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Abstract

In this work, we present our empirical attempt
to identify the proper strategy of using Trans-
former Language Models to identify sentences
consistent with commonsense. We tackle the
first two tasks from the ComVE (Wang et al.,
2020a) competition. The starting point for
our work is the BERT assumption according
to which a large number of NLP tasks can be
solved with pre-trained Transformers with no
substantial task-specific changes of the archi-
tecture. However, our experiments show that
the encoding strategy can have a great impact
on the quality of the fine-tuning. The combina-
tion between cross-encoding and multi-input
models worked better than one cross-encoder
and allowed us to achieve comparable results
with the state-of-the-art without the use of any
external data.

1 Introduction

For human beings, the answer to the question ”Can
we consider a statement consistent with common-
sense?” comes natural even in the absence of a
certain context. It is not only about understanding
the words in the statement, but also about reasoning
based on commonsense knowledge. Until recently,
this was considered difficult for the machines (Os-
termann et al., 2018), since it was considered that
it requires a formal representation of an extremely
large knowledge base equipped with a general in-
ference mechanism.

In the Transformers era, the machines’ deeper
understanding of text has gained increasing atten-
tion. Transformers brought reduction of losses of
semantics and connections in long text through
the extensive use of attention mechanisms and the
elimination of the recurrent connections and con-
volutions. Their good performance in recognizing
complex semantic relations offered a faster starting
point for the upcoming stacked layers of Trans-

formers capable of generalizing with impressive
results on downstream tasks.

SemEval-2020 Task 4, Commonsense Validation
and Explanation (ComVE) (Wang et al., 2020a)
addresses commonsense understanding in the prob-
lem of identifying the sentences which are inconsis-
tent with commonsense and the reason for which
they are inconsistent. On the basis of transfer learn-
ing using Transformers, our experiments explored
the power of different Transformer models offered
by huggingface PyTorch library on the data set pro-
vided in this competition. During our experiments,
answers to the following questions were searched:

• Are Language Models strong enough to de-
liver a good result on commonsense under-
standing after having been fine-tuned with a
significantly small amount of data comparable
to the one used in the pre-training phase?

• Is freezing the Language Model a solution for
better accuracy on a downstream task?

• Does a powerful encoder require a powerful
decoder to perform sentence classification?

Our contribution is in identifying a suitable
Transformer for these specific commonsense tasks,
together with the suitable encoding and decoding
strategies. Our conclusions are supported by em-
pirical experiments, but the deeper understanding
behind these conclusions requires further qualita-
tive analysis which is not yet included.

2 Related Work

Pre-trained Transformer Language Models (LM)
are the foundation of our work. Given a sequence
of words, an LM estimates the probability distribu-
tion of the next word, where the latter can be any
word from the vocabulary. Furthermore, given a
fixed sentence, or succession of words, an LM can
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assign a probability to the whole sentence. Being
trained on large sets of unlabeled text, LMs aim to
capture the context dependent semantics of words
and phrases.

ELMo (Peters et al., 2018) would be the first to
look at from the historical point of view. It runs
the input through a BiLSTM network gathering left
and right context. The drawback stands in risk-
ing to derive mistaken context from the misplaced
expressions.

BERT (Devlin et al., 2019) is a multi-layer bidi-
rectional Transformer encoder with integrated self-
attention mechanism. The volume of text on which
BERT was pre-trained, totalling to 16GB of text,
prepared the model for numerous NLP tasks, such
as question answering and language understanding.

For solving the commonsense tasks, we looked
for an LM which takes into consideration both
ELMo and BERT advantages. XLNet (Yang et al.,
2019) is a generalized autoregressive method (AR).
The autoregressive language model is a contextual-
ized method of predicting the next word consider-
ing either a forward or backward factorized context.
The main flaw of the autoregressive method is that
long-distance context is lost in detriment of close
surroundings. XLNet solves this by maximizing
the expected log-likelihood of a sequence thanks
to the token’s permutation operation providing con-
text from both the left and right context. Reflecting
on BERT’s autoencoding technique and avoiding
the [MASK] token impediment, XLNet uses the
AR bidirectional context to offer meaning to the
current token.

