
Proceedings of the 28th International Conference on Computational Linguistics, pages 6759–6766
Barcelona, Spain (Online), December 8-13, 2020

6759

Statistical Parsing of Tree Wrapping Grammars

Tatiana Bladier Jakub Waszczuk Laura Kallmeyer
Heinrich Heine University of Düsseldorf

Universitätsstraße 1, 40225 Düsseldorf, Germany
{bladier,waszczuk,kallmeyer}@phil.hhu.de

Abstract

We describe an approach to statistical parsing with Tree-Wrapping Grammars (TWG). TWG is a
tree-rewriting formalism which includes the tree-combination operations of substitution, sister-
adjunction and tree-wrapping substitution. TWGs can be extracted from constituency treebanks
and aim at representing long distance dependencies (LDDs) in a linguistically adequate way. We
present a parsing algorithm for TWGs based on neural supertagging and A∗ parsing. We extract a
TWG for English from the treebanks for Role and Reference Grammar and discuss first parsing
results with this grammar.

1 Introduction

We present a statistical parsing approach for Tree-Wrapping Grammar (TWG) (Kallmeyer et al., 2013).
TWG is a grammar formalism closely related to Tree-Adjoining Grammar (TAG) (Joshi and Schabes,
1997), which was originally developed with regard to the formalization of the typologically oriented Role
and Reference Grammar (RRG) (Van Valin and LaPolla, 1997; Van Valin Jr, 2005). TWG allows for,
among others, a more linguistically adequate representation of long distance dependencies (LDDs) in
sentences, such as topicalization or long distance wh-movement. In the present paper we show a grammar
extraction algorithm for TWG, propose a TWG parser, and discuss parsing results for the grammar
extracted from the RRG treebanks RRGbank and RRGparbank1 (Bladier et al., 2018).

Similarly to TAG, TWG has the elementary tree combination operations of substitution and sister-
adjunction. Additionally, TWG includes the operation of tree-wrapping substitution, which accounts
for preserving the connection between the parts of the discontinuous constituents. Operations similar to
tree-wrapping substitution were proposed by (Rambow et al., 1995) as subsertion in D-Tree Grammars
(DTG) and by (Rambow et al., 2001) as generalized substitution in D-Tree substitution grammar (DSG).
To our best knowledge, no statistical parsing approach was proposed for DTG or DSG. An approach to
symbolic parsing for TWGs with edge features was proposed in (Arps et al., 2019). In this work, we
propose a statistical parsing approach for TWG and extend the pipeline based on supertagging and A∗

algorithm (Waszczuk, 2017; Bladier et al., 2019) originally developed for TAG to be applied to TWG.
The contributions of the paper are the following: 1) We present the first approach to statistical parsing

for Tree-Wrapping Grammars. 2) We propose an extraction algorithm for TWGs based on the algorithm
developed for TAG by (Xia, 1999). 3) We extend and modify the neural A? TAG-parser (Waszczuk, 2017;
Kasai et al., 2018; Bladier et al., 2019) to handle the operation of tree-wrapping substitution.

2 Long distance dependencies and wrapping substitution in TWG

TWGs consist of elementary trees which can be combined using the operations a) substitution (replacing a
leaf node with a tree), b) sister adjunction (adding a new daughter to an internal node) and c) tree-wrapping
substitution (adding a tree with a d(ominance)-edge by substituting the lower part of the d-edge for a leaf
node and merging the upper node of the d-edge with the root of the target tree, see Fig. 1). The latter is

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

1https://rrgbank.phil.hhu.de, https://rrgparbank.phil.hhu.de

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://rrgbank.phil.hhu.de
https://rrgparbank.phil.hhu.de

6760

used to capture long distance dependencies (LDDs), see the wh-movement in Fig. 1. Here, the left tree
with the d-edge (depicted as a dashed edge) gets split; the lower part fills a substitution slot while the
upper part merges with the root of the target tree. TWG is more powerful than TAG (Kallmeyer, 2016).
The reason is that a) TWG allows for more than one wrapping substitution stretching across specific nodes
in the derived tree and b) the two target nodes of a wrapping substitution (the substitution node and the
root node) need not come from the same elementary tree, which makes wrapping non-local compared to
adjunction in TAG.

