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Abstract

Pre-trained language models provide the foundations for state-of-the-art performance across a
wide range of natural language processing tasks, including text classification. However, most
classification datasets assume a large amount labeled data, which is commonly not the case in
practical settings. In particular, in this paper we compare the performance of a light-weight lin-
ear classifier based on word embeddings, i.e., fastText (Joulin et al., 2017), versus a pre-trained
language model, i.e., BERT (Devlin et al., 2019), across a wide range of datasets and classifica-
tion tasks. In general, results show the importance of domain-specific unlabeled data, both in the
form of word embeddings or language models. As for the comparison, BERT outperforms all
baselines in standard datasets with large training sets. However, in settings with small training
datasets a simple method like fastText coupled with domain-specific word embeddings performs
equally well or better than BERT, even when pre-trained on domain-specific data.

1 Introduction

Language models pre-trained on large amounts of text corpora form the foundation of today’s NLP
(Gururangan et al., 2020; Rogers et al., 2020). They have proved to provide state-of-the-art performance
against most standard NLP benchmarks (Wang et al., 2019a; Wang et al., 2019b). However, these models
require large computational resources that are not always available and have important environment
implications (Strubell et al., 2019). Moreover, there is limited research in the applicability of pre-trained
models in classification tasks with small amount of labelled data. Some related studies (Lee et al., 2020;
Nguyen et al., 2020; Huang et al., 2019; Alsentzer et al., 2019) investigate whether it is helpful to tailor
a pre-trained model to the domain while others (Sun et al., 2019; Chronopoulou et al., 2019; Radford
et al., 2018) analyse methods for fine-tuning BERT to a given task. However, these studies perform
evaluation on a limited range of datasets and classification models and do not consider scenarios with
limited amounts of training data.

In particular, this paper aims to estimate the role of labeled and unlabeled data for supervised text
classification. Our study is similar to Gururangan et al. (2020) where they investigate whether it is still
helpful to tailor a pre-trained model to the domain of a target task. In this paper, however, we focus our
evaluation on text classification and compare different types of classifiers on different domains (social
media, news and reviews). Unlike other tasks such as natural language inference or question answering
that may require a subtle understanding, feature-based linear models are still considered to be competitive
in text classification (Kowsari et al., 2019). However, to the best of our knowledge there has not been
an extensive comparison between such methods and newer pre-trained language models. To this end, we
compare the light-weight linear classification model fastText (Joulin et al., 2017), coupled with generic
and corpus-specific word embeddings, and the pre-trained language model BERT (Devlin et al., 2019),
trained on generic data and domain-specific data. Specifically, we analyze the effect of training size
over the performance of the classifiers in settings where such training data is limited, both in few-shot
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scenarios with a balanced set and keeping the original distributions. In both cases, our results show that
a large pre-trained language model may not provide significant gains over a linear model that leverage
word embeddings, especially when these belong to the given domain.

2 Supervised Text Classification

Given a sentence or a document, the task of text classification consists of associating it with a label from
a pre-defined set. For example, in a simplified sentiment analysis setting the pre-defined labels could be
positive, negative and neutral. In the following we describe standard linear methods and explain recent
techniques based on neural models that we compare in our quantitative evaluation.

2.1 Supervised machine learning models

Linear models. Linear models such as SVMs or logistic regression coupled with frequency-based hand-
crafted features have been traditionally used for text classification. Despite their simplicity, they are
considered a strong baseline for many text classification tasks (Joachims, 1998; McCallum et al., 1998;
Fan et al., 2008), even more recently on noisy corpora such as social media text (Çöltekin and Rama,
2018; Mohammad et al., 2018). In general, however, these methods tend to struggle with OOV (Out-
Of-Vocabulary) words, fine-grained distinctions and unbalanced datasets. FastText (Joulin et al., 2017),
which is the model evaluated in this paper, partially addresses these issues by integrating a linear model
with a rank constraint, allowing sharing parameters among features and classes, and integrates word
embeddings that are then averaged into a text representation.

