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Abstract

Unsupervised Machine Translation has
been advancing our ability to translate
without parallel data, but state-of-the-art
methods assume an abundance of mono-
lingual data. This paper investigates the
scenario where monolingual data is lim-
ited as well, finding that current unsuper-
vised methods suffer in performance un-
der this stricter setting. We find that the
performance loss originates from the poor
quality of the pretrained monolingual em-
beddings, and we propose using linguis-
tic information in the embedding train-
ing scheme. To support this, we look at
two linguistic features that may help im-
prove alignment quality: dependency in-
formation and sub-word information. Us-
ing dependency-based embeddings results
in a complementary word representation
which offers a boost in performance of
around 1.5 BLEU points compared to stan-
dard WORD2VEC when monolingual data
is limited to 1 million sentences per lan-
guage. We also find that the inclusion of
sub-word information is crucial to improv-
ing the quality of the embeddings.

1 Introduction

Machine Translation (MT) is a rapidly advancing
field of Natural Language Processing, where there
is an ever-increasing number of claims of MT sys-
tems reaching human parity (Hassan et al., 2018;
Barrault et al., 2019). However, most of the fo-
cus has been on MT systems under the assumption
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that there is a large amount of parallel data avail-
able, which is only the case for a select number of
language pairs.

Recently, there have been approaches that do
away with this assumption, requiring only mono-
lingual data, with the first methods based solely
around neural MT (NMT), using aligned pre-
trained embeddings to bootstrap the translation
process, and refining the translation with a neural
model via denoising and back-translation (Artetxe
et al., 2017b; Lample et al., 2017). More re-
cently, statistical MT (SMT) approaches as well
as hybrid approaches, combining SMT and NMT,
have proven more successful (Lample et al., 2018;
Artetxe et al., 2019).

While the unsupervised approaches so far have
done away with the assumption of parallel data,
they still assume an abundance of monolingual
data for the two languages, typically assuming
at least 10 million sentences per language. This
amount of data is not available for every language,
notably languages without much of a digital pres-
ence. For example, Fulah is a language spoken in
West and Central Africa by over 20 million peo-
ple, however there is a scarce amount of data freely
available online. This motivates a new paradigm
in unsupervised MT: Low-Resource Unsupervised
MT (LRUMT).

In this paper, we investigate the reasons why
current unsupervised NMT methods fail in the
low-resource setting, addressing the source of the
issue, and we propose a potential solution to make
unsupervised NMT more robust to the lack of
availability of monolingual data.

We start by giving a brief overview of the work
so far in unsupervised MT in Section 2, estab-
lishing the general pipeline used to train an unsu-
pervised system. We then identify the source of



the performance problem in LRUMT in Section 3,
and propose potential improvements in Section 4.
Lastly, in Section 5, we present our conclusions
and lines for future work.

2 An Unsupervised MT Overview

The typical unsupervised NMT pipeline can be
broken down into 3 sequential steps:

1. Train monolingual embeddings for each lan-
guage

2. Align embeddings with a mapping algorithm

3. Train NMT system, initialized with aligned
embeddings

In the first step, monolingual embeddings (which
we will also refer to as pretrained embed-
dings) are most often trained in the style of
WORD2VEC’s skip-gram algorithm (Mikolov et
al., 2013). To incorporate sub-word information,
Lample et al. (2018) use FASTTEXT (Bojanowski
et al., 2017), which formulates a word’s embed-
ding as the sum of its character n-gram embed-
dings. Artetxe (2019) uses a WORD2VEC exten-
sion PHRASE2VEC (Artetxe et al., 2018b), which
learns embeddings of word n-grams up to trigrams,
effectively creating embeddings for phrases.

