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Abstract

Although machine translation (MT) tra-
ditionally pursues “human-oriented” ob-
jectives, humans are not the only possi-
ble consumers of MT output. For in-
stance, when automatic translations are
used to feed downstream Natural Lan-
guage Processing (NLP) components in
cross-lingual settings, the translated texts
should ideally pursue “machine-oriented”
objectives that maximize the performance
of these components. Tebbifakhr et al.
(2019) recently proposed a reinforcement
learning approach to adapt a generic neu-
ral MT (NMT) system by exploiting the re-
ward from a downstream sentiment classi-
fier. But what if the downstream NLP tasks
to serve are more than one? How to avoid
the costs of adapting and maintaining one
dedicated NMT system for each task? We
address this problem by proposing a multi-
task approach to machine-oriented NMT
adaptation, which is capable to serve mul-
tiple downstream tasks with a single sys-
tem. Through experiments with Spanish
and Italian data covering three different
tasks, we show that our approach can out-
perform a generic NMT system, and com-
pete with single-task models in most of the
settings.

1 Introduction

Neural Machine Translation (NMT) systems are
typically developed considering humans as the
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end-users, and are hence optimized pursuing
human-oriented requirements about the output
quality. To meet these requirements, supervised
NMT models are trained to maximize the probabil-
ity of the given parallel corpora (Bahdanau et al.,
2015; Sutskever et al., 2014), which embed the ad-
equacy and fluency criteria essential for the human
comprehension of a translated sentence. In an-
other line of research, these objectives are directly
addressed in Reinforcement Learning (Ranzato et
al., 2016; Shen et al., 2016) and Bandit Learning
(Kreutzer et al., 2017; Nguyen et al., 2017), where
model optimization is driven by the human feed-
back obtained for each translation hypothesis.

However, humans are not the only possible con-
sumers of MT output. In a variety of application
scenarios, MT can in fact act as a pre-processor to
perform other natural language processing (NLP)
tasks. For instance, this is the case of text clas-
sification tasks for which, in low-resource con-
ditions, the paucity of training data provides a
strong motivation for exploiting translation-based
solutions. In tasks like sentiment classification,
hate speech detection or document classification
(the three application scenarios addressed in this
paper) a translation-based approach would allow:
i) translating the input text data from an under-
resourced language into a resource-rich target lan-
guage for which high-performance NLP compo-
nents are available, ii) run a classifier on the trans-
lated text and, finally, iii) project the results back
to the original language.

This approach represents a straightforward so-
lution in low/medium-resource1 language settings

1Jain et al. (2019) consider as “medium-resource” languages
those for which, although annotated training corpora do not
exist, off-the-shelf (MT) systems like Google Translate are
available.



where reliable NLP components for specific tasks
are not available, and represents a strong baseline
in a variety of multilingual and cross-lingual NLP
tasks (Conneau et al., 2018). However, the NMT
systems normally used are still optimized by pur-
suing human-oriented adequacy and fluency objec-
tives, which are not necessarily the optimal ones
for this pipelined solution. These models can in-
deed produce translations in which some proper-
ties of the input text are altered or even lost. For
instance, as shown in (Mohammad et al., 2016),
this happens in sentiment classification, where au-
tomatic translations can fail to properly project
core traits of the input text into the target language.
When this happens, the downstream linguistic pro-
cessor will likely produce results of lower quality.

In light of these considerations, Tebbifakhr et al.
(2019) argued that when the role of NMT is to feed
a downstream NLP component instead of a hu-
man, translating into fluent and adequate sentences
is not necessarily the main priority. Rather, if the
goal is producing translations that are “easy to pro-
cess” by the downstream component, other opti-
mization strategies might be more effective, even
if they result in low-quality output from the point
of view of human comprehension. Back to the
sentiment classification example: before meaning
and style, a “machine-oriented” translation should
prioritize the optimal projection of the sentiment
traits of the input text, which are the key clues from
the automatic sentiment classification standpoint.

