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Abstract

Natural Language Sentence Matching (NLSM) serves as the core of many natural language pro-
cessing tasks. 1) Most previous work develops a single specific neural model for NLSM tasks. 2)
There is no previous work considering adversarial attack to improve the performance of NLSM
tasks. 3) Adversarial attack is usually used to generate adversarial samples that can fool neu-
ral models. In this paper, we first find a phenomenon that different categories of samples have
different vulnerabilities. Vulnerability is the difficulty degree in changing the label of a sample.
Considering the phenomenon, we propose a general two-stage training framework to enhance
neural models with Vulnerability via Adversarial Attack (VAA). We design criteria to mea-
sure the vulnerability which is obtained by adversarial attack. VAA framework can be adapted
to various neural models by incorporating the vulnerability. In addition, we prove a theorem
and four corollaries to explain the factors influencing vulnerability effectiveness. Experimen-
tal results show that VAA significantly improves the performance of neural models on NLSM
datasets. The results are also consistent with the theorem and corollaries. The code is released
on https://github.com/rzhangpku/VAA.

1 Introduction

Natural Language Sentence Matching (NLSM) aims to compare two sentences and identify the relation-
ship between them (Wang et al., 2017). NLSM serves as the core of many natural language processing
tasks, such as question answering and information retrieval (Wang et al., 2016). 1) Most previous work
develops a single specific neural model for NLSM tasks. We propose a general framework that can
enhance various neural models proposed by previous work. 2) There is no previous work considering
adversarial attack to improve the performance of NLSM tasks. This paper is the first to take advantage
of adversarial attack to improve the performance of NLSM tasks. 3) Adversarial attack is usually used to
generate adversarial samples that can fool neural models. In contrast, we take advantage of adversarial
attack to enhance neural models.

We introduce a concept vulnerability, the difficulty degree in changing the label of a sample. Inspired
by the finding that adversarial samples are more vulnerable than normal ones (Zhou et al., 2020), we
first find a phenomenon that different categories of samples have different vulnerabilities. That is, it
is easy to change the labels of samples belonging to some categories, whereas it is difficult for others.
Here we take Quora Question Pairs (QQP) dataset as an example. If we want a paraphrase pair to be
non-paraphrase, changing one word is sufficient. For example, simply adding “not” or “hardly” can
completely change the meaning of a sentence. However, it is difficult to make two irrelevant sentences
have the same meaning. Different categories of samples have different vulnerabilities. So the vulnera-
bility can be considered as a feature, which can be used to predict the label of the sample. To the best of
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Table 1: Two examples from QQP dataset. + means that the two sentences are paraphrase; − means
that the two sentences are non-paraphrase.

Label Sentence

+
S1: Why are people supporting Donald Trump?
S2: Why do you think people are supporting Trump?

− S3: What is the difference between the Moto2 and the Moto3 race?
S4: Who is ahead in the race to sell self-driving cars?

our knowledge, no study has considered the vulnerability and found the phenomenon thus far. Our study
is the first to identify the phenomenon and take advantage of the vulnerability to predict the label.

Four sentences are listed in Table 1 to explain the vulnerability. All four sentences are selected from
QQP dataset. Initially, sentence pair (S1,S2) is paraphrase, i.e., S1 and S2 have the same meaning.
Then, we modify S2 by adding “not”, and S2 will be S2′: “Why do you think people are not supporting
Trump?”. (S1,S2′) is non-paraphrase, which means that the label of (S1,S2) has been changed.
As for (S3,S4), it is non-paraphrase, i.e., S3 and S4 have different meanings. S3 and S4 have many
different words, and many words need to be changed if we want (S3,S4) to be paraphrase. It is
difficult to make (S3, S4) paraphrase. Thus far, (S1,S2) has larger vulnerability than (S3,S4).

This paper is the first to take advantage of adversarial attack to improve the performance of NLSM
tasks. We adopt adversarial attack to implement the action of changing the label of a sample and mea-
sure the vulnerability of the sample. Recent studies have shown that neural models will be fooled by
adversarial samples (Goodfellow et al., 2014; Kurakin et al., 2016; Hu and Tan, 2018). In the case of
images, human-imperceptible modifications to the original inputs can mislead a neural model to provide
incorrect predictions. In the case of texts, we can simply replace, delete, or add some words to change the
output of a model. Such modification methods are referred to as adversarial attacks. Adversarial attack
is usually used to generate adversarial samples to fool neural models. In contrast, we take advantage of
adversarial attack to enhance neural models.