The second step involves the alignment of the
two monolingual embeddings such that the em-
beddings of words with identical or similar mean-
ing across language appear close in the shared em-
bedding space. Artetxe et al. achieve this using
VECMAP (Artetxe et al., 2018a), which learns a
linear transformation between the two embeddings
into a shared space. If there is a large shared vo-
cabulary between the two languages, it is also pos-
sible to concatenate the monolingual corpora and
train a single embedding for both languages, ef-
fectively completing steps 1 and 2 simultaneously
(Lample et al., 2018).

The third and final step is to train the NMT
model. The architecture can be any encoder-
decoder model, with the condition that it can trans-
late in both directions. Models typically share an
encoder and decoder for both languages, with a
language token provided only to the decoder. Two
objectives are used to train the model: denois-
ing and on-the-fly back-translation. Denoising is
monolingual; the model is given an altered sen-
tence (e.g. with word order shuffling or word re-
moval) and trained to reconstruct the original, un-

altered sentence. On-the-fly back-translation in-
volves first translating a sentence from the source
language (ssrc) to the target language (s′tgt). This
creates a pseudo-parallel sentence pair (s′tgt, ssrc),
so the output s′tgt is translated back to the source
language (creating s′′src), and the model is trained
to reconstruct the original source sentence, mini-
mizing the difference between s′′src and ssrc. De-
noising and back-translation are carried out alter-
nately during training.

The unsupervised SMT approach is fairly simi-
lar, with a replacement of step 3 (or in the hybrid
approach, a step added between steps 2 and 3). In
Artetxe et al. (2019) for example, a phrase-based
SMT model is built by constructing a phrase table
that is initialized using the aligned cross-lingual
phrase embeddings, and tuning it using an unsu-
pervised variant of the Minimum Error Rate Train-
ing (Och, 2003) method. For the hybrid model, the
SMT system can then create pseudo-parallel data
used to train the NMT model, alongside denois-
ing and back-translation. In the remainder of this
paper, we focus on the purely NMT approach to
unsupervised MT.

3 The Role of Pretrained Embeddings in
Unsupervised MT

With the pipeline established, we now turn to the
LRUMT setting. In LRUMT, the existing un-
supervised approaches fail somewhere along the
pipeline, but simply measuring MT performance
does not make it clear where this failure occurs.
We speculate that the failure is relative to the qual-
ity of the pretrained word embeddings, and subse-
quent quality of the cross-lingual alignment. We
test this hypothesis in this section.

The aligned pretrained embeddings of an un-
supervised NMT system are what jump-starts the
process of translation. From aligned pretrained
embeddings alone, we can effectively do word-for-
word translation, which is commonly measured
using Bilingual Lexicon Induction (BLI). With-
out well-aligned pretrained embeddings, denoising
and back-translation alone are not enough to pro-
duce meaningful translations.

For our following experiments1, we train on En-
glish and German sentences from the WMT Mono-
lingual News Crawl from years 2007 to 2017,
use newstest 2015 for development and newstest

1Our code for running our experiments can be found at:
https://github.com/Leukas/LRUMT



Figure 1: English→German BLEU scores of unsupervised
NMT systems where the amount of training data used for the
pre-trained embedding training and the amount used for the
NMT model training is varied.

2016 for testing, following Lample et al. (2018).
The training data is filtered such that sentences
that contain between 3-80 words are kept. We
then truncate the corpora to sizes ranging from
0.1 to 10 million sentences per language, speci-
fied as necessary. We used UDPIPE (Straka and
Straková, 2017) for tokenization2, MOSES (Koehn
et al., 2007) for truecasing, and we apply 60 thou-
sand BPE joins (following Lample et al. (2018))
across both corpora using fastBPE.3,4 We train the
word embeddings using the WORD2VEC skipgram
model, with the same hyperparameters as used in
Artetxe et al. (2017b), except using an embedding
dimension size of 512.5 For embedding align-
ment, we use the completely unsupervised version
of VECMAP with default parameters. We then
train our unsupervised NMT models using Lam-
ple et al. (2018)’s implementation, using the de-
fault parameters, with the exception of 10 back-
translation processors rather than 30 due to hard-
ware limitations. We use the early stopping crite-
rion from Lample et al. (2018).6