To pursue machine-oriented translation objec-
tives, Tebbifakhr et al. (2019) proposed Machine-
Oriented Reinforce (MO-Reinforce), a method
based on Reinforce (Williams, 1992; Ranzato et
al., 2016). While in Reinforce the objective is to
maximize the reward given by humans to NMT
systems’ output, in MO-Reinforce the human feed-
back is replaced by the reward coming from a
downstream NLP system. Focusing on sentiment
classification, where the classifier’s output is a
probability distribution over the classes for each
input text, they define the reward as the probability
of predicting the correct class. Evaluation results
computed on Twitter data show that a downstream
English sentiment classifier performs significantly
better when it is fed with machine-oriented trans-
lations rather than the human-oriented ones pro-
duced by a general-purpose NMT system.

Despite its potential usefulness, MO-Reinforce
has a limitation that might reduce its general ap-

plicability: it requires one NMT model for each
downstream task. This represents a possible bottle-
neck in real industry scenarios, where training and
maintaining multiple task-oriented NMT systems
(one for each possible downstream task) would be
costly and time-consuming, if not unfeasible. To
overcome this limitation, in this paper we explore
the possibility to simultaneously address multiple
downstream tasks with a single NMT system. In
this direction, we propose a multi-task learning ap-
proach that has two main potential strengths. One
is the higher flexibility for industrial deployment
due to its architectural simplicity. The other is
the possibility to exploit knowledge transfer across
similar tasks (Zhang and Yang, 2017), eventually
improving the results achieved by the single-task
MO-Reinforce approach.

We test the viability of our multi-task approach
on two source languages (Spanish and Italian2)
for which data covering different tasks (sentiment
classification, hate speech detection and document
classification) have to be translated into English
and then processed by dedicated NLP components.
Our results show that translating with the pro-
posed multi-task extension yields significant gains
in classification performance with respect to both
i) a generic NMT system and ii) the original single-
task MO-Reinforce by Tebbifakhr et al. (2019).

Besides exploring for the first time a multi-task
approach to “machine-oriented” NMT, this paper
provides two technical contributions that explain
the reported performance gains, namely: i) a re-
ward normalization strategy to weigh the impor-
tance of each sample in the course of training,
and ii) the application of dropout while sampling
the translation candidates, which makes the model
more reactive and avoids local optima. On the ex-
perimental side, another contribution of this work
is the first evaluation on multi-class classification
data (i.e., those used for the document classifica-
tion task), a more challenging scenario compared
to the binary task considered by Tebbifakhr et al.
(2019).

2Although one of the motivations for machine-oriented trans-
lation is to support NLP in under-resourced settings, the cho-
sen source languages do not fall in this category. The choice
is motivated by the fact that they provide us with all the nec-
essary infrastructure (e.g. test data) to perform a sound com-
parative evaluation. Here, indeed, we focus on testing the
general applicability of our approach, while its evaluation in
real under-resourced settings (conditioned to the availability
of benchmarks for multiple tasks) is left for future work.



2 Background

2.1 Human-oriented NMT
Formally, in MT, the probability of generating the
translation y with length of N given a source sen-
tence x is computed as follows:

P (y|x) =
N∏
i=1

pθ(yi|y<i,x) (1)

where pθ is a conditional probability defined by
sequence-to-sequence NMT models (Bahdanau et
al., 2015; Sutskever et al., 2014; Vaswani et al.,
2017). In these models, an encoder first encodes
the source sentence and then, at each time step,
a decoder outputs the probability distribution over
the vocabulary conditioned on the encoded source
sentence and the translation prefix y<i. In su-
pervised NMT, the parameters of the model θ are
trained by maximizing the log-likelihood of the
given parallel corpus {xs,ys}Ss=1:

L =
S∑
s=1

logP (ys|xs)

=
S∑
s=1

Ns∑
i=1

log pθ(y
s
i |ys<i,x)

(2)

By maximizing this objective, the model indi-
rectly pursues the human-oriented objectives of
adequacy and fluency embedded in the training
parallel corpora.