Considering the analysis above, we propose a general two-stage training framework to enhance neural
models with Vulnerability via Adversarial Attack (VAA). In stage one, we pre-train a model A, which
can choose any neural model proposed by previous work. In stage two, we obtain the vulnerability of
input sample via adversarial attack using modelA, and we train a new modelB by combining the original
sample and its vulnerability as inputs. Experiments demonstrate that VAA is an effective framework that
can be adapted to neural models, improving their performance on NLSM datasets.

Our main contributions are threefold:

1. We first find that different categories of samples have different vulnerabilities. Moreover, we define
criteria to measure the vulnerability of a sample. In addition, we first take advantage of adversar-
ial attack to enhance neural models for NLSM tasks. Furthermore, we prove a theorem and four
corollaries to explain the factors influencing vulnerability effectiveness.

2. We propose a novel two-stage training framework called VAA by incorporating the vulnerability
into the neural model. VAA significantly enhances the performance of the model on NLSM datasets
via adversarial attack.

3. The proposed VAA framework is of general purpose and works well for many neural models. VAA
does not require much additional computing resources because the model structures and parameters
can be shared between model A and model B in the two stages.

2 Related Work

2.1 Natural Language Sentence Matching
There are two types of deep learning frameworks for Natural Language Sentence Matching (NLSM)
tasks. The first framework (Shen et al., 2018; Choi et al., 2018; Conneau et al., 2017) is based on
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Siamese architecture (Bromley et al., 1993). Two input sentences are encoded individually into sentence
vectors with the same neural network encoder. Then, a matching decision is made solely based on
the two independent sentence vectors. The major disadvantage of this framework is that there is no
explicit lower-level semantic interaction between sentences, which may cause the loss of some important
information.

Therefore, the matching-aggregation framework is proposed to deal with this problem. This frame-
work compensates for the lack of interaction and uses the cross-sentence feature or inter-sentence atten-
tion. Wang et al. (2017) proposed a bilateral multi-perspective matching model for NLSM tasks. Tan et
al. (2018) proposed multiway attention networks with multiple attention functions. Chen et al. (2017)
proposed ESIM model and demonstrated the effectiveness of carefully designed sequential inference
models based on chain LSTMs. Hong et al. (2020) proposed legal feature enhanced semantic matching
network for similar case matching.

2.2 Adversarial Attack
Adversarial attack refers to the modification of a few pixels with small perturbations of images or chang-
ing a few words of text sequences. Adversarial samples will be obtained with such minor changes to
normal samples. The target model will misclassify adversarial samples, which remain correctly classi-
fied by humans. Numerous methods have been proposed to mislead models in image classification tasks,
including box-constrained L-BFGS (Szegedy et al., 2013), the fast-gradient sign method (FGSM) (Good-
fellow et al., 2014), the basic iterative method (BIM) (Kurakin et al., 2016), the project gradient descent
(PGD) (Madry et al., 2017), the jacobian-based saliency map attack (JSMA) (Papernot et al., 2016a),
the Carlini & Wagner (C&W) attack (Carlini and Wagner, 2016), and the adversarial transformation
networks (ATN) (Baluja and Fischer, 2017). Such adversarial attacks are gradient-based, score-based,
transfer-based, or decision-based.

3 Vulnerability and VAA Framework

In our notation, we have two input sentences a and b in an NLSM task. A sample X = (a, b) is a pair
of two sentences a and b. There are n labels, and ytrue ∈ {1, . . . , n} is the true label of sample X .
a = {a1,a2, . . . ,a`a} and b = {b1,b2, . . . ,b`b} are the embeddings of sentences a and b, respectively.
ai or bj ∈ Rl is a word embedding of l-dimensional vector, which can be initialized with some pre-
trained word embeddings. The goal of the NLSM task is to predict label ypred ∈ {1, . . . , n} that indicates
the relationship between a and b.

