
ness of the Transformer model that it is able to train
and reasonably well utilize pre-trained weights even
if they are severely crippled.

6 Related Work

This paper focuses on re-using an existing NMT
model in order to improve the performance in terms
of training time and translation quality without any
need to modify the model or pre-trained weights.

Lakew et al. (2018) presented two model modifi-
cations for multilingual MT and showed that trans-
fer learning could be extended to transferring from
the parent to the first child, followed by the sec-
ond child and then the third one. They achieved
improvements with dynamically updating embed-
dings for the vocabulary of a target language.

The use of other language pairs for improving
results for the target language pair has been ap-
proached from various angles. One option is to
build multilingual models (Liu et al., 2020), ideally
so that they are capable of zero-shot, i.e. translat-
ing in a translation direction that was never part
of the training data. Johnson et al. (2017) and Lu
et al. (2018) achieve this with a unique language
tag that specifies the desired target language. The
training data includes sentence pairs from multi-
ple language pairs, and the model implicitly learns
translation among many languages. In some cases,
it achieves zero-shot and can translate between lan-
guages never seen together. Gu et al. (2018) tackled
the problem by creating universal embedding space
across multiple languages and training many-to-one

MT system. Firat et al. (2016) propose multi-way
multi-lingual systems. Their goal is to reduce the
total number of parameters needed to train multiple
source and target models. In all cases, the methods
are dependent on a special training schedule.

The lack of parallel data in low-resource lan-
guage pairs can also be tackled by unsupervised
translation (Artetxe et al., 2018; Lample et al.,
2018). The general idea is to train monolingual
autoencoders for both source and target languages
separately, followed by mapping both embeddings
to the same space and training simultaneously two
models, each translating in a different direction. In
an iterative training, this pair of NMT systems is
further refined, each system providing training data
for the other one by back-translating monolingual
data (Sennrich et al., 2016).

For very closely related language pairs, translit-
eration can be used to generate training data from
a high-resourced pair to support the low-resourced
one as described in Karakanta et al. (2018).

7 Conclusion

In this paper, we focus on a setting where exist-
ing models are re-used without any preparation for
knowledge transfer of original model ahead of its
training. This is a relevant and prevailing situation
in academia due to computing restrictions, and in-
dustry, where updating existing models and scaling
to more language pairs is essential. We evaluate
and propose methods of re-using Transformer NMT
models for any “child” language pair regardless of
the original “parent” training languages and espe-
cially showing, that no modification is better than
training from scratch.

The techniques are simple, effective, and appli-
cable to models trained by others which makes it
more likely that our experimental results will be
replicated in practice. We showed that despite the
random assignment of subwords, the Transformed
Vocabulary improves the performance and shortens
the training time of the child model compared to
training from random initialization.

Furthermore, we showed that this approach is
not restricted to low-resource languages, and we
documented that the highest improvements are (ex-
pectably) due to the shared English knowledge.
Moreover, we confirmed the robustness of the
Transformer and its ability to achieve good results
in adverse conditions like very fragmented subword
units or parts of the network frozen.



The warm-start approach by Kocmi and Bojar
(2018) performs slightly better than our Trans-
formed Vocabulary, but it needs to be trained for a
significantly longer time. This leaves room for ap-
proaches that also focus on the efficiency of the
training process. We perceive our approach as
a technique for increasing the performance of a
model without an increase in training time. Thus,
re-using older models in cold-start scenario of trans-
fer learning can be used in standard NMT training
pipelines without any performance or speed losses
instead of random initialization as is the common
practice currently.
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