In addition to normal NMT training, these ob-
jectives can be directly addressed using reinforce-
ment learning methods such as Reinforce (Ranzato
et al., 2016). This method maximizes the expected
reward from the end-user:

L =
S∑
s=1

Eŷ∼P (.|xs)∆(ŷ)

=
S∑
s=1

∑
ŷ∈Y

P (ŷ|xs)∆(ŷ)

(3)

where ∆(ŷ) is the reward of the sampled transla-
tion candidate ŷ, and Y is the set of all the possible
translation candidates. Since the size of this set Y
is exponentially large, Equation 3 is estimated by
sampling one translation candidate out of this set
using multinomial sampling or beam search:

L̂ =
S∑
s=1

P (ŷ|xs)∆(ŷ), ŷ ∼ P (.|xs) (4)

Since collecting human rewards is costly, the
process can be simulated by comparing the sam-
pled translation candidates with the corresponding
reference translations using automatic evaluation
metrics like BLUE (Papineni et al., 2002).

The two learning strategies (supervised and re-
inforcement) have two main commonalities: i)
the learning objectives are human-oriented, and ii)
they both need parallel data, respectively for maxi-
mizing the probability of the translation pair in su-
pervised learning and for simulating the human re-
ward in reinforcement learning.

2.2 Machine-oriented NMT
To pursue machine-oriented objectives and to by-
pass the need for parallel corpora, in the MO-
Reinforce algorithm proposed by (Tebbifakhr et
al., 2019), the human reward is replaced by the re-
ward from a downstream classifier (in that case,
a polarity detector predicting the positive/negative
sentiment of a translated sentence). This reward
is defined as the probability of labeling the trans-
lated text with the correct class and it can be eas-
ily computed since the output of the downstream
classifier is a probability distribution over the pos-
sible classes. Therefore, given a small amount of
labeled data in the source language3 {xs, ls}Ss=1,
in which l is the label of the corresponding source
text x, Equation 4 can be redefined as follows:

L̂ =
S∑
s=1

P (ŷ|xs)∆(ŷ, ls), ŷ ∼ P (.|xs) (5)

where ∆(ŷ, ls) is the probability that the down-
stream classifier assigns ls to a sampled candidate.

In order to increase the contribution of the re-
ward and to sample “useful” translation candi-
dates, the proposed sampling strategy randomly
extracts K candidates and eventually chooses the
one with the highest reward to update the model.
This strategy results in the selection of candidates
that influence the initial model towards translations
that maximize the performance of the downstream
processor. For instance, in the sentiment classifica-
tion scenario, these are NMT outputs that preserve,
or even emphasize, relevant aspects like the proper
handling of sentiment-bearing terms. Although
they are poor in terms of the human-oriented no-
tion of quality (as shown by BLEU scores close
3In (Tebbifakhr et al., 2019), MO-Reinforce is shown to re-
sult in better classification performance than the original Re-
inforce (Ranzato et al., 2016) with few hundred labeled in-
stances (∼ 500).



to zero when compared against human references),
their high sentiment polarization considerably sim-
plifies the polarity labelling task.

Despite the significant gains compared to the
classification performance achieved by translating
with a generic NMT system, a limitation of MO-
Reinforce lies in its applicability to one task at a
time. Serving multiple tasks would only be pos-
sible by training multiple NMT models (one for
each possible downstream classifier), which is a
sub-optimal solution for the actual deployment of
the approach in real industrial settings. To over-
come this issue, in the next section we propose an
extension aimed at simultaneously serving multi-
ple classifiers with a single NMT system. Later, in
the experimental part of the paper (sections 4 and
5), we will evaluate it in a multi-task scenario in-
volving both binary and multi-class tasks.

3 Multi-task Machine-oriented NMT

Our multi-task extensions of MO-Reinforce in-
clude: i) prepending task-specific tokens to the in-
put for managing multiple domains and comput-
ing normalized rewards to avoid under/over-fitting
(Section 3.1), and ii) adding randomness to the
sampling process to push for higher exploration of
the probability space (Section 3.2).

3.1 Normalized Reward

To serve multiple downstream classifiers with a
single NMT system, the model has to be trained
on a mixture of the labeled datasets available for
the different tasks. To define the target task, we
prepend a task-specific token to each input sam-
ple within the corresponding dataset. In this way,
the NMT model is informed about the target down-
stream application for which the input text has to
be translated. This idea is drawn from multilingual
NMT, in which an effective solution is to prepend
to the input sentences a token defining the desired
target language (Johnson et al., 2017).

