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Abstract

Rumors are manufactured with no respect for accuracy, but can circulate quickly and widely
by “word-of-post” through social media conversations. Conversation tree encodes important
information indicative of the credibility of rumor. Existing conversation-based techniques for
rumor detection either just strictly follow tree edges or treat all the posts fully-connected during
feature learning. In this paper, we propose a novel detection model based on tree transformer to
better utilize user interactions in the dialogue where post-level self-attention plays the key role for
aggregating the intra-/inter-subtree stances. Experimental results on the TWITTER and PHEME
datasets show that the proposed approach consistently improves rumor detection performance.

1 Introduction

Online rumor perhaps is one of the most prevalent social diseases in the era of social media. An immediate
example we are witnessing is the unprecedented information disorder represented by various rumors,
conspiracy theories, hoaxes, fake news, etc. in parallel with the worldwide pandemic of COVID19. In
different places, a number of people were hospitalized or even died for drinking bootleg alcohol to prevent
coronavirous infection, resulting from a false rumor attack on gullible public claiming that “smoking,
methanol or cocaine can cure for the virus”1. Automatic rumor debunking is at the core of battle against
such massive disorder of information especially in the midst of crisis.

Rumor debunking aims to determine the veracity of a given topic or a claim. Fact-checking websites,
such as snopes.com and politifact.com, employ manual verification and investigative journalism,
which is prone to low efficiency and poor coverage. For automated approaches, prior studies focus on
engineering or learning features from sequential microblog streams (Castillo et al., 2011; Yang et al.,
2012; Kwon et al., 2013; Liu et al., 2015; Ma et al., 2015; Ma et al., 2016; Yu et al., 2017). More recently,
structure-based learning based on structured neural networks are proposed to capture the interactive
characteristics of rumor diffusion, such as tree kernel (Ma et al., 2017), recursive neural network (Ma
et al., 2018) and tree LSTM model (Kumar and Carley, 2019). Khoo et al. (2020) proposed to model
potential dependencies between any two microblog posts with the post-level self-attention networks
(PLAN), which has achieved the state-of-the-art detection performance.

The PLAN model essentially treats the input tweets as a fully connected graph, by assuming that a
user may not be directed solely at the tweet being replied considering the content created could also
be applicable to other tweets in the thread (Khoo et al., 2020). Also, the representation of posts is
enhanced by leveraging the strength of transformer’s encoding architecture. Nevertheless, we argue that
such full connection which ignores the specific targets of replies in the hierarchy could create salient
issues on post representation learning, especially in the vein of relatively deep conversation or argument.
Meanwhile, other existing tree-structured models based on propagation trees (Wu et al., 2015; Ma et al.,
2017) or recursive trees (Ma et al., 2018; Kumar and Carley, 2019) tend to oversimplify user interaction
by genuinely following the tree edges for post matching or encoding.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1https://time.com/5828047/methanol-poisoning-iran/
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(a) Propagation tree of a false rumor (b) Relative stance and underlying veracity patterns

Figure 1: A motivating example: A false rumor about “Mike Pence delivering empty boxes of PPE for PR
stunt” widely spread on Twitter and the stances relative to parent nodes implying the underlying credibility
of the claim.

To illustrate our intuition, Figure 1 exemplifies the propagation structure of a (rumor) claim “Mike
Pence caught on hot mic delivering empty boxes of PPE for a PR stunt”. The PLAN model basically
assumes each user directed at all the tweets in the thread, which may be true for a shallow tree where
most of nodes respond to the root node. However, this is not the case when it comes to a tree hierarchy
as Figure 1 shows. It can be seen that accurate viewpoints is generally associated with the context of
parent posts, e.g., x21 support x2, but x2 refute the source claim r, therefore x21 believe that the claim is
false even though it contains a non-rumor-indicative patten “be right”. On the other hand, x21 even has no
context correlation with the nodes from another branch such as x12. But the PLAN model might brought
unexpected errors in this case when linking x21 with r (or x12) when making fully pairwise comparison.

To this end, we propose to enhance the representation by exploring the stances towards the same target
utilizing the associated contextual information. The starting point of our approach is an observation: each
post in the propagation tree may trigger a set of responsive tweets (such as x1 → [x11, x12] in Figure 1),
we define such unit as a subtree, which eventually compose the whole tree hierarchy. Accordingly, we
extend the conventional transformer’s encoder into three variants, i.e., a bottom-up transformer, a top-down
transformer, and a hybrid transformer model. More specifically, our models selectively attend over tweets
in the same subtree. As a result, it can be expected that user‘s viewpoint can be fully captured based on
the context of propagation path. Meanwhile, inaccurate information in a subtree can be cross-checked as
users share opinions towards the same target (i.e., the subtree root). We construct two shallow tree datasets
and two deep tree datasets referring from two publicly benchmarks TWITTER and PHEME. Extensive
experimental results demonstrate that our approach consistently improve over the state-of-the-art rumor
detection and early detection baselines, particularly performing well on the deep trees.