To demonstrate the importance of a large
amount of training data, we vary the amount of
monolingual data used for training the embeddings
as well as the amount used for training the NMT

2We use UDPIPE’s tokenizer over the commonly used
MOSES as UDPIPE learns tokenization from gold-standard
labels based on the UD tokenizing standard, allowing for
higher-quality dependency parsing (which will be used in
Section 4).
3https://github.com/glample/fastBPE
4BPE is not applied when measuring BLI or word similarity.
5We use a dimension size of 512 to match the embedding size
used in Lample et al. (2018)’s Transformer model.
6We also limit training to 24 hours. On the GPU we used to
train our experiments, an Nvidia V100, limiting the training
time only affected systems which used 10 million sentences
per language.

Figure 2: BLI of standard WORD2VEC using various amounts
of training data, measured with precision at 1, 5, and 10.

system in Figure 1.7 Even if we then use 10 million
sentences per language to train the NMT system,
using only 100 thousand sentences per language to
train the embeddings results in a BLEU score be-
low 1. Conversely, the NMT system can achieve a
BLEU score of around 6 using embeddings trained
on 10 million sentences, even when the NMT sys-
tem is only trained on 100 thousand sentences per
language.

We also provide Figure 2, showing the
BLI scores of the aligned embeddings (using
the English→German test set from Artetxe et
al. (2017a)8) as we vary the amount of training data
used for the embeddings. We can see that the BLI
scores decrease dramatically as the amount of sen-
tences decreases, matching the trend of the results
from Figure 1. Although BLI has been criticized
for not always correlating with downstream tasks
(Glavas et al., 2019), in this case, poor alignment
corresponds to poor MT performance.

In these experiments, we use VECMAP for
aligning embeddings. VECMAP’s algorithm be-
gins by initializing a bilingual dictionary, which
uses a word’s relations to the other words in the
same language, with the idea being that “apple”
would be close to “pear” but far from “motorcy-
cle” in every language, for example. However, if
the quality of embeddings is poor, the random ini-
tialization of embeddings has a greater dampening
effect. Using embedding similarity tasks (shown
in Table 1), we find this to be the case.

We measure the quality of the monolingual em-
beddings using 3 similarity datasets for English:

7Although we only show results for an unsupervised NMT
system, the state-of-the-art SMT systems also require initial-
ization from pretrained embeddings. Therefore, we expect the
same trend would appear.
8We modify the test set by truecasing it in order to match our
models.



Word Similarity
Amount of Data (M)
0.1 1 10

EN - MEN 0.138 0.421 0.705
EN - WS353 0.018 0.461 0.628
EN - SIMLEX 0.011 0.232 0.300
DE - SIMLEX DE 0.017 0.051 0.293

Table 1: The Spearman correlation of the similarity of word
pairs (measured by cosine similarity) and human evalua-
tion. Evaluation done using: https://github.com/
kudkudak/word-embeddings-benchmarks

MEN (Bruni et al., 2014), WS353 (Agirre et al.,
2009), and SIMLEX999 (Hill et al., 2015). We
also use Multilingual SIMLEX999 (Leviant and
Reichart, 2015) for German and denote this as
SIMLEX_DE.

As we can see in Table 1, the correlation to hu-
man judgment on similarity tasks decreases dra-
matically as the amount of data used to train the
models decreases. The poor correlation when data
is limited explains VECMAP’s poor alignment, as
it relies on word similarity being relatively equiva-
lent across languages for its initialization step.

4 Getting More out of Scarce Data

With the source of the problem established as the
drop in quality of embeddings, we ask ourselves:
how can we prevent this drop in a low-resource
scenario, where considerably less monolingual
data is available? We argue that the conventional
word embedding methods (i.e. WORD2VEC) do
not use all of the information present within sen-
tences during the training process.