To avoid under/over-fitting when training the
NMT model on mixed datasets that can have dif-
ferent sizes, we need to schedule the sampling
from these datasets. In multilingual NMT, two
fixed sampling schedules have been proposed,
namely: i) proportionally with respect to the
dataset size (Luong et al., 2015), or ii) uniformly
from each dataset (Dong et al., 2015). However,
these fixed scheduling approaches are not optimal
solutions. The first one gives higher importance to

tasks with larger datasets, so that those with less
training material might remain under-fitted. The
second one gives equal importance to all the tasks,
which implies that larger datasets for some tasks
will not be fully exploited, reducing systems’ per-
formance on those tasks.

To overcome these limitations, adaptive
scheduling strategies can be adopted to update the
importance of each task in the course of training.
The idea is that, when the performance of the
model is low on one task, higher importance is
given to that task. This can be done by keeping
the schedule fixed and scaling the gradients
(Chen et al., 2017), or directly by changing the
sampling weights (Jean et al., 2019). In the first
approach by Chen et al. (2017), the adaptation
is done based on the magnitude of the gradients.
However, the computed gradients loosely correlate
with the performance of the model and do not
directly measure model’s performance for the
corresponding task. The second one (Jean et al.,
2019), requires knowing the performance of the
single-task models for each task on the develop-
ment set before starting the training. Then, after
each epoch, the results of the multi-task model
on the same development set are compared with
those achieved by the single-task models, and the
weights get updated accordingly. As a direct in-
dicator, models’ performance on the development
set represents a more reliable alternative compared
to exploiting the indirect information provided
by gradients’ magnitude. However, it is more
computationally intensive and it assumes knowing
in advance the performance of the single-task
models, which is not always available.

We hence opt for the idea of scaling the gradi-
ents while keeping the schedule fixed and uniform
across tasks. We make the adaptation based on the
reward from the downstream task, which reflects
the performance of the model for the correspond-
ing input sample. Equation 6 shows the stochastic
gradient of the MO-Reinforce objective function.

∇L̂ =

S∑
s=1

∆(ŷ, ls)∇ logP (ŷ|xs) (6)

In this formulation, since the magnitude of the
reward scales the computed gradient for each sam-
ple, those samples with higher rewards will also
have higher influence on the model adaptation pro-
cess. This can have a negative impact when the
samples come from challenging tasks or even from



challenging classes within a specific task. These
samples, in fact, will likely get lower reward leav-
ing the corresponding tasks/classes under-fitted.

To avoid this problem and to boost performance
when dealing with challenging samples, we pro-
pose a reward normalization step, which extends
MO-Reinforce with the possibility to weight the
importance of each sample during training. The
idea is that the average reward for the K transla-
tion candidates sampled by MO-Reinforce in order
to chose the most useful one (see Section 2.2) can
be considered as an indicator of the level of dif-
ficulty of each task. Therefore, to normalize the
reward, this average value can be subtracted from
the original reward as follows:

∆̂(ŷ, l) = ∆(ŷ, l)−
∑K

k=1 ∆(ŷk, l)

K
+ α (7)

whereK is the number of sampled translation can-
didates. We add a constant value α to prevent
zero reward for the cases in which all the rewards
have the same value. This normalization reduces
more the reward of easy samples, whose average is
high, and subsequently results in giving more im-
portance to challenging samples with low reward.

3.2 Noisy Sampling
Two sampling strategies are used for sampling
the translation candidates in reinforcement learn-
ing. The first one is beam search (Sutskever et
al., 2014). It is a heuristic search, which main-
tains a pool of highest probability translation pre-
fixes with size B. At each step, the prefixes in the
pool are expanded by B highest probability words
from the model’s distribution output. Then, the re-
sulting B × B hypotheses are pruned by keeping
B-highest probability prefixes. The search contin-
ues until all the prefixes in the pool reach the EOS
token. The second one is multinomial sampling
(Ranzato et al., 2016) where, at each time step, a
word is generated by sampling from the model’s
distribution output. The generation is terminated
when the EOS token is generated.