CLAUSE

CORE

NUC

V

remember

NP

PRO

you

PrCS

NPwh

PROwh

What

CLAUSE

CORE

COREdo you think

CLAUSE

CORE

CORE

NUC

V

remember

NP

PRO

you

do you think

PrCS

NPwh

PROwh

What

RRG categories:
NUC = predicate
CORE = NUC + non-extracted argum.
CLAUSE = CORE + extracted argum.

;

Figure 1: Tree-wrapping substitution for the sentence “What do you think you remember” with long-
distance wh-movement.

Linguistic phenomena leading to LDD differ across languages. Among LDDs in English are some cases
of extraction of a phrase to a non-canonical position with respect to its head, which is typically fronting in
English (Candito and Seddah, 2012). We identified the following LDD variants in our data which can be
captured with tree-wrapping substitution: long-distance relativization, long-distance wh-movement, and
long-distance topicalization, which we discuss in Section 6.2 LDD cases are rather rare in the data, which
is partly due to the RRG analysis of operators such as modals, which do not embed CORE constituents
(in contrast to, for example, the analyses in the Penn Treebank). Only 0,11 % of tokens in our experiment
data (including punctuation) are dislocated from their canonical position in sentence to form an LDD.
This number is on a par with 0,16 % of tokens reported by (Candito and Seddah, 2012) for French data.

3 Statistical Parsing with TWGs

The proposed A? TWG parser3 is a direct extension of the simpler A? TAG parser described in (Waszczuk,
2017). The parser is specified in terms of weighted deduction rules (Shieber et al., 1995; Nederhof, 2003)
and can be also seen as a weighted variant of the symbolic TWG parser (Arps et al., 2019). As in (Bladier
et al., 2019), both TWG elementary trees (supertags) and dependency links are weighted, a schema also
used in A? CCG parsing (Yoshikawa et al., 2017). These weights come directly from a neural supertagger
and dependency parser, similar to the one proposed by (Kasai et al., 2018). Parsing consists then in finding
a best-weight derivation among the derivations that can be constructed based on the deduction rules for a
given sentence.

Figure 2: Pipeline of our neural statistical TWG parsing architecture.

The supertagger takes on input a sequence of word embeddings4 (xi)
n
i=1, to which a 2-layer BiLSTM

transducer is applied to provide the contextualized word representations (hi)
n
i=1, common to all subsequent

tasks: POS tagging, TWG supertagging, and dependency parsing. On top of that, we apply two additional

2Another potential LDD cases in English are it-clefts (for example “It was the uncertainty that Mr Lorin feared”). Although
we have not found this LDD variant in our data, our parsing method will work for these cases as well.

3The parser, the TWG extraction code and the recipes to reproduce the experiments described in this paper are available at
https://github.com/TaniaBladier/Statistical_TWG_Parsing.

4In our experiments (see Sec. 5), we used fastText (Bojanowski et al., 2016) to obtain the word vector representation.

https://github.com/TaniaBladier/Statistical_TWG_Parsing

6761

2-layer BiLSTM transducers in order to obtain the supertag- and dependency-specific word representations:

(h
(sup)
1 , . . . , h(sup)

n) = BiLSTMs(h1, . . . , hn) (1)

(h
(dep)
1 , . . . , h(dep)

n) = BiLSTMd(h1, . . . , hn) (2)

The supertag-specific representations are used to predict both supertags and POS tags (POS tagging is a
purely auxiliary task, since POS tags are fully determined by the supertags):

Pr(sup(i)) = softmax(Linears(h
(sup)
i)) (3)

Pr(pos(i)) = softmax(Linearp(h
(sup)
i)) (4)

Finally, the dependency parsing component is based on biaffine scoring (Dozat and Manning, 2017), in
which the head and dependent representations are obtained by applying two feed-forward networks to
the dependency-specific word representations, hdi = FFhd(h

(dep)
i) and dpi = FFdp(h

(dep)
i). The score of

word j becoming the head of word i is then defined as:

φ(i, j) = dpTi M hdj + bThdj , (5)

where M is a matrix and b is a bias vector.5

Extending the TAG parser to TWG involved adapting the weighted deduction rules to handle wrapping
substitution as well as updating the corresponding implementation with appropriate index structures to
speed up querying the chart. The A? heuristic is practically unchanged and it is both admissible (by
construction) and monotonic (checked at run time), which guarantees that the first derivation found by
the parser is the one with the best weight. The scheme of our parsing architecture is shown in Fig. 2.
In Appendix A we provide details on modifications we have applied to the A? parser to handle the
tree-wrapping substitution.