Neural models. Neural models can learn non-linear and complex relationships which makes them
a preferable method for many NLP tasks such as sentiment analysis or question answering (Sun et al.,
2019). In particular, LSTMs, sometimes in combination with CNNs for text classification (Xiao and
Cho, 2016; Pilehvar et al., 2017), enable capturing long-range dependencies in a sequential manner
where data is read from only one direction (referred to as the ‘unidirectionality constraint’). Recent
state-of-the-art language models, such as BERT (Devlin et al., 2019), overcome the unidirectionality
constraint by using transformer-based masked language models to learn pre-trained deep bidirectional
representations. These pre-trained models leverage generic knowledge on large unlabeled corpora that
can then be fine-tuned on the specific task by using the pre-trained parameters. BERT, which is the pre-
trained language model tested in this paper, has been proved to provide state-of-the-art results in most
standard NLP benchmarks (Wang et al., 2019b), including text classification.

2.2 Pre-trained word embeddings and language models

Most state-of-the-art NLP models nowadays use unlabeled data in addition to labeled data to improve
generalization (Goldberg, 2016). This comes in the form of word embeddings for fastText and a pre-
trained language model for BERT.

Word embeddings. Word embeddings represent words in a vector space and are generally learned
from shallow neural networks trained on text corpora, with Word2Vec (Mikolov et al., 2013) being one
of the most popular and efficient approaches. A more recent model based on the Word2Vec architecture
is fastText (Bojanowski et al., 2017), where words are additionally represented as the sum of character
n-gram vectors. This allowed building vectors for rare words, misspelt words or concatenations of words.

Language models. A limitation to the word embedding models described above is that they produce
a single vector of a word despite the context in which it appears. In contrast, contextualized embeddings
such as ELMo (Peters et al., 2018) or BERT (Devlin et al., 2019) produce word representations that
are dynamically informed by the words around them. The main drawback of these models, however, is
that they are computationally very demanding, as they are generally based on large transformer-based
language models (Strubell et al., 2019).

3 Experimental Setting

Datasets. For our experiments we selected a suite of datasets with different domains and nature. These
are: SemEval 2016 task on sentiment analysis (Nakov et al., 2019), SemEval 2018 task on emoji predic-
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tion (Barbieri et al., 2018), AG News (Zhang et al., 2015), Newsgroups (Lang, 1995) and IMDB (Maas
et al., 2011). The main features and statistics of each dataset are summarized in Table 1.1

Dataset Task Domain Type Avg tokens Labels # Train # Dev # Test
SemEval-16 (SA) Sentiment analysis Twitter Sentence 20 3 5,937 1,386 20,806
SemEval-18 (EP) Emoji prediction Twitter Sentence 12 20 500,000 1,000 49,998
AG News Topic categorization News Sentence 31 4 114,828 624 5,612
20 Newsgroups Topic categorization Newsgroups Document 285 20 11,231 748 6,728
IMDB Polarity detection Movie reviews Document 231 2 28,000 2,560 23,041

Table 1: Overview of the classification datasets used in our experiments.

Comparison models. As mentioned in Section 2, our evaluation is focused on fastText (Joulin et al.,
2017, FT) and BERT (Devlin et al., 2019). For completeness we include a simple baseline based on
frequency-based features and a suite of classification algorithms available in the Scikit-Learn library
(Pedregosa et al., 2011), namely Gaussian Naive Bayes (GNB), Logistic Regression and Support Vector
Machines (SVM). Of the three, the best results were achieved using Logistic Regression, which is the
model we include in this paper as a baseline for our experiments.

Training. As pre-trained word embeddings we downloaded 300-dimensional fastText embeddings
trained on Common Crawl (Bojanowski et al., 2017). In order to learn domain-specific word embed-
ding models we used the corresponding training sets for each dataset, except for the Twitter datasets
where we leveraged an existing collection of unlabeled tweets from October 2015 to July 2018 to train
300-dimensional fastText embeddings (Camacho Collados et al., 2020). Word embeddings are then fed
as input to a fastText classifier where we used default parameters and softmax as the loss function. As
for BERT, we fine-tune it for the classification task using a sequence classifier, a learning rate of 2e-5
and 4 epochs. In particular, we made use of BERT’s Hugging Face default transformers implementation
for classifying sentences (Wolf et al., 2019) and the hierarchical principles described in Pappagari et al.
(2019) for pre-processing long texts before feeding them to BERT. We used the generic base uncased
pre-trained BERT model and BERT-Twitter2, both from Hugging Face (Wolf et al., 2019).