RoBERTa (Liu et al., 2019) is a replication of
BERT. It is trained on 10× bigger text corpus with
larger batches and for a longer period, with elim-
ination of the next sentence prediction objective
and a dynamically change in the masking pattern.
The vocabulary size is increased by using Byte-
Pair-Encoding (Radford et al., 2018) instead of
character-level encoding.

The majority of the participants in the ComVE
competition (Wang et al., 2020a) used pre-trained
LM. The top performing systems used also exter-
nal knowledge either through the use of formal
commonsense knowledge-bases, like ConceptNet,
either through a second pre-training of the LM on
text relevant for commonsense understanding.

We obtained comparable results with the top
performing systems for the first two of the three
tasks of the competition without any external

sources. Our approach relies on a proper encoding
strategy for the sentences or pairs of sentences-
explanations.

3 Data Set

The ComVE data set was inspired by existing com-
monsense corpora, like Choice of Plausible Al-
ternatives (COPA) (Roemmele et al., 2011) and
Winograd Schema Challenge (WSC) (Levesque,
2011). The first two ComVE tasks involved two
balanced corpora, consisting of a total of 10.000
train sentences and 997 dev sentences each.

In Task A of ComVE, the validation one, two
statements that differ by one or several words are
given without any other context (e.g. He was sent
to a (restaurant)/(hospital) for treatment after a
car crash;, or Bob looks up a words in a (dictio-
nary)/(shopping list)). Besides the fact that no con-
text is given, the strong resemblance of the inputs
increases the request for a good understanding of
the subtle meaning of words.

In Task B, the explanation one, a nonsense
premise is given together with three possible expla-
nations and it is asked to identify the most plausible
explanation for the fact that the premise is incon-
sistent with commonsense. The premises are the
statements classified as nonsense on the validation
task. We give here an example:

• Premise: Bob looks up a word in a shopping
list.

• Alternative explanations which justify the fact
that the premise is inconsistent with common-
sense:

1. words are too expensive to be listed on a
shopping list,

2. shopping lists don’t tell the meaning of
words,

3. Bob doesn’t know what to buy.

A few preprocessing steps were done: we con-
verted all the sentences into lowercase and final
punctuation was added where it was missing, more
specifically a ’.’ for statements and a ’?’ for the
nonsense sentences in the second task.

4 Encoder/Decoder Architectures

In order to solve the commonsense tasks, we chose
to focus on the final mission rather than on de-
veloping a brand-new model trained from scratch
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Figure 1: Task A: One single Model for 2 statements packed together
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Figure 2: Task A: Two Models, one for each statement

on an enormous corpus of text. Therefore, our
involvement stands in locating and perfecting an
existing Transformer using only the ComVE data
set, without any external knowledge base or addi-
tional dataset for a two phase training.

Transformers were built to generalize well over
multiple NLP tasks. The common practice involves
adding the right decoder on top of the Transformer
encoder and fine tuning with a proper amount of
data. The encoder extracts the semantics and the
features from the inputs, while the decoder per-
forms the classification.

Our first experiments targeted identification of
the Transformer Language Model that is capable
to extract the most relevant aspects for the classi-
fication of text into consistent with commonsense
and inconsistent. The rest of the experiments tar-
geted architectures which instead of including only
one encoder for all the statements, include two or
three encoders, one for each statement in case of
Task A, respectively one for each pair of (Premise,
Explanation) for Task B. Task A was reduced to a
binary classification problem in which the model
must decide the gibberish statement. As for Task
B, selecting the good explanation was considered a
multi-class classification. In the rest of this section,
we detail the proposed architectures, while the cor-
responding experiments are described in section 5.