4 TWG extraction

To extract a TWG from RRGbank and RRGparbank, we adapt the top-down grammar extraction algorithm
developed by (Xia, 1999) for TAG. While inital and sister-adjoining trees can be extracted following
this algorithm, we added a new procedure to extract d-edge trees for wrapping substitution operation.
Extraction of initial and sister-adjoining elementary trees requires manually defined percolation tables
for marking head and modifier nodes. In order to extract d-edge elementary trees for LDDs, dependent
constituents need to be marked prior to TWG extraction. In RRGbank and RRGparbank the constituents
belonging to LDDs are indicated with features PRED-ID and NUC-ID and an index. These indicated parts
alongside with the mother node are extracted to form a single tree with a dominance link (d-edge) (see for
instance the elementary tree for “What to say” in Fig. 3). The remaining nodes plus the duplicated mother
node and a substitution slot form the target tree, for example the tree for “I’m trying” in Fig. 3. Please find
a more detailed formal description of our extraction algorithm along with a link to the percolation tables
in Appendix B.

CLAUSE

CORE

CORE

NUC[NUC-ID 1]

V

say

CLM

to

CORE

I’m trying

PrCS

NPwh

PROwh[PRED-ID 1]

What

CLAUSE

CORE

CORECORE

I’m trying

CLAUSE

CORE

NUC

V

say

CLM

to

PrCS

NPwh

What

;

Figure 3: Extraction of a target tree and an elementary tree with a dominance edge (marked with dotted
line). The nodes with PRED-ID and NUC-ID in the left tree identify the components of the LDD.

5The head representation hd0 of the dummy root node is a parameter in this architecture.

6762

5 Data and Parsing Experiments
Parameters TWG
Supertags 3125
Supertags occuring once 1858
Avg. sentence length 10.97
Sentences 7656
initial trees 1527
sister-adjoining trees 1549
d-edge trees 49

Table 1: Statistics on the extracted TWG.

We have taken the gold and silver data from RRGbank and
the English part of RRGparbank6. The data is split in a train
and a test set. We have taken 10 % of the sentences from the
train set to create a dev. set. Thus, our train, dev. and test sets
include 4960, 551, and 2145 trees, respectively. There are 46
constituents with LDDs in the train set, 5 in the dev. set and
27 in the test set. We extracted a TWG from this data and
present in Table 1 statistics on the elementary tree templates
(supertags) in the TWG.

We compare the parsing results with the parser DiscoDOP (van Cranenburgh and Bod, 2013) which
is based on the discontinuous data-oriented parsing model. We also compare our results with the state-
of-the-art transition-based parser Discoparset (Coavoux and Cohen, 2019). We evaluated7 the overall
performance of the parsers and also analyzed how well all three systems predict LDDs (see Tables 2
and 3). Unrelated to LDDs, the treebanks contain crossing branches (e.g., for operators and modifiers).
Prior to TWG extraction, we decross these while keeping track of the transformation in order to be able
to reverse it. For parsing with DiscoDOP and Discoparset, we added crossing branches for all LDDs.
To evaluate LDD prediction with DiscoDOP and Discoparset we counted how many crossing branches
were established in parsed trees. For ParTAGe we counted the LDD predictions as correct whenever the
predicted supertags and dependencies indicated that the long distance element would be substituted to
the elementary tree of the corresponding predicate. We counted partially correct LDDs in both parsing
architectures as correctly predicted as long as the connection between the predicate and the fronted
element was predicted.