Evaluation metrics. We report results based on standard micro and macro averaged F1 (Yang, 1999).
In our setting, since system provide outputs for all instances, micro-averaged F1 is equivalent to accuracy.

4 Analysis

We perform two main types of analysis. First, we look at the effect of training size over the classifier’s
performance by randomly sampling different sized subsets from the original labeled datasets (Section
4.1). Then, we perform a few-shot experiment where we compare classifier’s performance on different
sizes of balanced subsets of the training data (Section 4.2).

4.1 Effect of training size
Table 2 shows the results with different sizes of training data randomly extracted from the training set.
Surprisingly, classification models based on corpus-trained embeddings achieve higher performance with
less labelled data compared to the classifier based on pre-trained contextualised models. However, for
cases with more than 5,000 training samples, the performance of fine-tuned BERT significantly outper-
forms fastText corpus-based classifier, especially when domain-trained BERT model (i.e., BERT (Twit-
ter)) is used. Further to that, the fine-tuned model performance improves at a higher rate than the classifier
based on corpus-trained embeddings for training sets with more than 2,000 instances. For instance, for
the SE-18 dataset, fastText with domain embeddings improves 0.112 micro-F1 points when the entire
dataset is used with respect to using only 200 instances, while BERT-Twitter provides a 0.360 absolute
improvement. In contrast, fastText with pre-trained embeddings performs similarly to the baseline. This
shows the advantage for pre-trained models to be fine-tuned to the given domain and task.

1# Split (e.g. # Train) in the table indicates the number of instances in the given dataset split.
2BERT-Twitter model is available from: https://huggingface.co/ssun32/bert_twitter_turkle#
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Model Micro-F1 Macro-F1
200 500 1000 2000 5000 ALL 200 500 1000 2000 5000 ALL

SE-16 (SA)

Baseline .399 .405 .430 .447 .476 .483 .360 .390 .410 .430 .430 .460
FT (general) .423 .453 .460 .478 .528 .530 .393 .446 .455 .470 .480 .490
FT (domain) .463 .487 .490 .497 .542 .560 .446 .481 .484 .490 .500 .520

BERT (general) .381 .438 .547 .546 .600 .611 .300 .400 .530 .540 .580 .600
BERT (Twitter) .422 .461 .527 .544 .603 .611 .330 .450 .520 .540 .590 .610

SE-18 (EP)

Baseline .108 .116 .133 .139 .154 .201 .100 .110 .130 .140 .150 .190
FT (general) .109 .120 .130 .136 .194 .258 .084 .109 .125 .130 .150 .220
FT (domain) .149 .153 .160 .166 .219 .262 .108 .135 .151 .160 .180 .220

BERT (general) .040 .097 .106 .120 .261 .380 .010 .030 .050 .070 .120 .280
BERT (Twitter) .082 .102 .134 .127 .291 .400 .030 .060 .080 .110 .150 .380

AG News

Baseline .665 .788 .812 .840 .854 .883 .620 .750 .780 .800 .820 .860
FT (general) .609 .761 .799 .836 .885 .901 .548 .720 .758 .800 .860 .877
FT (domain) .857 .886 .884 .889 .902 .905 .831 .858 .857 .860 .880 .881

BERT (general) .600 .856 .910 .910 .922 .954 .390 .830 .880 .880 .900 .940

20 Newsgroups

Baseline .323 .401 .453 .495 .512 .534 .310 .390 .450 .490 .510 .530
FT (general) .311 .409 .510 .567 .620 .633 .275 .398 .490 .560 .610 .624
FT (domain) .458 .533 .583 .621 .636 .645 .440 .520 .573 .610 .630 .630