4.1 Encoding with a Single Language Model

For Task A, the input consists of two statements.
When using only one LM to encode a sequence
which packs both statements (see Fig. 1), the out-
put representation is a result of the entire input.

An LM, used with an encoding objective and pro-
cessing multiple sentences packed together into a
single sequence, is called cross-encoder since it per-
forms a full self-attention over the entire sequence
(Humeau et al., 2020).

Interference in representations of the composed
input is beneficial when there are cause-effect or
similar relations between the phrases. But for both
targeted tasks (Task A and Task B), we need to
emphasize the differences in the semantics. De-
spite the fact that for some NLP multi-sentence
tasks, cross-encoders work better than bi-encoders
(Humeau et al., 2020), according to our experi-
ments, detailed in section 5, a single LM was not
able to perceive well enough the disparities. We
assume that this happens due to the intrinsic in-
terference present when encoding simultaneously
two very similar statements (in terms of number of
common words), but extremely different in their
degree of consistency with commonsense. Conse-
quently, we moved to a multi LMs approach for the
encoding part.

4.2 Encoding with Multiple Language
Models

In multi LMs approach, two (or three for the sec-
ond task) similar language models are seen as the
encoder (see Fig. 2, 3).

4.2.1 Multiple simple encoders
For Task A, each LM is processing an input state-
ment. The encoding for all the special classification
tokens CLS is aggregated through simple concate-
nation or other aggregation function, and fed into
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Figure 3: Task B: Three Models, one for each pair (Premise, Explanation)

the decoder (see Fig. 2). The weights of the two
encoders are initialised with the same values, but
during the train they have separate evolution, even
though not completely independent, since they de-
pend on the same loss function.

With this approach, distinct instances of one type
of LM encode very similar or extremely different
phrases. Therefore, the built representations cap-
ture unique features and semantics specific to the
input. The disparities and the inconsistencies are
easily depicted throughout the decoder. Two LMs
separately encoding different statements are per-
ceived as a bi-encoder (Humeau et al., 2020).

After observing the benefits and the drawbacks
of bi-encoders and cross-encoders for the task at
hand, we decided to rely the solution for the expla-
nation task on a beneficial combination of them in
the form of a multiple cross-encoders approach.

4.2.2 Multiple cross-encoders

The input data of the explanation task (Task B)
is composed of four statements: one nonsense
premise and three possible explanations. In order to
decide which explanation is the most plausible for
the nonsense premise, a strong explanation-relation
must be captured among the premise and the expla-
nation.

Capturing the justification relation between the
phrases is accomplished by feeding the concatena-
tion of each pair (premise-explanation) into a cross-
encoder. Establishing which is the most intense
relation is done by making use of three distinct

Figure 4: Structure of the decoder for Multi LMs

cross-encoders, one for each such pair (see Fig 3).

4.3 Decoder

Throughout the development stages, a reoccurring
question was: how much of an improvement will
a more complex decoder bring? Figure 4 depicts,
from left to right, the structure of the tested de-
coders for Task B with multi LMs, for Task A with
multi LMs, respectively for Task B with multi LMs.
For the first two, the aggregation of the outputs for
the 3 or 2 LMs is a simple concatenation, while
convolution based concatenation is attempted in
the last one.

Advancing from the Dense layers classifier to a
basic Convolutional one (the right of Fig. 4), did
not bring any increase in performance. The attempt
was trivial and further experiments in this area are
left for future research.

5 Experiments

For all the described architectures, we give details
about the run experiments. For single LM encod-
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ing, we tested several language models, including
BERT, XLNet and RoBERta. For multiple LMs
encoding, we preferred RoBERTa due to the results
obtained on the single LM approach. As future
work, we plan to repeat all the multiple LMs ex-
periments for other LMs than RoBERTa. This is
needed in order to support our current conclusion
that for the task at hand, multiple LMs encoding
work better.