Word embedding algorithms typically define a
context-target pair as a word and its neighbor-
ing words in a sentence, respectively. While this
method works with a large amount of data avail-
able, it relies on the fact that a word is seen in sev-
eral different contexts in order to be represented
in the embedding space with respect to its mean-
ing. When data is limited, the contexts contain too
much variability to allow for a meaningful repre-
sentation to be learned.

To test this, we use an embedding strategy
that has a different definition of the context:
dependency-based word embeddings (Levy and
Goldberg, 2014). These embeddings model the
syntactic similarity between words rather than se-
mantic similarity, providing an embedding repre-
sentation complementary to standard embeddings.

This section presents our findings using

Figure 3: Example of a dependency-parsed sentence.

dependency-based embeddings (4.1). We also
consider the effect of using sub-word information
via FASTTEXT (4.2). With the previous two
approaches, we find that ensembling models
can be useful, and investigate this further (4.3).
Finally, we vary context window size and report
on its effect (4.4).

4.1 Dependency-Based Embeddings

Dependency parsing offers a formalization of the
grammatical relationship between the words in a
sentence. For each sentence, a dependency parser
will create a tree in which words are connected if
they have a dependency relation between them. As
shown in Figure 3, the nsubj relation denotes the
subject-to-verb relation between she and owns,
for example.

Levy and Goldberg (2014) use dependency in-
formation to train word embeddings, defining the
context as the parent and child relation(s) of the
target word. This has two effects that distin-
guish dependency-based embeddings from stan-
dard embeddings. Firstly, the context is limited
to syntactically-related words. For example, deter-
miners are always limited to a context of a noun.
Therefore, words of the same part-of-speech tend
to be closer in the embedding space, since they
have similar contexts. Secondly, the context is not
limited by the distance between words in a sen-
tence. For example, Figure 4 shows a long-range
dependency between item and rack. This rela-
tion would only be captured by a standard word
embedding algorithm with a large context window
of length 14 or greater, whereas in the dependency-
based version rack is one of 4 tokens in item’s
context, and item is one of 6 tokens in rack’s
context.

Levy and Goldberg (2014) also require the em-
bedding model to predict the relation between the
target word and a context word, and whether it is
a parent or child relation. This explicitly trains the
model to understand the syntactic relationship be-
tween two words, which provides information on
the function of a word in a sentence. For example,
referring back to Figure 3, the fact that owns has



Figure 4: Example of a sentence with a long-range dependency, in this case, an nsubj relation between item and rack.

a dobj relation means that owns is a transitive
verb. Although this information could be learned
implicitly by regular WORD2VEC, as the amount
of training data decreases, it becomes much harder
to learn without explicit labels.

Due to their reduced context variability and their
explicit learning of linguistic information, we ex-
pect dependency-based embeddings to achieve a
better alignment in the low-resource setting.

In the following experiments, we use the same
settings as mentioned in Section 3, apart from
those explicitly mentioned. With the addition of
dependency parsing into the pipeline, we apply a
parser on the tokenized sentences, while truecas-
ing is learned prior to but applied after parsing.
We use the StanfordNLP parser (Qi et al., 2019),
using the pretrained English and German models
provided to parse our data.

Although the dependency parser that we use is
supervised, therefore requiring dependency data, it
is possible to train a dependency parser in an un-
supervised fashion (He et al., 2018). Regardless, a
dependency parser extracts linguistic information
that is present in a sentence, thus our dependency-
based method can still show whether using such
linguistic information for training embeddings is
useful for their alignment.

For training dependency-based word embed-
dings, we apply Levy and Goldberg (2014)’s
dependency-based WORD2VEC, and compare this
against the standard WORD2VEC. For the
dependency-based embeddings, we use the same
hyperparameters as we use for WORD2VEC.