BERT (general) .079 .192 .485 .637 .700 .714 .040 .110 .420 .590 .670 .700

IMDB

Baseline .770 .787 .810 .835 .843 .857 .770 .787 .810 .835 .841 .857
FT (general) .750 .770 .811 .845 .859 .878 .750 .771 .811 .845 .859 .878
FT (domain) .814 .815 .836 .862 .871 .879 .814 .815 .836 .862 .871 .879

BERT (general) .543 .783 .834 .850 .850 .881 .543 .783 .834 .850 .850 .881

AVERAGE

Baseline .453 .499 .528 .551 .568 .592 .432 .485 .516 .539 .550 .579
FT (general) .440 .503 .542 .572 .617 .640 .410 .489 .528 .561 .592 .618
FT (domain) .548 .575 .591 .607 .634 .650 .528 .562 .580 .596 .612 .626

BERT (general) .344 .473 .576 .613 .667 .708 .257 .431 .543 .586 .624 .680

Table 2: Results by training size: 200, 500, 1000, 2000, 5000 instances and entire training set (ALL),
where each subset is extracted from the larger subset.

Sentences vs. documents. In order to avoid confounds such as the type of input data in each of the
experiments, we filter the results by sentences and documents (see Table 1 for the actual split of datasets
in each category). Figure 1 shows the results for this experiment. As can be observed, training set size
affects similarly for both types of input, with BERT being especially sensitive to the training data size.

Figure 1: Average Macro-F1 results with randomly sampled training data; the classification datasets are
split by type of text: sentence or document.

4.2 Few-shot experiment
A few-shot comparison between the performance of classifiers based on balanced data is shown in Table
3.3 We balance the dataset for a few shot experiments to ensure the occurrence of instances for all
labels within the training set even for datasets with 20 labels when 5-shot and 10-shot experiments are
performed. Further, we look at the effect of balanced training data over the classifiers performance.
The results show that balancing the dataset lead to improvements in the classification performance with
limited training data, especially for BERT. For example, using a subset of 1,000 training instances for

3The full balanced set is built by removing random training instances based on the least frequent label’s number of instances.
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20 Newsgroups corpus, the macro-F1 for random sampled data is 0.42 while the macro-F1 for balanced
data (i.e., 50 instances per label) is 0.556.

2 instances per label 5 instances per label 10 instances per label
FT(gen) FT(dom) BERT(gen) BERT(T) FT(gen) FT(dom) BERT(gen) BERT(T) FT(gen) FT(dom) BERT(gen) BERT(T)

SE-16(SA) .330 .390 .230 .320 .370 .390 .240 .370 .352 .384 .200 .370
SE-18(EP) .050 .060 .020 .030 .080 .100 .020 .040 .090 .110 .020 .050
AG News .390 .700 .130 - .520 .810 .200 - .643 .815 .410 -
20 News .090 .200 .010 - .230 .430 .030 - .294 .473 .030 -
IMDB .411 .556 .492 - .500 .643 .547 - .414 .567 .492 -

AVERAGE .254 .381 .176 - .340 .475 .207 - .359 .470 .230 -
20 instances per label 50 instances per label Full balanced dataset

FT(gen) FT(dom) BERT(gen) BERT(T) FT(gen) FT(dom) BERT(gen) BERT(T) FT(gen) FT(dom) BERT(gen) BERT(T)
SE-16(SA) .356 .406 .320 .370 .416 .466 .340 .420 .510 .530 .610 .570
SE-18(EP) .096 .126 .020 .070 .121 .144 .060 .100 .160 .170 .200 .280
AG News .686 .838 .680 - .752 .845 .740 - .860 .880 .940 -
20 News .406 .537 .090 - .499 .568 .500 - .620 .640 .680 -
IMDB .496 .641 .504 - .660 .707 .556 - .870 .880 .882 -

AVERAGE .408 .510 .323 - .489 .546 .439 - .604 .620 .662 -

Table 3: Few-shot Macro-F1 classification results (gen refers to general and dom refers to domain).