For a given application, the choice between the
two sampling strategies depends on the known
trade-off between exploration and exploitation in
reinforcement learning. Indeed, while beam search
exploits more the model’s knowledge, multinomial
sampling is more oriented to exploring the proba-
bility search space. In light of this difference, in
MO-Reinforce the sampling is done using multi-
nomial sampling, which achieves better results in

NMT (Wu et al., 2018). This is needed, since
the parameters of the model are initialized by a
generic NMT system, which is trained on paral-
lel data pursuing human-oriented objectives. Push-
ing for the exploration of the probability space in-
stead of exploiting the original model’s knowledge
will promote the generation of more diverse can-
didates and eventually increase the chance to in-
fluence system’s behaviour towards our machine-
oriented objectives.

Although for these reasons multinomial sam-
pling represents a better choice compared to beam
search, in MO-Reinforce the exploration of the
probability space does not always result in a boost
of candidates’ diversity. For instance, the higher
randomness in generating the translation candi-
dates might not suffice when the model’s probabil-
ity distribution is very peaked (i.e. when, at a given
time step, the number of plausible options for the
next word is very small). In this case, multinomial
sampling will likely generate the same candidate
at different iterations on the data. If its reward is
the highest one among the K samples, this candi-
date will be chosen and the model will be updated
to increase the candidate’s probability. The result
will be an even more peaked distribution that, in
turn, will increase the chance of making the model
stuck in a local optimum by repeatedly generating
the same candidate.

To avoid these local optima and make MO-
Reinforce more reactive to handle multi-task data,
our last extension aims to perturb the model’s
probability distribution. We do this by enabling
dropout (Srivastava et al., 2014) while generating
the candidates, which is usually disabled while
generating the translation outputs. Dropout adds
permutation in sampling, which helps the model to
generate different translation candidates at differ-
ent passes over the data even in the case of highly
peaked probability distributions.

4 Experiments

Our multi-task extension of MO-Reinforce is eval-
uated on two source languages: Spanish and Ital-
ian. For Spanish, we consider the downstream
tasks of document classification and hate speech
detection. For Italian, we select document clas-
sification and sentiment analysis. The evaluation
is done by feeding dedicated English classifiers
(one for each downstream task) with translations
produced by different NMT models, namely: i)



Spanish Tasks
MLDoc Hate Speech

CCAT ECAT GCAT MCAT Non-Hateful Hateful

Train 100 100 100 100 400 400
Developement 314 201 208 277 500 500
Test 1246 731 794 1229 278 222

Italian Tasks
MLDoc Sentiment

CCAT ECAT GCAT MCAT Negative Positive

Train 100 100 100 100 2289 1450
Developement 239 248 238 275 254 161
Test 963 1066 976 995 733 316

Table 1: Statistics of datasets used for the Spanish and Italian tasks.

Europarl JRC Wikipedia ECB TED KDE News11 News Total

Es-En 2M 0.8M 1.8M 0.1M 0.2M 0.2M 0.3M 0.2M 5.6M
It-En 2M 0.8M 1M 0.2M 0.2M 0.3M 0.04M 0.02M 4.56M

Table 2: Statistics of the parallel corpora used for training the generic NMT systems

a general-purpose NMT system, ii) the original
single-task MO-Reinforce, and iii) different vari-
ants of our multi-task extension. The goal is to
maximize the classification performance on each
downstream task. As another term of comparison
for the three translation-based solutions, we con-
sider the results obtained by directly processing the
input sentences with task-specific Spanish and Ital-
ian classifiers trained on the same small datasets
used to adapt the general-purpose NMT system.

In line with (Tebbifakhr et al., 2019), the
multi-task approach is expected to outperform the
generic (human-oriented) NMT system, as well
as the task/language-specific classifiers trained on
few data points. Ideally, thanks to the solutions
proposed in Section 3, it should also compete with
the single-task (machine-oriented) models. This
would indicate the viability of a single-model ap-
proach to simultaneously address multiple tasks.

In the following, we describe the task-specific
data used for model adaptation and evaluation, as
well as the parallel corpora used for training the
generic NMT system. Their statistics are respec-
tively reported in Tables 1 and 2.