5.1 Experiments for Task A with a Single LM
5.1.1 BERT as single LM for task A
The first Transformer integrated as a unique LM
as the encoder was BERT large uncased, which
accepts as an input:

• a sequence of tokens, as follows: CLS 〈 to-
kens of sentence 1 〉 [SEP] 〈tokens of sentence
2〉 [SEP].

• the classification token CLS is added in the
first position to prepare the model for a classi-
fication task; the hidden state of this token is
an aggregate representation of the classifica-
tion task.

• token type ids specifies to which sentence
each token belongs; this seems redundant after
adding the separation token.

• attention mask specifies which are input to-
kens and which are padding.

BERT’s constraints specify that: i) all the inputs
must have the same length, ii) the maximum input
length is 512 tokens. In the data set, the sentences
vary and the longest one has 27 tokens. Therefore,
the used length will be:

• 27 ∗ 2 {two maximum length sentences}

• +3 {1*[CLS] + 2*[SEP] must have tokens}

• +2 {‘.’ *2, bonus token if needed}

• +5 {[PAD] until a power of 2 size} = 64

Model’s documentation recommends [2, 4]
Epoch, [2e− 5, 5e− 5] constant learning rate and
optimizer’s epsilon 1e− 6. We trained in batches
of 32 for 4 Epochs using the AdamW optimizer as
regularization mechanism, scoring a maximum of
0.89 accuracy on the dev set (Table 1).

On top of the LM were added two Dense layers
activated by a TanH function. The investigation

Epoch Max lr Epsilon Batch size Accuracy
4 2e− 5 1e− 8 32 0.86
3 5e− 5 1e− 6 32 0.87
3 5e− 5 1e− 6 16 0.86
5 5e− 5 1e− 6 32 0.89
5 2e− 5 1e− 8 32 0.85
10 2e− 5 1e− 8 32 0.89

Table 1: Results for Task A with BERT as single LM.

Ep. Max lr Epsilon Batch size Accuracy
5 5e− 5 1e− 6 32 0.79
10 2e− 5 1e− 8 32 0.85
10 2e− 5 1e− 8 64 0.86

Table 2: Results for Task A with XLNet as single LM.

went further, training for more Epochs, adding a
learning rate decay, but without any improvements
to accuracy. Models’ size is a limitation and the
16GB of text may not suffice for the model to gather
all the meanings and contexts of the words.

5.1.2 XLNet as single LM for task A

Despite applying all the improvements made to
BERT for the XLNet large, the latter did not out-
perform the former (see Table 2). The reason may
be the fact that the context for a word is formed
by factorizing the rest of the tokens. In case of
mistaken tokens, the factorized permutation con-
tributes to current token corrupting its meaning.

Nevertheless, this should elevate a sentence’s
probability of being nonsense, but the model is not
strong enough yet.

5.1.3 RoBERTa as single LM for Task A

RoBERTa outperformed BERT and XLNET in al-
most all NLP tasks while offering a good general-
ization. The pre-training over the 160GB of text
may be the reason for its performance.

In our case, using RoBERTa large with all the
previous settings, running for 10 Epochs, resulted
in a 0.91 accuracy (see Table 3).

The reported performances obtained by BERT,
XLNET and RoBERTa used in the single model
approach led us to the conclusion that all three
are capable of building encodings which capture
aspects related to the text’s consistency with com-
monsense . We underline again that no additional
dataset or knowledge base were included and the
accuracy still reached values of 0.9. The rest of the
experiments switched to the multi model approach.
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Max lr Eps Batch Act. Acc F1
size func.

2e−5 1e−8 32 TanH 0.89 0.85
2e−5 1e−8 32 ReLU 0.91 0.87

Table 3: Results for Task A with RoBERTa as single
LM.

Ep. Max Batch Act. Acc Hid. F1
lr size func. size

10 2e−5 100 TanH 0.90 1024 0.90
30 2e−5 100 ReLU 0.94 1024 0.93
30 5e−6 128 ReLU 0.94 128 0.93
30 5e−6 128 SeLU 0.94 512 0.93
30 5e−6 128 SeLU 0.95 256 0.95

Table 4: Results for Task A with two instances of
RoBERTa.