2 Related Work

This section firstly reviews the recent progress about rumor detection. Most previous automatic approaches
for rumor detection (Castillo et al., 2011; Yang et al., 2012; Liu et al., 2015) intended to learn a supervised
classifier by utilizing a wide range of features crafted from post contents, user profiles and propagation
patterns. Subsequent studies were then conducted to engineer new features such as those representing
rumor diffusion and cascades (Kwon et al., 2013; Friggeri et al., 2014; Hannak et al., 2014). Ma et
al. (2015) extended their model with a large set of chronological social context features. These approaches
typically require heavy preprocessing and feature engineering.

Zhao et al. (2015) alleviated the engineering effort by using a set of regular expressions (such as
“really?”, “not true”, etc) to find questing and denying tweets, but the approach was oversimplified and
suffered from very low recall. Ma et al. (2016) and Yu et al. (2017) respectively used recurrent neural
networks (RNNs) and convolutional neural networks (CNNs) to learn automatically the representations
from tweets content based on time series. Guo et al. (2018) proposed a hierarchical attention model which
captures important clues from social context of a rumorous event at the post and sub-event levels. Jin et
al. (2016) exploited the conflicting viewpoints in a credibility propagation network for verifying news
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stories propagated among the tweets. However, these approaches cannot embed features reflecting how
the posts are propagated and requires careful data segmentation to prepare for the time sequence.

Some kernel-based methods were exploited to model the propagation structure. Wu et al. (2015)
proposed a hybrid SVM classifier which combines a RBF kernel and a random-walk-based graph kernel
to capture both flat and propagation patterns for detecting rumors on Sina Weibo. Ma et al. (2017) used
tree kernel to capture the similarity of propagation trees by counting their similar substructures in order to
identify different types of rumors on Twitter. Ma et al. (2018) presented tree-structured recursive neural
networks (RvNN) to jointly generate the representation of a propagation tree based on the posts content
and their propagation structure.

In recent years, transformer (Vaswani et al., 2017) have demonstrates state-of-the-art performance in a
variety of NLP tasks such as machine translation (Vaswani et al., 2017), sentence representation (Devlin
et al., 2019), generative dialog (Tao et al., 2018), machine reading (Cheng et al., 2016), semantic
labeling (Strubell et al., 2018), and rumor detection (Khoo et al., 2020). Transformer produce strong
power of representations by applying attention to each pair of elements from an input sequence, regardless
of their distance. Khoo et al. (2020) propose a rumor verification model that allows direct modeling of
dependencies between any two posts without regarding to their responsive relation, thus it essentially treats
the propagation as a fully connected graph instead of a tree. Our work is inspired by the idea of improving
the representation power of transformer to model structured objects such as syntactic parse tree. In these
works, a straightforward strategy is to augment the conventional transformer with structural positional
embeddings (Wang et al., 2019a; Shiv and Quirk, 2019). On the other hand, Tree Transformer is proposed
to attend over nearer neighbor nodes (Ahmed et al., 2019; Wang et al., 2019b). Our proposed method is a
substantial extension of Tree Transformer for modeling propagation tree structures for detecting rumors
on microblogging websites.

3 Problem Statement and Notations

On microblogging platforms such as Twitter, the follower/friend relationship embeds shared interests
among the users. Once a user has posted a tweet, all his followers will receive it. Twitter allows a user to
retweet or comment on another user‘s post, so that the information could reach beyond the followers of
the original creator. Therefore, we model the propagation of each claim as a tree structure T (r) = 〈V,E〉,
where r is tree root representing the source tweet that states the claim, V refers to a set of nodes each
representing a responding post of r in the thread of the circulation, and E is a set of directed edges
corresponding to the response relation among the nodes in V . Inspired by (Ma et al., 2018), here we
consider two different propagation trees with distinct edge directions: (1) Bottom-Up tree where the
responsive nodes point to their responded nodes, similar to a citation network; and (2) Top-Down tree
where the edge follows the direction of information diffusion by reversing the Bottom-up tree.

We formulate this task as a supervised classification problem, which learns a classifier f from the
labeled claims, that is, f : Ci → Yi, where Yi takes one of the four categories: Non-rumor, True rumor,
False rumor and Unverified rumor (NTFU), that are introduced in previous literature (Zubiaga et al.,
2016b; Ma et al., 2017).