Document Classification. For this multi-class
labelling task, we use the MLDoc corpora
(Schwenk and Li, 2018), which cover 8 languages,
including English, Spanish and Italian. They com-
prise news stories labeled with 4 different cate-
gories: CCAT (Corporate/Industrial), ECAT (Eco-
nomics), GCAT (Government/Social), and MCAT
(Markets). For each language, the training, de-

velopment and test sets respectively contain 10K,
1K, and 4K documents uniformly distributed into
the 4 classes. Following (Bell, 1991), for train-
ing and evaluation we only consider the first sen-
tence of each document, which usually provides
enough information about the general content of
the document. We use the whole English training
set to build our downstream classifiers. To simu-
late an under-resourced setting, we randomly sam-
ple 100 documents for each class from the Spanish
and Italian training sets. We use these samples to
adapt the generic NMT system for the downstream
task, while for development and test we use the
whole sets.

Hate Speech Detection. For this binary task, we
use the English and Spanish datasets published for
the multilingual hate speech detection shared task
at SemEval 2019 (Basile et al., 2019). We train the
downstream classifier on the whole English train-
ing set, including 3,783 hateful and 5,217 non-
hateful Twitter messages. We randomly sample
400 tweets for each class from the Spanish training
set in order to simulate the under-resourced setting.
Since the test set is not publicly available, we use
the development set as final evaluation benchmark,
and we sample 500 tweets for each class from the
rest of the training set as the development set.

Sentiment Classification. For this binary task,
we use a collection of annotated tweets released
for the Italian sentiment analysis task at Evalita
2016 (Barbieri et al., 2016). After filtering out the
subjective tweets and the ones with mixed polarity,



Models Spanish-English Italian-English
MLDoc Hate Speech MLDoc Sentiment

Generic 82.58 54.49 75.43 51.89
Source 84.86 75.29 73.24 64.06
Single-task MO-Reinforce 88.36 64.24 76.86 70.27

Multi-task MO-Reinforce (proportional sampling) 86.18 62.93 10.83 70.11
Multi-task MO-Reinforce (uniform sampling) 86.45 55.07 68.26 68.01

Multi-task MO-Reinforce (normalization) 86.98 66.52 75.11 66.70
Multi-task MO-Reinforce (dropout) 87.73 77.56 80.31 68.98
Multi-task MO-Reinforce (dropout & normalization) 90.13 77.08 80.90 66.73

Table 3: Classification results (F1) obtained by: i) translating with the Generic NMT system, ii) directly processing the
untranslated data (Source), iii) translating with separate Single-task MO-Rinforce models, iv) one Multi-task MO-Reinforce
model with different sampling strategies, v) one Multi-task MO-Reinforce model with reward normalization and noisy sampling.

we train the downstream system using a balanced
set of 1.6M negative and positive tweets (Go et al.,
2009).

Generic NMT systems We train the generic
NMT system using the parallel corpora reported
in Table 2. After filtering out long and imbalanced
pairs, we encode the corpora using 32K byte-pair
codes (Sennrich et al., 2016). Our NMT model
uses Transformer with parameters set as in the
original paper (Vaswani et al., 2017). In all the
settings, we start the training by initializing the
NMT model with the trained generic NMT sys-
tems. Then, we continue the training for 50 epochs
and choose the best performing checkpoint based
on the average F1 score measured on the develop-
ment set of each task. We setK (i.e. the number of
sampled translation candidates at each time step)
to 5, and used the development set to evaluate dif-
ferent values of α (i.e. the constant value added to
prevent zero rewards – see Section 3.1). The best-
performing value of 0.1 was then used in all the
experiments. For developing the classifiers (both
the downstream English ones and the language-
specific ones used as baseline), we fine-tune the
multilingual BERT (Devlin et al., 2019).

5 Results and Discussion

Our experimental results are shown in Table 3,
which reports the classification performance (F1)
obtained on each downstream task by:

• Feeding the English classifiers with trans-
lations from different NMT models (i.e.
Generic, Single-task MO-Reinforce and dif-
ferent variants of Multi-task MO-reinforce);

• Running language-specific classifiers on the
original untranslated data (Source).