3.1 Vulnerability Measurement and Adversarial Embedding
3.1.1 How to Measure the Vulnerability of a Sample X?
Two vulnerability-measure criterion, F1 and F2, are defined to measure the vulnerability of a sample X .
First, we pre-train a model that can successfully classify most samples. When a new sample X arrives,
we attack the model with a specific attack strength ε to generate adversarial sample X̃ . Normal sample
X = (a, b) and adversarial sample X̃ = (ã, b̃) are the original sentence pair and adversarial sentence
pair, respectively. Normal embedding E and adversarial embedding Ẽ are the word embeddings of X
and X̃ , respectively. We feed E and Ẽ to the model to get vectors O and Õ, the outputs of the last dense
layer, respectively.

ϕi =
eOi∑
j e

Oj
, ψi =

eÕi∑
j e

Õj
(1)

i∗ = arg max
i

ϕi = {i∗ | ϕi∗ = max
i
ϕi} (2)

F1 = −
∑
i

ϕi × logψi, F2 = − logψi∗ (3)

where Oi and Õi are the i-th items of vectors O and Õ, respectively. F1 measures the vulnerability by
considering the attack perturbations of all classes. F2 measures the perturbation of the main class. Both
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F1 and F2 measure the difference between O and Õ. It should be noted that if we have E and Ẽ but do
not have X and X̃ , we can still obtain F1 and F2.

3.1.2 How to Obtain the Adversarial Embedding Ẽ?
VAA framework does not need adversarial sample X̃; the adversarial embedding Ẽ is sufficient. We
only need to modify the word embedding to measure the vulnerability, and do not have to find the real
word corresponding to adversarial embedding Ẽ. Hence, a large number of adversarial attack methods
can be employed directly by VAA. Most adversarial attacks proposed for either images (Brendel et al.,
2017; Carlini and Wagner, 2016) or texts (Rosenberg et al., 2018; Papernot et al., 2016b) run extremely
slowly. Owing to training time and memory constraints, we adopt the fast-gradient sign method (FGSM)
(Goodfellow et al., 2014) to generate adversarial embedding Ẽ rapidly. FGSM is the fastest gradient-
based attack method and requires minimal memory.

FGSM can only generate adversarial embedding Ẽ but cannot generate adversarial sample X̃ , because
there may be no real word corresponding to Ẽ. Ẽ can be obtained with FGSM in the following two ways.

Ẽ = E + εsign(5EJ(θ,E, ypred)) [L∞] (4)

Ẽ = E + ε
5EJ(θ, E, ypred)

‖5EJ(θ,E, ypred)‖2
[L2] (5)

where Equation (4) and Equation (5) refer to the L∞- and L2-norm variants, respectively. FGSM works
by linearizing the loss function in the L∞ or L2 neighborhood of normal sample X . ε is the parameter
that determines the perturbation size in the direction of the gradient. J , θ, and ypred are the cross-entropy
loss, the parameters of the model, and the predicted label of X , respectively. Note that the FGSM that
we use is slightly different from the original one used in (Goodfellow et al., 2014). We replace ytrue
with ypred here. Because we cannot obtain ytrue in the test set, and we need to measure the vulnerability
rather than to obtain adversarial sample X̃ . Thus, ypred is sufficient for our need.

3.2 VAA Framework

Suppose that there is a neural model A proposed by previous work for an NLSM dataset. We propose
a general two-stage training framework VAA, which can enhance the performance of model A with
vulnerability. Putting modelA into the VAA framework will achieve better performance than only model
A on the NLSM dataset. VAA framework is shown in Figure 1. In stage one, we pre-train model A. In
stage two, we fix model A and fine-tune model B.

3.2.1 Stage One
Stage one is the same as a regular training process. In this stage, we train the model A on the NLSM
dataset regularly. After stage one, we will obtain a well-trained model A, which is called pre-trained
model A relative to stage two. Usually, neural models will adopt a multilayer perceptron (MLP) as the
final layer. For the convenience in the following description, model A is divided into model A− and the
final MLP classifier.