To achieve considerable results in unsupervised
NMT, it is necessary that we apply Byte-Pair En-
coding (BPE) (Gage, 1994). In the dependency-
based pipeline, this is learned after truecasing and
applied after dependency parsing. In order to apply
BPE to dependency-parsed sentences, any words
that are split into multiple sub-word units will have
a bpe relation or relations connecting them. We
connected sub-word units from left-to-right, where
the leftmost unit was the parent of all other units.9

9We experimented with several methods of connecting the re-

Amount (M) Reg DP Reg+DP
0.1 0.00% 0.00% 0.00%
0.4 0.27% 0.18% 0.62%
1 2.49% 5.05% 9.64%
2 15.28% 11.32% 18.66%
10 35.86% 25.03% 36.06%

Table 2: BLI P@5 scores for aligned standard (Reg),
dependency-based (DP), and hybrid (Reg+DP) WORD2VEC
embeddings. The best scores are shown in bold.

In addition to the standard and dependency-
based word embeddings, we also combine the two
approaches, forming a hybrid embedding. This
is done by training word embeddings using both
methods separately with half the embedding di-
mension size (i.e. 256), concatenating them, and
aligning them with VECMAP. We use the + sym-
bol to denote a combined model.

Table 2 shows the BLI accuracies for the
standard WORD2VEC (Reg), dependency-based
WORD2VEC (DP), and hybrid (Reg+DP) embed-
dings as we vary the amount of monolingual sen-
tences available to the embedding algorithms. We
can see that the hybrid model outperforms the
other two models at each threshold for data, apart
from 100 thousand, where all three models fail en-
tirely. Although the dependency-based model per-
forms relatively poorly in cases where more than
1 million sentences are available, we see that the
hybrid model still outperforms the regular model,
which would indicate that the dependency-based
model is providing complementary information to
the regular model.

We also include Table 3, which shows
the English→German BLEU scores10 of our
NMT systems using the pretrained standard,
dependency-based, and hybrid embeddings. Here,
we see that the standard embeddings outperform
the other two models when they are given 2 mil-
lion or more sentences to train on. We suspect

lations, considering token length and frequency, but we found
that the connection method had little impact on the resulting
BLEU scores.
10We report the German→English BLEU scores in Table 8 in
Appendix A.



Amount (M) Reg DP Reg+DP
0.1 0.44 0.97 0.4
0.4 1.58 2.56 3.26
1 5.41 5.9 6.99
2 9.31 7.82 8.82
10 12.9 10.28 11.41

Table 3: English→German BLEU scores for NMT models
using pretrained standard (Reg), dependency-based (DP), and
hybrid (Reg+DP) embeddings. The best scores are shown in
bold.

this difference in performance is due to the in-
clusion of BPE, as that is the only difference in
preprocessing. When adding the bpe relation to
our dependency-parsed sentences, we may inad-
vertently isolate some sub-word units from their
natural contexts. As we treat the leftmost unit as
the parent, the other units will only have a relation
to the leftmost unit, limiting their context and po-
tentially adversely affecting their embedded repre-
sentation.

Despite the potentially adverse effects of BPE,
we see that dependency-based embeddings and hy-
brid embeddings outperform standard embeddings
when monolingual data is limited to 1 million sen-
tences per language or fewer.

4.2 Considering Sub-word Information

As Lample et al. (2018) and Artetxe et al. (2019)
established, considering sub-word information
proves very effective in increasing the performance
of unsupervised MT systems. We follow Lam-
ple et al. (2018) and achieve this by using FAST-
TEXT. As FASTTEXT represents words as a sum-
mation of character n-grams, rarer words can have
a meaningful representation if they are composed
of common character n-grams. So as data becomes
more scarce, FASTTEXT effectively relies on mor-
phemes to represent words.

For FASTTEXT, we use the same hyperparam-
eters as used for the regular WORD2VEC, apart
from the context size, in which we follow Lam-
ple et al. (2018) and use a size of 5. Additionally,
we create hybrid models of FASTTEXT and regu-
lar WORD2VEC concatenated (Fast+Reg), as well
as FASTTEXT and dependency-based WORD2VEC

concatenated (Fast+DP). The resulting BLI scores
are shown in Table 4.