The F1 scores obtained by the Generic NMT
systems in document classification (MLDoc) show
that the simplest translation-based approach pro-
duces competitive results compared to those
achieved by language-specific classifiers trained
on small in-domain data. The situation is different
for tasks whose data differ significantly from those
used to train the general-purpose system. On the
user-generated content used for hate speech detec-
tion and sentiment classification (i.e. Twitter data),
the Generic results are indeed poor. This shows
that NMT models trained by only pursuing human-
oriented criteria might not fit to target downstream
tasks, for which machine-oriented adaptation be-
comes necessary.

Machine-oriented adaptation with single-task
MO-Reinforce yields the expected benefits, with
improvements (+3.25 F1 points for document clas-
sification, +18.38 for sentiment classification in
Italian) that allow to outperform the language-
specific (Source) classifiers in three tasks out of
four. These gains confirm and validate on multiple
tasks (including multi-class classification) the find-
ings of Tebbifakhr et al. (2019), showing that MO-
Reinforce can leverage the feedback from external
linguistic processors to adapt the NMT model to-
wards translations that maximize the performance
in downstream applications.

The middle part of Table 3 shows the first re-
sults obtained by our multi-task adaptation of MO-
Reinforce. This is done by prepending the task-
specific tokens and comparing the two fixed sam-
pling schedules (proportional to datasets’ size and
uniform). As expected (see Section 3.1), when
sampling proportionally, the task with less train-
ing data (MLDoc) starves in training and remains
under-fitted. This is particularly evident for Italian,
where the document classification dataset is ten



Models Spanish-English Italian-English
MLDoc Hate Speech MLDoc Sentiment

Single-Task MO-Reinforce 88.36 64.24 76.86 70.27

Single-Task MO-Reinforce (dropout) 89.91 35.73 81.87 65.67
Single-Task MO-Reinforce (dropout & normalization) 88.55 78.33 81.22 70.97

Table 4: Classification results (F1) obtained by translating with the original single-task MO-Reinforce and two variants of
multi-task MO-Reinforce (with noisy sampling – dropout – alone and combined with reward normalization).

times smaller than the sentiment analysis one, and
performance is particularly low (10.83). On Span-
ish, where the hate-speech dataset is only twice as
big as the document classification one, the prob-
lem exists but it is less evident. Although uni-
form sampling helps the task with less training
data (MLDoc) to achieve better performance, it
harms those with more data, which remain under-
fitted (lower performance than proportional sam-
pling). Analysing the performance of the multitask
and single task variants of MO-Reinforce, we no-
tice that, although the former still outperforms the
Generic NMT system in three tasks out of 4, its
results are worse compared to the single-task MO-
Reinforce. For the task with the most unbalanced
data (MLDoc Italian), uniform sampling helps to
increase the performance, but it is not sufficient
to reach the scores achieved by Generic NMT.
On hate speech data, the results of the language-
specific classifiers (Source) are still the highest
ones. The results reported so far would not allow
a user to replace the single task systems with the
multitask one.

The bottom part of Table 3 reports the classifica-
tion results obtained by MO-Reinforce with reward
normalization and noisy sampling (both separately
and together). As it can be seen, reward normaliza-
tion is beneficial for both the Spanish tasks, with
a larger performance gain on hate speech with re-
spect to both the sampling strategies (+3.59 and
+11.45 F1 points). For Italian, reward normaliza-
tion helps in the MLDoc task (+6.85 over the best
sampling strategy), but it results in a performance
drop in sentiment classification (-1.31). In gen-
eral, reward normalization shows to be useful for
tasks that tend to remain under-fitted with propor-
tional or uniform sampling. Concerning the senti-
ment analysis task, our intuition is that, in presence
of a large quantity of task-specific data in the tar-
get language, both the English classifier and the
computed rewards are reliable enough. Scaling
the rewards with their average value (see Eq. 7)
reduces the learning capability of the NMT sys-

tem, resulting in an under-fitted model. Although
adding reward normalization reduces the gap in
performance with respect to the single-task MO-
Reinforce and the Source classifiers, it is not yet
sufficient to replace them.

The results are significantly better with the noisy
sampling approach discussed in Section 3.2. In
both the languages and in all the tasks, the reported
F1 scores approach those obtained by the single-
task variant of MO-Reinforce (which in two cases
is even outperformed) and always improve over the
language-specific Source classifiers. This confirms
that enabling dropout while generating the transla-
tion candidates avoids the model to get stuck in
local optima, and promotes diversity in producing
candidates that eventually receive higher rewards.