3.2.2 Stage Two
First, we will get normal embedding E of normal sample X with some pre-trained word embeddings.
Then, adversarial embedding Ẽ will be obtained withE, as shown in Equations (4) and (5). Ẽ is obtained
via adversarial attack with the help of model A. Normal embedding E and adversarial embedding Ẽ are
fed into model A−; then normal logit V1 ∈ Rh and adversarial logit V2 ∈ Rh are obtained, respectively.

∆V = V1 − V2 (6)

We use vectors V1 and V2 instead of F1 and F2 as shown in Equation (3). Because F1 or F2 is only
a numeric value, and using it here may result in the loss of some important information. Vector ∆V
contains the vulnerability information of the sample X . Different categories of samples have different
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Figure 1: Overview of VAA framework for NLSM datasets. In stage one, we pre-train model A. In stage
two, we fix model A and fine-tune model B.

vulnerabilities. That is, some categories of samples will have large ∆V , whereas others will have small
∆V . ∆V can measure the vulnerability just like F1 or F2.
V1, V2, and ∆V will be concatenated together to get V3 ∈ R3h. Then, V3 will be projected into a

vector V ∈ Rl, which has the same dimension as word embeddings ai and bj .

V3 = [V1;V2; ∆V ] (7)

V = WV3 + b (8)

where b ∈ Rl is the bias and the projection is the weight parameter matrix W ∈ Rl×3h.
Then V will be fed into model B along with the word embeddings ai and bj . Model B and model

A share the same model structure. The parameters of model B are initialized with the parameters of
the pre-trained model A. Therefore, model B can be trained rapidly, and VAA does not require much
additional computing resources. In stage two, we fix model A and fine-tune model B. That is, model A
will not be trained; only model B will be trained.

VAA is a two-stage training framework; we first train stage one, then train stage two. VAA is a general
framework that can be adapted to many neural models for NLSM tasks, because model A can choose
any neural model proposed by previous work.

3.3 Factors Influencing Vulnerability Effectiveness

Theorem 1. Suppose that there is a model predicting the label only with the vulnerability. Let n be
the number of labels and P be the model accuracy representing the model performance. Suppose that
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the n categories all obey normal distribution, and X1 ∼ N (µ, σ2), X2 ∼ N (µ + d, σ2), . . ., Xn ∼
N (µ+ (n− 1)d, σ2). Then,

P =
1− 2S

n
+ 2S,

where S =

∫ µ+ d
2

µ

1

σ
√

2π
e−

1
2(x−µσ )

2

dx

(9)

Different categories of samples have different vulnerabilities. So the vulnerability can be considered
as a feature, which can be used to predict the label of the sample. We suppose that the model predicts the
label only with the vulnerability feature. The model performance is brought only by the vulnerability,
so model accuracy P can represent vulnerability effectiveness. d represents the vulnerability difference
between the n categories. Theorem 1 establishes the clear functional relationship between P and n, d,
and explains the factors influencing vulnerability effectiveness. Then, we will have the following four
corollaries for Theorem 1. The appendix shows the proofs of Theorem 1 and the four corollaries.
Corollary 2. P is a monotonically decreasing function of n.
Corollary 3.

min
n
P = lim

n→+∞
P = 2S, max

n
P = P |n=2 = S +

1

2
(10)

Corollary 4. P is a monotonically increasing function of d.
Corollary 5.

min
d
P = lim

d→0
P =

1

n
, max

d
P = lim

d→+∞
P = 1 (11)

Table 2: Two examples’ vulnerability measured by F2 as defined in Equation (3).

Label Sentence Vulnerability

+
S1: Why are people supporting Donald Trump?

1.9
S2: Why do you think people are supporting Trump?

− S3: What is the difference between the Moto2 and the Moto3 race?
0.1

S4: Who is ahead in the race to sell self-driving cars?

4 Experiments

4.1 Model A and Datasets
We adapt VAA framework to different neural models on various datasets to verify the generalization
ability of VAA. ESIM (Chen et al., 2017) and BERT (Devlin et al., 2019) are chosen as model A in
Figure 1. We test VAA on some publicly available NLSM datasets, including Quora Question Pairs
(QQP)1, SNLI (Bowman et al., 2015), and MultiNLI (Williams et al., 2018). We use the same QQP
dataset partition as (Wang et al., 2017)2.