We can see that the inclusion of sub-word in-
formation via FASTTEXT has a very large impact
on the alignment quality in general: for FAST-

Amount (M) Fast Fast+Reg Fast+DP
0.1 0.24% 0.36% 1.45%
0.4 0.18% 1.06% 19.98%
1 0.78% 29.86% 25.66%
2 34.09% 35.64% 29.98%
10 47.36% 50.61% 50.34%

Table 4: BLI P@5 scores for aligned FASTTEXT (Fast),
and two hybrid models consisting of FASTTEXT with reg-
ular (Fast+Reg) and FASTTEXT with dependency-based
(Fast+DP) WORD2VEC embeddings. The best scores are
shown in bold.

Amount (M) Fast Fast+Reg Fast+DP
0.1 0.77 1.94 1.16
0.4 7.47 7.28 5.32
1 10.37 9.37 7.48
2 11.49 11.48 10.12
10 13.98 13.89 11.77

Table 5: English→German BLEU scores for aligned FAST-
TEXT (Fast), and two hybrid models consisting of FASTTEXT
with regular (Fast+Reg) and FASTTEXT with dependency-
based (Fast+DP) WORD2VEC embeddings. The best scores
are shown in bold.

TEXT alone, the alignment scores improve over the
regular and dependency-based models, provided
there are 2 million or more sentences. Unlike with
regular embeddings, the Fast+DP model does not
provide improvements when there are at least 1
million sentences available. With all three FAST-
TEXT-based models, we see a drastic improvement
from 0-2% up to 20-35% when the amount of data
is increased, however the Fast+DP model has this
increase with less data, which may indicate that
dependency information is useful in the lower re-
source setting.

For 100 thousand sentences, we do see some im-
provement, but with a P@5 of less than 2%, it is
clear that none of the embedding methods tested
are capable of providing embeddings of a high
enough quality to allow for a decent unsupervised
alignment.

While the inclusion of sub-word information
via FASTTEXT outperforms the dependency-based
embeddings alone, the two are not mutually exclu-
sive: it is feasible to train a variant of FASTTEXT

that uses contexts based on dependency relations to
get the best of both worlds. From simple concate-
nation, the Fast+DP hybrid embeddings proved
useful for cases where only 100-400 thousand sen-
tences per language were available.

Table 5 shows the resulting BLEU scores for



FASTTEXT and the two previously described hy-
brid models.1112 With at least 400 thousand sen-
tences available, we see that the non-hybrid model
and the Fast+Reg hybrid perform similarly, but
the Fast+DP hybrid performs worse than the other
two. With only 100 thousand sentences available,
both hybrid models perform better than the non-
hybrid model, with Fast+Reg giving the best per-
formance.

The BLEU scores from Table 5 as well as Table
3 seem to indicate that hybridization does not nec-
essarily lead to better translation quality, despite
often giving a higher BLI score. The BLEU score
of the Fast+DP model trained on 400 thousand sen-
tences per language stands out in particular, as the
corresponding BLI score appears to indicate that
the quality of the alignment should be much better
than the other two models. We speculate that this
could be due to one of two things: either it is due to
the inclusion of BPE (as we previously discussed),
or it is an artifact of VECMAP’s training. Concern-
ing the latter, VECMAP may be aligning the em-
beddings to the point where they are close enough
for the NMT system to understand which words
correspond to which, but not to the point where a
large number of words will have their correspond-
ing words in the other language close enough to be
counted for the BLI precision at 5 score. There-
fore, the large jump in BLI scores can be mislead-
ing in terms of alignment quality for unsupervised
NMT.