DiscoDOP Discoparset ParTAGe ParTAGe
gold POS

dev test dev test dev test dev test
Unlabeled Attachment Score – – – – 87.74 87.67 85.13 84.64
Supertagging accuracy – – – – 74.25 75.81 77.50 77.52

POS-tagging accuracy 92.02 93.25 94.24(+3.04) 94.92(+2.69) 94.63 95.07 100.00 100.00
Exactly matching parses 29.04 32.87 28.68(+8.89) 28.30(+13.19) 36.12 38.32 38.64 38.73
Labeled F1 79.26 80.96 83.57(+6.83) 84.56(+6.39) 85.26 85.26 85.54 85.84
sentences with parses 551 2145 551 2145 551 2145 546(−5) 2120(−25)

Table 2: Parsing results compared with DiscoDOP (van Cranenburgh et al., 2016) and Discoparset
(Coavoux and Cohen, 2019). In case of Discoparset, the numbers in subscript represent the relative gain
provided by BERT (Devlin et al., 2019) used in neither DiscoDOP nor ParTAGe experiments.

6 Error analysis for LDD prediction

We evaluated the performance of our parsing architecture with regard to the labeled F1-score and
we also focused on prediction of the LDDs (see Tables 2 and 3). The results show that ParTAGe

Predicted LDDs DiscoDOP Discoparset ParTAGe

test test test test
(gold POS)

true positives 13 14 22 18
false positives 7 0 0 0
false negatives 14 13 5 9

Table 3: Prediction of LDDs on test data.

predicted the LDDs in the test data
more accurately than the compared
parsers. Please note that LDDs are
generally rare in the corpus data and
that we also had only about 5000 sen-
tences in the training data.

Some mistakes resulted from the
wrong prediction of a POS tag which

6Gold annotated data means that data were annotated and approved by at least two annotators of RRGbank or RRGparbank
and silver data means an annotation by one linguist.

7We use the evaluation parameters distributed together with DiscoDOP for constituency parsing evaluation. Our evaluation
file is available at https://github.com/TaniaBladier/Statistical_TWG_Parsing/blob/main/experiments/eval.prm.

https://github.com/TaniaBladier/Statistical_TWG_Parsing/blob/main/experiments/eval.prm

6763

leads to the parser confusing an LDD constituent with a construction without LDD. For example, in (1),
the word “is” should have POS tag V, but the parsing system erroneously labels it as AUX (= auxiliary)
and thus interprets the wh-element as a predicate. In order to check our assumption about POS tags
as a source of error, we have run an experiment in which we presented the parser with gold POS tags.
Although this additional information helped to rule out the LDD errors in (1), restriction of the available
supertags introduced new errors in LDD predictions (see Table 3) and also was the reason why some
sentences could not be parsed (as shown in Table 2).

(1) a. What is one to think of all this? (is tagged AUX instead of V)
b. [. . .] which he told her to place on her tongue (which tagged CLM instead of PRO-REL)

In some cases where the relative or wh phrase of the LDD is an adjunct, as in (2), the parser incorrectly
attaches it higher, taking it to be a modifier of the embedding verb.

(2) And why do you imagine that we bring people to this place?

Cases where the embedding verb also has a strong tendency to take a wh-element as argument sometimes
get parsed incorrectly: In (3), which is analysed as an argument of said.

(3) [. . .] slip of paper which they said was the bill

7 Conclusions and Outlook

We have presented a statistical parsing algorithm for parsing Tree-Wrapping Grammar - a grammar for-
malism inspired by TAG which aims at linguistically better representations of long distance dependencies.
The LDDs in TWG are represented in a single elementary tree called d-edge tree which is combined with
the target tree using tree-wrapping substitution. This operation allows to simultaneously put both parts of
a discontinuous constituent to the corresponding slots of the target tree. We have extracted a TWG for
English from two RRG treebanks and have compared our parsing experiments with the parser DiscoDOP
based on the DOP parsing model and with the transition-based parser Discoparset. We have evaluated our
parser on prediction of LDDs and could achieve more accurate results than the compared parsers.