4.2 Vulnerability Analysis
4.2.1 Case Study and Vulnerability Visualization
The two examples in Table 1 are used to do a case study. Table 2 shows that vulnerability of the
paraphrase pair is larger than that of the non-paraphrase pair. In Figure 2, we illustrate the vul-
nerability of samples in QQP, SNLI, and MultiNLI. Figure 2 shows that different categories of samples
have different vulnerabilities in all these datasets. For the QQP dataset, paraphrase pairs have larger
vulnerability than non-paraphrase pairs. As for SNLI and MultiNLI, both contradiction and
neutral pairs have larger vulnerability than entailment pairs. Figure 2 also shows that the vulner-
ability difference between categories in QQP is more obvious than that in SNLI and MultiNLI.

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
2This QQP dataset partition is available at https://zhiguowang.github.io.
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(b) SNLI
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(c) MultiNLI (Matched)
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Figure 2: Vulnerability visualization of samples in QQP, SNLI, and MultiNLI. The colored horizontal
line represents the average vulnerability of the corresponding category. The vulnerability is measured by
F2 with the L2-norm (ε = 0.02) FGSM attack.

4.2.2 Vulnerability Effectiveness and Hyper-parameters Analysis

Different categories of samples have different vulnerabilities. So the vulnerability can be considered
as a feature, which can be used to predict the label of the sample. We predict the label only with the
vulnerability feature to demonstrate the effectiveness of vulnerability. With the prediction results, we
can plot the receiver operating characteristic (ROC) curve and calculate the AUC score. We conduct the
experiments on the QQP dataset which is taken as an example. Figure 3 (a) shows the ROC curve with
F2 of the L2-norm FGSM attack, where ε is 0.02. The vulnerability is measured with F2, and we predict
the label only with the numeric value F2. AUC = 0.81 is really high, demonstrating the effectiveness of
vulnerability.

To achieve better performance with the vulnerability, we should find more suitable hyper-parameters.
Vulnerability-measure criterion F , perturbed norm L, and attack strength ε are all hyper-parameters.
With different hyper-parameters setting, we will get different AUC scores. Figure 3 (b) shows the re-
lationship between the AUC score and these hyper-parameters. From Figure 3 (b), we can know the
optimal hyper-parameters setting. Figure 3 (a) and VAA framework adopt the optimal hyper-parameters
setting.
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(a) ROC curve with F2 of the L2-norm FGSM attack, where ε
is 0.02. AUC = 0.81 is really high, demonstrating the effec-
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Figure 3: Vulnerability effectiveness and hyper-parameters analysis on the QQP dataset. We classify a
sentence pair only with its vulnerability feature.

Table 3: Classification accuracy on the dev/test set of QQP, SNLI, and MultiNLI. We re-implement the
ESIM and BERTBASE, then report the results. The best result in each scenario is indicated in bold.

Model QQP SNLI MultiNLI
Matched Mismatched

Dev Test Dev Test Dev Test Dev Test
ESIM 86.36 86.00 87.50 86.81 73.03 72.81 73.14 72.56

ESIM+VAA 87.30 87.16 87.49 87.05 72.83 73.09 73.43 72.62
BERTBASE 88.22 88.24 87.90 87.93 78.08 78.35 78.47 78.40

BERTBASE+VAA 89.62 89.64 87.81 88.10 78.71 78.79 78.93 79.14

4.3 VAA Framework Analysis

4.3.1 VAA Framework Settings and Results

For convenience, both ESIM and BERTBASE are in their default settings. For the comparability of
results, the method for generating adversarial embedding Ẽ is the L2-norm FGSM attack with ε = 0.02,
as shown in Equation (5), for all neural models and datasets.