Overall, the performance of FASTTEXT indi-
cates that the use of sub-word information is very
important to the performance of the NMT sys-
tem, as we see both BLI and BLEU score im-
provements when comparing FASTTEXT to stan-
dard WORD2VEC. Along with the performance of
the dependency-based embeddings, this supports
the idea that linguistic information as a whole can
be useful in improving translation quality in unsu-
pervised NMT.

11We report the German→English BLEU scores in Table 9 in
Appendix A.
12The BLEU scores are not directly comparable to the results
of Lample et al. (2018) for a couple of reasons (apart from
the hardware limitation previously mentioned): 1. We use
VECMAP to align embeddings, whereas they concatenate cor-
pora and train a singular embedding. 2. We use a maximum of
10 million sentences per language, they use the entire WMT
News Crawl dataset, which is well over 100 million sentences
per language.

4.3 Ensembling of Embeddings

As our hybrid embeddings have shown to have an
increase in performance, we note that this could be
due to the effect of ensembling two embeddings
with different random weight initializations rather
than due to the differences between the embedding
algorithms. To test this, we train two embeddings
using the same algorithm (but different weight
initializations) and concatenate them in the same
manner as the hybrid models. Using this method,
we produce Reg+Reg, DP+DP, and Fast+Fast, and
we compare them to our hybrid models in Table 6.

The scores show that the improvement found in
Reg+DP is greater than the improvement found
by ensembling either of its two constituent mod-
els. This indicates that there is a complemen-
tary relationship between regular and dependency-
based WORD2VEC. As for Fast+Fast, the model
performs better than the two hybrid models using
FASTTEXT when the number of sentences ranges
from 400 thousand to 2 million, with the great-
est improvement found at 400 thousand sentences
per language. While there is a greater improve-
ment from Fast+Fast compared to Fast+Reg and
Fast+DP, this may be more due to the poor qual-
ity of the Reg and DP components of the hy-
brid models, whose contribution may be hinder-
ing the alignment rather than helping. Overall,
ensembling 2 embeddings from the same embed-
ding algorithm yields marginal improvements in
alignment quality, whereas ensembling 2 embed-
dings from different algorithms can potentially
yield greater benefits.

4.4 Context Size

Seeing as the context plays a role in the alignment
quality of embeddings, we vary the context win-
dow size of WORD2VEC and FASTTEXT embed-
dings to see its effect. Additionally, using a context
size of 1 with WORD2VEC produces embeddings
which are better suited for inducing part-of-speech
tags (Lin et al., 2015), which could also aid with
alignment. As such we test on context sizes of 1,
3, 5, and 10.

The results overwhelmingly indicate that a
larger context size is better for alignment when
there are at least 1 million sentences per language
available. This may explain why the dependency-
based embeddings do not perform well relative to
the standard WORD2VEC and FASTTEXT embed-
dings. In the sentence in Figure 4, for example, the



Amount (M) Reg+Reg DP+DP Reg+DP Fast+Fast Fast+Reg Fast+DP
0.1 0.00% 0.00% 0.00% 0.84% 0.36% 1.45%
0.4 0.09% 0.44% 0.62% 24.14% 1.06% 19.98%
1 6.07% 4.67% 9.64% 31.26% 29.86% 25.66%
2 15.50% 11.46% 18.66% 35.86% 35.64% 29.98%
10 35.93% 25.30% 36.06% 47.16% 50.61% 50.34%

Table 6: BLI comparison of ensemble models (Reg+Reg, DP+DP, and Fast+Fast), to the aforementioned hybrid models
(Reg+DP, Fast+Reg, and Fast+DP).