In our future work we plan to explore TWG extraction and parsing for different languages, since the
linguistic phenomena leading to LDDs vary across the languages. In particular, we have already started to
work on extraction of TWGs for German and French. We plan to apply our TWG extraction and parsing
algorithm to other constituency treebanks, for example French Treebank (Abeillé et al., 2003). We also
plan to implement a slightly extended version of tree wrapping substitution which would allow to place
the parts of discontinuous constituents in various slots between the nodes of the target tree.

Acknowledgements

We thank three anonymous reviewers for their insightful comments, as well as Rainer Osswald and Robin
Möllemann for their help with collecting the experimental data and fruitful discussions. This work was
carried out as a part of the research project TREEGRASP (treegrasp.phil.hhu.de) funded by a Consolidator
Grant of the European Research Council (ERC).

References
Anne Abeillé, Lionel Clément, and François Toussenel. 2003. Building a treebank for french. In Treebanks, pages

165–187. Springer.

David Arps, Tatiana Bladier, and Laura Kallmeyer. 2019. Chart-based RRG parsing for automatically extracted
and hand-crafted RRG grammars. University at Buffalo, Role and Reference Grammar RRG Conference 2019.

Tatiana Bladier, Andreas van Cranenburgh, Kilian Evang, Laura Kallmeyer, Robin Möllemann, and Rainer Oss-
wald. 2018. RRGbank: a Role and Reference Grammar Corpus of Syntactic Structures Extracted from the Penn
Treebank. In Proceedings of the 17th International Workshop on Treebanks and Linguistic Theories (TLT 2018),

6764

December 13–14, 2018, Oslo University, Norway, number 155, pages 5–16. Linköping University Electronic
Press.

Tatiana Bladier, Jakub Waszczuk, Laura Kallmeyer, and Jörg Janke. 2019. From partial neural graph-based LTAG
parsing towards full parsing. Computational Linguistics in the Netherlands Journal, 9:3–26, Dec.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606.

Marie Candito and Djamé Seddah. 2012. Effectively long-distance dependencies in French: Annotation and
parsing evaluation.

Maximin Coavoux and Shay B. Cohen. 2019. Discontinuous constituency parsing with a stack-free transition
system and a dynamic oracle. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 204–217, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency parsing.

Aravind K Joshi and Yves Schabes. 1997. Tree-adjoining grammars. In Handbook of formal languages, pages
69–123. Springer.

Laura Kallmeyer, Rainer Osswald, and Robert D. Van Valin, Jr. 2013. Tree Wrapping for Role and Reference
Grammar. In G. Morrill and M.-J. Nederhof, editors, Formal Grammar 2012/2013, volume 8036 of LNCS,
pages 175–190. Springer.

Laura Kallmeyer. 2016. On the mild context-sensitivity of k-Tree Wrapping Grammar. In Annie Foret, Glyn
Morrill, Reinhard Muskens, Rainer Osswald, and Sylvain Pogodalla, editors, Formal Grammar: 20th and 21st
International Conferences, FG 2015, Barcelona, Spain, August 2015, Revised Selected Papers. FG 2016, Italy,
August 2016, Proceedings, number 9804 in Lecture Notes in Computer Science, pages 77–93, Berlin. Springer.

Jungo Kasai, Robert Frank, Pauli Xu, William Merrill, and Owen Rambow. 2018. End-to-end graph-based TAG
parsing with neural networks. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
1181–1194, New Orleans, Louisiana, June. Association for Computational Linguistics.

Mark-Jan Nederhof. 2003. Squibs and Discussions: Weighted Deductive Parsing and Knuth’s Algorithm. Com-
putational Linguistics, 29(1).

Owen Rambow, K. Vijay-Shanker, and David Weir. 1995. D-Tree Grammars. In Proceedings of ACL.

Owen Rambow, K Vijay-Shanker, and David Weir. 2001. D-tree substitution grammars. Computational Linguis-
tics, 27(1):87–121.

Stuart M Shieber, Yves Schabes, and Fernando CN Pereira. 1995. Principles and implementation of deductive
parsing. The Journal of logic programming, 24(1):3–36.

Andreas van Cranenburgh and Rens Bod. 2013. Discontinuous parsing with an efficient and accurate dop model.
In Proceedings of the International Conference on Parsing Technologies (IWPT 2013). Citeseer.