Zhang et al. (2020) summarized the performances of previous works on these datasets. Compared
with the small performance gain of each previous work, VAA significantly improves the performances of
neural models on most datasets, as shown in Table 3. In particular, for the QQP dataset, VAA increases
the accuracy on the dev/test sets by 1.23% on average. Table 3 is consistent with Corollary 2; VAA
achieves better performance gain on QQP (n = 2) than on SNLI (n = 3) and MultiNLI (n = 3). n
is the number of labels, as shown in Section 3.3. From Section 4.2.1, we know that the vulnerability
difference between categories in QQP is more obvious than that in SNLI and MultiNLI. d represents
the vulnerability difference between the n categories, so the d of QQP is larger than that of SNLI and
MultiNLI. Thus, Table 3 is also consistent with Corollary 4, and VAA achieves better performance gain
on QQP than on SNLI and MultiNLI.

4.3.2 Two-stage Training

Joint training models A and B is not adopted. Instead, we adopt two-stage training and fine-tune only
model B in stage two for the following three reasons.
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Figure 5: Loss in the two-stage training of VAA
framework. To make the curve smoother, we aver-
age the loss as a value for every 20 batches.

1. It will reduce the accuracy to fine-tune many pre-trained word embeddings models, such as ELMo,
GPT, and BERT, on a specific dataset. Similarly, fine-tuning model A in stage two will lead to
overfitting the training data and reducing accuracy.

2. As shown in Figure 4, for each batch, we need to run model A three times in stage two to get
the normal logit V1, adversarial embedding Ẽ, and adversarial logit V2, respectively. Further, the
process of getting Ẽ is an independent adversarial attack that cannot be back-propagated. Fine-
tuning model A only optimizes the process of getting V1 and V2. The adversarial embedding Ẽ
will introduce more uncertainty owing to the partial optimization. As a result, adversarial logit V2,
vectors V3 and V will also introduce more noise.

3. Fixing modelA in stage two also speeds up the training process and thus saves computing resources.

To observe the change after incorporating the vulnerability, we record the average training loss per
20 batches, as shown in Figure 5. In stage one, the optimizer converges to a local minimum. After
incorporating the vulnerability, the loss increases immediately because adding the vulnerability to the
sample destroys the original feature space of the sample. However, after several iterations, the loss
rapidly declines to a more optimized area than in stage one. It indicates that the vulnerability significantly
improves the performance of neural models.

4.4 Difference Between VAA and Adversarial Training
Both VAA and adversarial training are methods that incorporate the vulnerability into the training pro-
cess. Adversarial training (Goodfellow et al., 2014; Kurakin et al., 2016) is one of the most popular
defense mechanisms in the current studies. The idea is to inject adversarial samples into the training
process and train the model on a mix of normal samples and adversarial samples. The goal of adversarial
training is to improve the accuracy on adversarial samples. However, adversarial training tends to overfit
the specific attack used at training time, which causes the accuracy to decline on normal samples.

However, the goal of VAA is different from that of adversarial training. VAA uses the vulnerability
to improve the accuracy on normal samples rather than adversarial samples. The methods of using the
vulnerability are different as well. VAA encodes the vulnerability into the inputs, while adversarial
training works by injecting adversarial samples into the training process.

5 Conclusion

In this paper, we first found a phenomenon that different categories of samples have different vulnera-
bilities. Besides, we defined criteria to measure the vulnerability of a sample. We proposed a general
two-stage training framework called VAA to incorporate the vulnerability. VAA can significantly en-
hance the performance of neural models on NLSM datasets. Furthermore, we closely examined the
factors that influence vulnerability effectiveness theoretically and experimentally.
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In future work, there remains scope to improve VAA further. First, the vulnerability is currently
obtained via adversarial attack. There may be some other methods that can better capture the vulnera-
bility, e.g., integrating external knowledge vulnerability between phrase pairs. Second, VAA works by
encoding the vulnerability into the inputs. We should explore some other methods to incorporate the
vulnerability.
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A Proof of Theorem 1

Figure 6: Hypothetical normal distribution of vulnerability. The horizontal axis represents the vulnera-
bility, which can be measured by F1 or F2 as defined in Equation (3). The vertical axis represents the
probability that a sample has the vulnerability.