5.2 Experiments for Task A and Task B with
Multiple LMs

5.2.1 RoBERTa as multi LMs for Task A

In all previous experiments for single model, the
LM was used as a cross-encoder, meaning that for
the two input sentences each token will consider
not only the phrase it belongs to, but also tokens
from the other phrase. It is worth mentioning that
each token will see itself in similar context twice.

When using cross-encoders, out of the two sen-
tences, a wrong token has no other tokens to pay
attention to. At the same time, a correct token,
but placed in the wrong sentence, might look for
meaning inside the correct sentence. We use here
the term ”wrong” as similar to ”inconsistent with
commonsense”.

Given this condition and aspiring to evaluate
the sentences independently from one another, we
used the multiple models approach. This is simi-
lar to Siamese-RoBERTa (Reimers and Gurevych,
2019) but used in an almost bi-encoder fashion.
As described in Fig. 3, two RoBERTa models are
trained together for Task A. Each is fed with one
sentence; the output of the CLS token is concate-
nated and then passed through two Dense layers,
using TanH activation function, or ReLU or SeLU,
with a dropout of 0.1. Our multi LMs encoding do
not work as full bi-encoders, as for the later, the
forward propagation is performed separated. Fur-
thermore, in our case, the backpropagation depends
on the concatenation of the encoders results, while
in case of bi-encoders it is done independently for
both included LMs.

We observe that the size of the classifier and

Ep. Max Batch Act. Acc. Hid. F1
lr size func. size

30 1e−5 128 SeLU 0.95 256 0.95
30 5e−6 128 SeLU 0.96 256 0.96
30 5e−6 128 SeLU 0.96 256 0.95
30 5e−6 180 SeLU 0.95 256 0.94

Table 5: Results for Task A with two instances of
RoBERTa with Symmetric Update.

the size of the mini batches influence the conver-
gence speed of the network (see Table 4). By
analysing the results, the transition from a single
cross-encoder LM to multi LMs confirms that ob-
serving the input statements independently works
better since each LM assembles context only from
within.

We observed that the TanH activation function
provides significantly lower accuracy than ReLU.
The size of the classifier appears to have a strong
impact on the convergence speed. With a small
hidden size, the model converges slower and hits a
higher accuracy score than with a larger size, which
converges rapidly but stops improving. On the
contrary, a larger size for the mini batches improves
the results.

The used optimizer was AdamW with a linear
learning rate decay and no warm-up steps. An early
stopping mechanism was integrated which ends the
fine-tuning after 10 Epochs if the F1 score did not
improve. Choosing the F1 score as the monitored
metric is the consequence of observing that the loss
value increases after reaching a minimum, but the
evaluation metrics are not very much affected.

For this setup, a RoBERTa large model was used,
on an NVIDIA V100 32GB running at most for
38 minutes, 1 minute per Epoch with batch sizes
varying from 32 to 128, and classifier’s hidden size
ranging from 128-2048.

5.2.2 RoBERTa as multi LMs with
Symmetric Update for Task A

In the previous experiment, each RoBERTa encoder
would see only one half of the statements pair dur-
ing the training and the evaluation. For the models
to work as Siamese, their weights update should
be much more similar. To solve this inconsistency
problem, we integrated a mechanism in which, dur-
ing an Epoch, both permutations of the statements
pair are consecutively fed into the model.

The convergence speed was greatly improved in
some cases because of the double weight update
during an Epoch. This method increased the met-
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Ep. Max lr Warm-up Act. Acc./F1
Steps. Func.

30 1e−5 1570 SeLU 0.89 / 0.89
30 2e−5 2000 SeLU 0.88 / 0.88

Table 6: Results for Task B with three instances of
RoBERTa using RMSProb.