Andreas van Cranenburgh, Remko Scha, and Rens Bod. 2016. Data-oriented parsing with discontinuous con-
stituents and function tags. Journal of Language Modelling, 4(1):57–111.

Robert D. Van Valin, Jr. and Randy LaPolla. 1997. Syntax: Structure, meaning and function. Cambridge Univer-
sity Press.

Robert D. Van Valin Jr. 2005. Exploring the syntax-semantics interface. Cambridge University Press.

Jakub Waszczuk. 2017. Leveraging MWEs in practical TAG parsing: towards the best of the two worlds. Ph.D.
thesis.

Fei Xia. 1999. Extracting tree adjoining grammars from bracketed corpora. In Proceedings of the 5th Natural
Language Processing Pacific Rim Symposium (NLPRS-99), pages 398–403.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto. 2017. A* CCG parsing with a supertag and dependency
factored model. CoRR, abs/1704.06936.

6765

Appendix A. Specification of the TWG parser

AX: (0,∅) : (N→•α,i,i,[])
i∈{0,...,n−1}
N→α is a rule

SC: (w,m) : (N→α•Mβ,i,j,Γ)
(w,m) : (N→αM•β,i,j+1,Γ)

`(M)=sj+1

DE: (w,m) : (N→α•,i,j,Γ)
(w,m) : (N,i,j,Γ,ws?)

ws?=yes ⇐⇒ dnode(N)

CS: (w1,m1) : (N→α•Mβ,i,j,Γ1) (w2,m2) : (M,j,k,Γ2,no)
(w1+w2,m1⊕m2) : (N→αM•β,i,k,Γ1⊕Γ2)

SU: (w1,m1) : (N→α•Mβ,i,j,Γ1) (w2,m2) : (R,j,k,Γ2,no)
(w1+w2+ω(R,N),m1⊕m2) : (N→αM•β,i,k,Γ1⊕Γ2)

leaf (M)
root(R) ∧ ¬sister(R)

`(M)=`(R)

SA: (w1,m1) : (N→α•β,i,j,Γ1) (w2,m2) : (M,j,k,Γ2,no)
(w1+w2+ω(M,N),m1⊕m2) : (N→α•β,i,k,Γ1⊕Γ2)

`(M)=`(N) ∧ sister(M)
¬sister(N)

PW: (w1,m1) : (N→α•Mβ,i,j,Γ1) (w2,m2) : (D,j,k,Γ2,yes)
(w1,m1[j⇒w2+sum(m2)+A(D)]) : (N→αM•β,i,k,Γ1⊕[(j,k,`(D))])

leaf (M)
`(M)=`(D)

CW: (w1,m1) : (R,i,j,Γ1⊕[(f1,f2,y)]⊕Γ2,ws?) (w2,m2) : (D,f1,f2,Γ3,yes)
(w1+w2+ω(R,D),m1[f1⇒⊥]⊕m2) : (D,i,j,Γ1⊕Γ3⊕Γ2,no)

root(R) ∧ y=`(D)
`(parent(D))=`(R)
¬sister(R)

Table 4: Weighted deduction rules of the TWG parser

Our TWG parser is specified in terms of weighted deduction rules (Shieber et al., 1995; Nederhof,
2003). Each deduction rule (see Table 4) takes the form of a set of antecedent items, presented above the
horizontal line, from which the consequent item (below the horizontal line) can be deduced, provided that
the corresponding conditions (on the right) are satisfied. The specification of the TWG parser consists
of 8 deduction rules which constitute a blend of the TAG parser (Bladier et al., 2019) with the symbolic
TWG parser (Arps et al., 2019). Here, we assume familiarity with both these parsers and limit ourselves
to explaining the features specific to the statistical TWG parser.

Weights. A pair (w,m) is assigned to each chart item via deduction rules, where w is the inside weight,
i.e., the weight of the inside derivation, and m is a map assigning weights to the individual gaps in the
corresponding gap list Γ. Since each gap in Γ can be uniquely identified by its starting position, we use
the starting positions as keys in m. The need to use a map (dictionary) data structure instead of a single
scalar value, as in the TAG parser, stems from the CW rule (complete wrapping), in which the calculation
of the resulting weight map requires removing the weight corresponding to the gap (f1, f2, y).