Proof. Many random variables obey normal distribution in the real world; hence, the normal distribution
assumption in Theorem 1 is reasonable. X1 ∼ N (µ, σ2); hence, the density function f1(x) is:

f1(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

(12)
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In Figure 6, we consider a sample that has vulnerability x0. We want to predict the label of the sample
only with the vulnerability x0. The probability that the sample has label 1 is f1(x0). The probability that
the sample has label 2 is f2(x0). f1(·) and f2(·) are the density functions of X1 and X2, respectively.
From Figure 6, we can find that f1(x0) < f2(x0). We suppose that the model predicts the label only
with the vulnerability. Hence the model should predict that the sample has label 2. Then, the probability
of making the right prediction is f2(x0)

f1(x0)+f2(x0)
. Through generalization to all samples, we can compute

the model accuracy P .

P =
Supper
Sall

(13)

where Supper is the area under the upper curve in Figure 6, and Sall is the total area under all the distri-
bution curves. Now, we have to compute Supper and Sall.
X1 ∼ N (µ, σ2); hence, we have Equation (14) and Equation (15).∫ +∞

−∞

1

σ
√

2π
e−

1
2(x−µσ )

2

dx = 1 (14)

∫ 0

−∞

1

σ
√

2π
e−

1
2(x−µσ )

2

dx = 0.5 (15)

All Xi obey normal distribution, so we can calculate Sall with Equation (14).

Sall = n (16)

Let

S :=

∫ µ+ d
2

µ

1

σ
√

2π
e−

1
2(x−µσ )

2

dx (17)

All Xi have the same variance σ2 and the means form a tolerance of d arithmetic progression, so we
have:

∫ µ+kd

µ− d
2
+kd

1

σ
√

2π
e−

1
2(x−µσ )

2

dx

=

∫ µ+kd+ d
2

µ+kd

1

σ
√

2π
e−

1
2(x−µσ )

2

dx

=

∫ µ+ d
2

µ

1

σ
√

2π
e−

1
2(x−µσ )

2

dx = S,∀k ∈ [0, . . . , n− 1]

(18)

From Figure 6, we can calculate Supper with Equations (15), (17), and (18).

Supper = (0.5 + S)× 2 + 2S × (n− 2) (19)

With Equations (13), (16), and (19), we can have the model accuracy P .

P =
1− 2S

n
+ 2S (20)

B Proof of Corollary 2

Proof. With Figure 6, Equations (15) and (17), we know that S < 0.5, then 1− 2S > 0. With Equation
(9), we know that P is a monotonically decreasing function of n.
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C Proof of Corollary 3

Proof. With Corollary 2 and Equation (9), we can have Equations (21) and (22).

min
n
P = lim

n→+∞
P = lim

n→+∞

1− 2S

n
+ 2S = 2S (21)

n is the number of labels; hence, n ≥ 2. Then

max
n

P = P |n=2 =
1− 2S

2
+ 2S = S +

1

2
(22)

D Proof of Corollary 4

Proof. With Equation (17), we know that S is a monotonically increasing function of d.

P =
1− 2S

n
+ 2S = (2− 2

n
)S +

1

n
(23)

n is the number of labels; hence, n > 1. Then, 2 − 2
n > 0; hence, P is a monotonically increasing

function of S. Thus, P is a monotonically increasing function of d.

E Proof of Corollary 5

Proof.

lim
d→0

S = lim
d→0

∫ µ+ d
2

µ

1

σ
√

2π
e−

1
2(x−µσ )

2

dx = 0 (24)

lim
d→+∞

S = lim
d→+∞

∫ µ+ d
2

µ

1

σ
√

2π
e−

1
2(x−µσ )

2

dx

=

∫ +∞

µ

1

σ
√

2π
e−

1
2(x−µσ )

2

dx = 0.5

(25)

With Corollary 4, Equations (24) and (25), we have:

min
d
P = lim

d→0
P = lim

d→0

1− 2S

n
+ 2S =

1

n
(26)

max
d
P = lim

d→+∞
P = lim

d→+∞

1− 2S

n
+ 2S = 1 (27)

Figure 7: General distribution of vulnerability.
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F General Distribution

If we discard the assumption of the normal distribution in Theorem 1, we can also have Equation (13),
which can be established for any distribution. Figure 7 shows an example of a general distribution. Sall =
n is always established. For the convenience of calculating Supper, we assume the normal distribution,
and we have Theorem 1.