Combined, the two contributions of this paper
(reward normalization and noisy sampling) yield
mixed outcomes. For Spanish, we observe a fur-
ther improvement compared to noisy sampling in
document classification (+2.40), which comes at
the cost of a small drop in hate speech detection
(-0.48). Also for Italian there is an improvement
over noisy sampling alone in document classifica-
tion (+0.59), but a larger drop in sentiment classi-
fication performance (-2.25). However, it’s worth
remarking that: i) the size of the Italian sentiment
analysis dataset is almost 10 times larger than the
size of the document classification dataset, and ii)
the data used to train the English classifiers are
even more unbalanced. Being able to harmonize
the results of the two task hence becomes quite
difficult. Nevertheless, combining reward normal-
ization and noisy sampling has a general positive
effect, which allows the multi-task MO-Reinforce
system to approach and, in some tasks, even to out-
perform the single task models.

In our final analysis, we investigate the effect
of introducing dropout and reward normalization
when MO-Reinforce is used in the single-task sce-
nario. As shown in Table 4, enabling dropout im-
proves the document classification results in both
the languages. The reported scores show that the
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Figure 1: Rewards distribution for the hate speech detection
training set translated with the Generic NMT system.

added noise introduced by dropout helps the model
to explore more the probability space and avoid lo-
cal optima, even when dealing with a single task.
However, for hate speech detection in Spanish and
sentiment analysis in Italian, this exploration of
the probability space results in lower performance
compared to the original MO-Reinforce. To under-
stand the reasons of this drop, Figure 1 shows the
distribution of the rewards obtained in hate speech
detection when translating the training set with the
generic NMT system. This distribution shows that
the downstream classifier is very biased toward
the non-hateful class (right side of Figure 1), with
most of the hateful samples obtaining zero reward
(left side). While the model is exploring the proba-
bility space, this extreme imbalance in the rewards
does not allow the hateful samples to get a non-
zero reward, and this drastically scales down their
gradients preventing the NMT system to actually
learn from these samples. Eventually, this results
in a “catastrophic forgetting”, where the NMT sys-
tem learns only from one class and totally forgets
the other. Whatever it will receive in input, this
system will generate a translation with no hate nu-
ances, which will be classified as non-hateful by
the downstream classifier. The very low F1 (35.73)
is the result of this process.

Adding reward normalization minimizes the
“catastrophic forgetting” effect by keeping the
magnitude of the rewards balanced across the
classes. In terms of performance, hate speech
detection and sentiment analysis benefit of it by
achieving higher results compared to the original
MO-Reinforce (respectively, +14.09 and +0.77).
On both the languages, the document classifi-

cation results slightly drop compared with MO-
Reinforce with dropout, but they still outperform
those achieved by translating with the original ap-
proach by (Tebbifakhr et al., 2019).

Looking at the output of the system, we no-
ticed that the translations are shorter and are not
adequate compared to the output of the Generic
system. For instance, in document classification,
the samples belonging to the Corporate class are
usually translated to “The company.”, or the posi-
tive samples in sentiment analysis are translated to
“I’m very happy.”, which are easier to be classified
by the downstream classifiers.

6 Conclusion

We proposed an extension of the MO-Reinforce al-
gorithm, targeting “machine-oriented” NMT adap-
tation in a multi-task scenario. In this scenario,
different NLP components are fed with transla-
tions produced by a single NMT system, which is
adapted to generate output that is “easy to process”
by the downstream processing tools. To close the
performance gap between the single and the multi-
task variants of MO-Reinforce, we enhanced the
latter with reward normalization and noisy sam-
pling strategies. Our experiments show that, with
these two features, the multi-task MO-Reinforce
approach achieves significant gains in performance
that make it competitive with the single-task solu-
tion (though, having one single model to build and
maintain, at considerably lower deployment costs).
Furthermore, we show that reward normalization
and noisy sampling can also help in the single-task
setting, where our approach outperforms the origi-
nal MO-Reinforce in four tasks.
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