Max Warm-up Act. Acc. Hid. F1
lr steps Func. size
5e−6 2000 SeLU 0.89 768 0.89
1e−5 1570 SeLU 0.91 768 0.91

Table 7: Results for Task B with three instances of
RoBERTa using AdamW.

rics to 0.96 as seen in Table 5, but it also confirmed
that the concatenation of the representations suf-
fices for the network to update its parameters in an
almost symmetric manner.

5.2.3 Three RoBERTa as multi LMs for
Task B

The encoder for the explanation task was influ-
enced by the results on the validation task with
single/multi LMs. Since cross-encoding worked
well, but multiple LMs improved the obtained per-
formance, for Task B we employed multiple cross-
encoders. For this task, the system should not only
derive semantics from the sentences, but also eval-
uate its relatedness with the premise’s context. As
detailed in Fig. 3, we used a cross-encoder for each
pair premise-explanation. The four sentences were
turned into three pairs fed in a parallel manner into
the network. For the moment, the encoder consists
of three RoBERTa models processing each pair.

Observing from the previous experiment that a
similar weights update does not bring an impres-
sive improvement, each model will see only a pair
through the fine-tuning and evaluation process.

The optimizers used for these experiments were
RMSProb (Table 6, with batch size = 64) and
AdamW (Table 7, with batch size = 32), with
learning rate decay and warm-up steps. The in-
tegrated decoders consisted of three Dense Lay-
ers activated by a SeLU function, as the previous
experiments, or a Convolutional Layer (Table 8).
Similar to Task A, the convolutional based decoder
did not improve the results, although further exper-
iments are needed. The most important hyperpa-
rameter was the order of the statements inside the
pairs. RoBERTa is a bidirectional Language Model,
hence the relation inference appears to be empha-
sised better when the justification comes first.

Max Warm-up Kernel Acc. Hid. F1
lr steps. size size
5e−6 2000 3 0.89 768 0.89
1e−5 2000 9 0.90 768 0.90

Table 8: Results for Task B with three instances of
RoBERTa using Convolution.

6 Discussions

The results revealed the importance of the amount
of text on which the LMs were pre-trained. The
model’s size also has significance, as larger models
are better at generalizations.

A single Transformer Language Model deliv-
ers good results after fine-tuning on a comparable
small amount of data. Additionally, the fine-tuning
does not seem to alter the previous knowledge ac-
cumulated by the model.

This raised the question whether it is necessary
to fine-tune the model on a specific task if the LM
was already trained on a large text corpus, or is
it possible to freeze the model. Consequently, we
used a RoBERTa Large model, added a classifier
on top and trained only the classifier on the pro-
vided corpus. Freezing the model obstructed LM’s
capabilities and it delivered poor results, similar to
random guessing.

Even when we worked with two RoBERTa Large
models coupled as Siamese but with complete
freeze, the results were close to randomness, con-
firming that the LM adjusts its behaviour based on
the task. It implies that a Transformer may be con-
sidered as a good encoder, but it needs adjustments
in the form of fine-tuning.

Another observation regards the needed decoder.
A 2 RoBERTa Large model is a formidable model
with powerful generalization capabilities, but it
does not incorporate enough knowledge to cor-
rectly classify a sentence as nonsense or consistent
with commonsense if on top of it a very simple two
layers classifier is added.

As the results showed, the LMs, especially bidi-
rectional LMs are an excellent starting point in
solving commonsense tasks (at least as they are
formulated in the ComVE tasks). From our current
experiments, multiple model approach works bet-
ter than single one. Multiple cross-encoders with
RoBERTa Large is a capable architecture which
combines and leverages the benefits of both en-
coder (cross/bi) techniques. Our results show that
it can be further improved, but it still provides good
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enough performance.
When using the same decoder, freezing the LM

resulted in extremely low performance, while fine
tuning the LM reached accuracy values higher than
0.9. In the same time, with the same LM, but
different decoders, the performance changed. Con-
sequently, we could assert that we need a good
encoding, which can be attained even with a small
dataset from the pre-trained LM, but we also need a
good decoder. However, the set of the experiments
need to be extended in order to check the presump-
tion that multiple LMs work better than single LMs
not only in case of RoBERTa, but also other LMs.