Similarly to the experiments with randomized data samples, fastText based on corpus-trained embed-
dings is the best performing classification model for very small amounts of balanced labeled data (see
Figure 2). However, as the amount of training data increases, BERT model outperforms fastText on
average by 0.0442%. As in the previous experiment, the classification model based on pre-trained em-
beddings perform poorly compared to the corpus-trained embeddings and models fine-tuned to the task.
Further, BERT (Twitter) leads to significant improvements over BERT when only 10 instances per label
are used (i.e., for SE-16, BERT (Twitter) has macro-F1 = 0.370, similar to domain-based fastText with
macro-F1 = 0.384 versus base BERT with macro-F1 = 0.200).

Figure 2: Experiments with balanced data - Micro-F1 results (left), Macro-F1 results (right)
.

5 Conclusion and Future Work

In this paper, we analyzed the role of training and unlabeled domain-specific data in supervised text
classification. We compared both linear and neural models based on transformer-based language models.
In settings with small training data, a simple method such as fastText coupled with domain-specific
word embeddings appear to be more robust than a more data-consuming model such as BERT, even
when BERT is pre-trained on domain-relevant data. However, the same classifier with generic pre-
trained word embeddings does not perform consistently better than a traditional frequency-based linear
baseline.4 BERT, pre-trained on domain-specific data (i.e., Twitter) leads to improvements over generic
BERT, especially for few-shot experiments. For future work it would be interesting to further delve into
the role of unlabeled data in text classification, both in terms of word embeddings (e.g., by making use
of meta-embeddings (Yin and Schütze, 2016)) and the data used to train language models (Gururangan
et al., 2020). Moreover, this quantitative analysis could be extended to more classification tasks and
different models, e.g., larger language models such as RoBERTa (Liu et al., 2019) and GPT-3 (Brown et
al., 2020), which appear to be more suited to few-shot experiments.

4In the appendix we include a qualitative analysis comparing generic and domain-specific word embeddings.
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A Analysis word embeddings: Coverage and nearest neighbours

A comparison between the number of out-of-vocabulary (OOV) words for the test datasets between the
generic and the domain-trained models (see Table 4) shows that the domain-trained model vocabularies
have a larger number of OOV words for the test set than the bigger more generic models except SemEval-
18 dataset (Emoji Prediction).

Dataset # Tokens # OOV domain # OOV general
SemEval-16 (SA) 30,467 12,668 (41.6%) 10,558 (34.7%)
SemEval-18 (EP) 66,294 36,846 (55.5%) 37,335 (56.3%)
AG News 23,024 7,766 (33.7%) 4,712 (20.5%)
20 Newsgroups 79,343 39,056 (49.2%) 27,970 (35.2%)
IMDB 105,240 54,395 (51.6%) 36,223 (34.4%)

Table 4: Number of tokens and OOV tokens (for the domain-specific and general-domain word embed-
dings models) per test set.

However, the generic domain embeddings tend to fail to represent the meaning of more domain-
specific words, which may explain their lower performance. This is confirmed by the nearest neighbour
analysis (see Table 5) which showed that the generic domain embeddings do not provide accurate repre-
sentations of more technical words such as ‘Windows’ and ‘Sun’. In the IMDB reviews, words such as
‘Toothless’, used within a very specific context are also not correctly represented by the generic model.
Moreover, tweets are rich with abbreviations which have domain-specific meaning such as ‘SF’ referring
to ‘San Francisco’.

Vocabulary Token FT (domain) FT (generic)

Twitter
SF San Francisco SciFi
killing killin’em murdering, slaughtering
arsenal arsenal fc armoury

AG News
Sun Microsystems Sunlight
Apple iTunes Pear
capsule spacecraft pill

20 Newsgroups
Windows X Windows Window, Doors
DOS DOS 6, DR-DOS don’t
backdoor eavesdrop, algorithm back-door,loophole

IMDB
Toothless Worthless Toothlessness
slow-pacingly boringly fast-pacing
twist plot twist spin

Table 5: Examples of words and their nearest neighbour according to the generic and domain-specific
word embedding models.

B Code Availability

Code available at: https://gitlab.com/Aleks-Edwards/coling