We use ∅ to denote an empty map, m[x⇒ y] to denote m with y assigned to x, m[x⇒ ⊥] to denote
m with x removed from the set of keys (together with the corresponding value), and sum(m) to denote
the sum of values (weights) in the map m. We also re-use the concatenation operator ⊕ to represent map
union. Whenever map union is used (m1 ⊕m2), the sets of keys of the two map arguments (m1 and m2)
are guaranteed to be disjoint (an invariant which can be proved by induction over the deduction rules).

Heuristic. Given a chart item η = (x, i, j,Γ) with the corresponding weights (w,m), the TWG A?

heuristic (which provides a lower-bound estimate on the cost of parsing the remaining part of the sentence)
is a straightforward generalization of the TAG A? heuristic used by (Bladier et al., 2019). In particular, it
accounts for the total minimal cost of scanning each word outside the span (i, j), as well as the words
remaining in the gaps in Γ. Thus, in constrast with the TAG heuristic, since there can be many gaps in Γ,
the sum of the weights in the map m has to be accounted for.

6766

Appendix B. TWG extraction algorithm

1. Decross tree branches. First, for local discontinuous constituents (for instance NUCs consisting
of a verb and a particle in German), we split the constituent into two components (e.g., NUC1 and
NUC2), both attached to the mother of the original discontinuous node.

Second, if a tree τ still has crossing branches, the tree is traversed top-down from left to right and
among its subtrees those trees are identified whose root labels contain one of the following strings:
OP-, -PERI, -TNS, CDP, or VOC. For each such subtree γ in question with r being its root, we choose
the highest node v below the next left8 sibling of r such that the rightmost leaf dominated by v
immediately precedes the leftmost leaf dominated by r. If r and v are not yet siblings, γ is reattached
to the parent of v. If the subtree in question has no left siblings, it is reattached to the right in a
corresponding way. After this step, it should be checked if the tree τ still contains crossing branches.
If yes, the process of decrossing branches is continued by applying the steps above to the next subtree
in question.

2. Extract LDDs. Then we traverse each tree τ in a top-down left-to-right fashion and check for each
subtree of τ whether it contains the following special markings for LDDs in its root label: PREDID=,
NUCID= or REF=. The indexes identify the parts of the NLD which belong together. In case of an
LDD, the parts of the minimal subtree which contain both parts of the LDD are extracted within a
single tree with a d-edge (see the multicomponent NUC and CORE in Figure 3). The substitution
site and the mother node are added to the remaining subtree in order to mark the nodes on which the
wrapping substitution takes place (see Figure 3).

After this step, an empty agenda is created and the extracted tree chunks and the pruned tree τ with
the remaining nodes are placed into the agenda.

3. Extract initial and sister-adjoining trees. If no agenda with tree chunks was created in the previous
step, an empty agenda is created in this step and the entire tree τ is placed into it. Each tree chunk in
the agenda is traversed and the percolation tables9 are used to decide for each subtree τ1 . . . τn in the
tree chunk whether it is a head, a complement or a modifier with respect to its parent. Initial trees for
identified complements and sister-adjoining trees for identified modifiers are extracted recursively in
the top-down fashion until each elementary tree has exactly one anchor site.

Initial trees are extracted as follows: If a node of a subtree is identified as a complement, it is
removed from the parent tree and the parent node is marked as a substitution slot. In order to extract
sister-adjoining trees for identified modifier subtrees, the parent node of the subtree is copied and
added as the new root node of the elementary tree with a special marking * on the root label.

8A node v1 is left to another node v2 if the leftmost leaf dominated by v1 is left of the leftmost leaf dominated by v2.
9Please find the code for our TWG extraction algorithm along with the percolation tables for head and modifier distinction in

this repository: https://github.com/TaniaBladier/Statistical_TWG_Parsing.

https://github.com/TaniaBladier/Statistical_TWG_Parsing