6.1 Comparison with Related Findings
According to the results of the competition (Wang
et al., 2020a), making use of pre-trained Language
Models seems to be the logical direction in solving
an NLP task which requires commonsense reason-
ing. The techniques in which the advantages of
LMs are leveraged and the patience in finding the
optimum set of hyperparameters appear to dictate
the position of the result on the ComVE competi-
tion leaderboard.

In Table 9 all the architectures are based on
Transformer LMs, either BERT or RoBERTa
(Saeedi et al., 2020); other LMs were tested as
well, but poor results were delivered. Either multi-
ple LMs were introduced in the architecture(Dash
et al., 2020), together with knowledge bases such
as ConceptNet (Zhao et al., 2020) or prolonged
pre-training of LMs for the network to benefit from
additional knowledge (Xing et al., 2020). In (Wang
et al., 2020b), (Wan and Huang, 2020), extra-words
were added in the input.

An impressive approach was the use of the
trained model and knowledge for the task of valida-
tion in the scope of helping the explanation model
in making its choice and vice-versa, in the process
of subtask level transfer learning (Liu et al., 2020).

When comparing the obtained results, even with-
out the addition of extra knowledge from Concept-
Net or the prolonged training, with reproducible
results accompanied by papers from the competi-
tion leaderboard, it appears that the ones obtained
through our approach manage to score a place
among the best ones.

6.2 Future Work
Background Knowledge As mentioned, the
knowledge of our solutions relies only on the infor-
mation congregated in the RoBERTa pre-training

Rank Rank Team Acc. Acc.
TaskA TaskB Name Dev A Dev B
1 2 ECNU 96.7 94.68
1 3 IIE-NLP- 96.7 94.5

NUT
2 5 KaLM 96.3 93.2
3 6 Ours 96.1 91.11
4 - CS-NLP 96.08 -
5 1 LMVE 95.91 96.39
6 7 CS-NET 95.2 89.7
7 4 CUHK 95.1 93.5

Table 9: Comparison with related findings

stage and the targeted data set. RoBERTa’s ex-
pertise can be enlarged, adding background knowl-
edge from lexical bases as WordNet and knowledge
bases as ConceptNet. We consider that offering a
larger bag of meaning for each token may asso-
ciate the current context with one of its definitions,
contributing to a stronger connection between the
context and the token.

A similar situation may occur when the bloomer
token is evaluated. The definitions supplied by
the additional bases might establish an erroneous
binding with the current context. It might happen
that delivering all the connotations for a word will
not necessarily improve the results.

Strong Classifier Our architectures have on top
two or three Dense layers as a decoder which per-
forms the classification task. It has been suggested
in the paper (Devlin et al., 2019) that a complex
decoder is not necessary for the model to deliver a
good outcome.

The encoder’s capabilities are still limited by
the classifier’s simplicity. Aggregating information
from a sequence of tokens and using only the output
of the [CLS] restricts the LMs generalization over
the input. Feeding into decoder all the outputs from
the last hidden states might improve the outcome.

7 Conclusions

In this paper we evaluated three Transformer Lan-
guage Models, BERT, XLNet, and RoBERTa, for
the commonsense validation and explanation prob-
lems proposed in Sem-Eval 2020 ComVE. The ex-
periments have shown that the self-attention mecha-
nism used by BERT and RoBERTa models is more
suited for the commonsense tasks.

We also leveraged the complexity of the model
by using two Language Models to capture the in-
dependent sense for each input sentence. Two sep-
arate models are more capable to emphasize the
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subtle disparities from the input sentences.
Furthermore, in order to select the the right ex-

planation for the inconsistency of the premise with
commonsense, we used an architecture with three
RoBERTa, each one working as a cross-encoder
for pairs (premise, explanation).
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