Amount (M)
WORD2VEC FASTTEXT

1 3 5 10 1 3 5 10
0.1 0.00% 0.12% 0.00% 0.00% 0.12% 0.60% 0.24% 0.00%
0.4 0.00% 0.00% 0.00% 0.27% 0.18% 0.27% 0.18% 0.35%
1 0.00% 0.08% 1.48% 2.49% 0.00% 0.23% 0.78% 28.07%
2 3.16% 5.66% 13.15% 15.28% 23.14% 32.33% 34.09% 35.05%
10 27.06% 32.27% 33.90% 35.86% 39.92% 45.20% 47.36% 48.58%

Table 7: BLI P@5 scores for aligned FASTTEXT, and WORD2VEC, with varying window sizes of 1, 3, 5, and 10.

largest context is 6 for the word rack, and the av-
erage context size is 1.83. Given the increases we
see from WORD2VEC and FASTTEXT with a larger
context size, it is likely we will see a large increase
in alignment quality for dependency-based embed-
dings as well if they can be trained with a larger
context.

5 Conclusion and Future Work

Unsupervised NMT has made great strides in mak-
ing MT more accessible for language pairs that
lack parallel corpora. We attempt to further this ac-
cessibility by introducing LRUMT, where mono-
lingual data is also limited. Our results show
that, in the current state-of-the-art pipeline, the
quality of the pretrained word embeddings is the
main issue, and that using syntactically-motivated
dependency-based embeddings has the potential to
improve performance when monolingual data is
limited.

We also see that the inclusion of sub-word infor-
mation for training word embeddings provides a
crucial performance increase, which provides fur-
ther evidence that using the latent linguistic in-
formation in a sentence can improve embedding
alignment quality.

Finally, on the topic of context size, we find that
a larger context size is almost always better, most
noticeably when more data is available. This helps
explain the poorer performance of the dependency-
based embeddings on larger amounts of data.

To improve upon dependency-based embed-

dings for unsupervised NMT, we consider two
avenues to explore: including sub-word infor-
mation and increasing the context size. To in-
clude sub-word information, it should be possi-
ble to combine the training methods of FASTTEXT

and dependency-based WORD2VEC. To increase
the context size, one might consider including a
word’s grandparent, grandchildren, and siblings
(its parent’s other children) as part of the context.

We also note that we currently use a pretrained
dependency parser, trained on labelled dependency
data, which is often harder to come by than parallel
data. We plan to switch to using unsupervised de-
pendency parsing techniques to ensure this method
is accessible for all languages.

Furthermore, there are several potential meth-
ods for incorporating more linguistic information
into embeddings. One such possibility would be
to use a morphological segmenter such as MOR-
FESSOR (Virpioja et al., 2013) rather than BPE,
which would likely provide better results for more
morphologically-rich languages. As we only test
on English–German, our future work will test this
new paradigm on other language pairs, particu-
larly those in which unsupervised NMT fails to
perform such as English into morphologically-rich
languages.
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A German→English Results

We report the BLEU scores for German→English
in Tables 8 and 9. Comparing these BLEU scores
to the respective English→German BLEU scores
in Tables 3 and 5, we see that the best perform-
ing models are the same for both translation di-
rections. This suggests that the translation direc-
tion is not important for evaluating the relative dif-
ferences unsupervised NMT systems. However,
since English and German are related languages,
this could also simply be a feature of this language
pair.

Amount (M) Reg DP Reg+DP
0.1 0.54 1.20 0.57
0.4 1.95 2.91 3.71
1 6.99 7.14 8.74
2 11.90 10.03 11.44
10 16.97 12.95 15.07

Table 8: German→English BLEU scores for NMT models
using pretrained standard (Reg), dependency-based (DP), and
hybrid (Reg+DP) embeddings. The best scores are shown in
bold.

Amount (M) Fast Fast+Reg Fast+DP
0.1 1.11 2.39 1.35
0.4 10.01 9.98 7.10
1 13.68 12.38 9.99
2 15.27 14.82 13.15
10 18.40 18.31 15.16

Table 9: German→English BLEU scores for aligned FAST-
TEXT (Fast), and two hybrid models consisting of FASTTEXT
with regular (Fast+Reg) and FASTTEXT with dependency-
based (Fast+DP) WORD2VEC embeddings. The best scores
are shown in bold.