4 Tree Transformer Model for Rumor Detection

Rumor indicative features can be captured from propagation structures, e.g., the stances expressed in
responsive tweets can further reinforce the stances of that tweet is replying to (Ma et al., 2018; Kumar and
Carley, 2019), the posts with strong stance based on the tree branch is more important when determining
the rumor veracity (Li et al., 2019), and inaccurate information might be “self-checked” by making
comparison with correlative tweets (Zubiaga et al., 2018). However, such relation is not fully exploited
by previous work. Our core idea is to enhance representation learning of rumor indicative features by
selectively attending over the corresponding tweets, that deeply explore user opinions and refine inaccurate
information following the propagation tree structure.

Unlike the PLAN model that rawly handcraft 5 types of responsive relation as an additional consideration
when attending over all the other tweets, our idea and the adopted mechanisms are significantly different.
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(a) An example of Bottom-Up/Top-Down tree

(b) Subtree Attention (c) Bottom-up Transformer (d) Top-down Transformer

Figure 2: Illustration of a propagation tree and the corresponding tree transformer models. In Figure 2(a),
T (·) denote a subtree rooted by the node in green, that we put at the first line of the subtree. The edges in
red and blue apply the Bottom-Up and Top-Down tree respectively.

Figure 2 gives an overview of our transformer-based framework respectively based on Bottom-Up tree
and Top-Down tree, which will be depicted in detail in the subsections.

4.1 Token-Level Tweet Representation

Given a tweet represented as a word sequence xi = (w1 · · ·wt · · ·w|xi|), each wt ∈ Rd is a d-dimensional
vector which can be initialized with pre-trained word embeddings. We map each wt into a fixed-sized
hidden vector using Multi-Head Self-Attention networks(MH-SAN), which are the defaults setting in
Transformer encoder (Vaswani et al., 2017). The core idea of MH-SAN is to jointly attend to words from
different representation subspaces at different positions. More specifically, MH-SAN firstly transform the
input word sequence xi into multiple subspaces with different linear projections:
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R|xi|×d with n as the number of heads, which followed by a normalization layer (layerNorm) and a
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feed-forward network (FFN) consistant with the usage of Transformer.

Bi = layerNorm(Oi ·WB +Oi)

Hi = FFN(Bi ·WS +Bi)
(3)

where Hi = [h1; . . . ;h|xi|] ∈ R|xi|×d is the matrix representing all words in tweet xi, and WB and Wh

contain the weights of the transformation. Finally, we obtain the representation of xi by maxpooling the
vectors of all involved words:

si = max-pooling(h1, . . . , h|xi|) (4)

where si ∈ R1×d is a d-dimensional vector, and | · | denotes the number of words.

4.2 Post-Level Tweet Representation

Previous literature has generally found that each node in the tree can trigger a set of responsive posts, i.e.,
a subtree, which contain distinct rumor-indicative pattens (Ma et al., 2017). Our goal is to cross-check all
the posts in the same subtree to enhance the representation learning, because: (1) posts are generally short
in nature thus the stance expressed in each node is closely correlated with the responsive context; and
(2) posts in the same subtree direct at the individual opinion expressed in the root of the subtree. Thus
coherent opinions can be captured by comparing ALL responsive posts in the same subtree, that lower
weight the incorrect information (e.g., the supportive posts towards a false claim).

To this end, we propose to utilize transformer-based network to make pairwise comparison within a
subtree, that capture users‘ opinions and enhance the representation for each node. In this paper, we
develop two structures respectively based on Bottom-Up tree and Top-Down tree:

Bottom-Up Transformer. In Bottom-Up tree, we visit the root of each subtree from the leaf node
hierarchically until reaching the source tweet. We propose a Bottom-Up transformer to capture coherent
attitudes towards each tree node, by making pairwise comparison among its responsive tweets.

Figure 2(c) illustrated the structure of our tree transformer that cross-check all the posts from the bottom
subtree to the upper subtrees. Specifically, given a subtree rooted at xj , Let V(j) = {xj , . . . , xk} denote
the set of node in the subtree, i.e., xj and its direct response nodes. Then we apply a post-level subtree
attention (i.e., a transformer-based block as shown in Figure 2(b)) on V(j) to get the refined representation
for each node in V(j):

[s′j ; . . . ; s
′
k] = TRANS([sj ; . . . ; sk],ΘT ) (5)

where TRANS(·) is the transform function that has similar forms as shown in Eq. 2-4, and ΘT contains
the transformer parameters. Thus s′∗ is the refined representation of s∗ obtained based on the context
of subtree. Note that each node can be treated as either parent or child in different subtrees, e.g., in
Figure 2(a), x2 can either be the parent node of T (x2), or a child node of T (r). As a result, a part of
nodes in our model are refined twice hierarchically from bottom subtree to upper subtree, that: (1) capture
stances by comparing with parent node, and (2) lower-weight inaccurate information by attending over
neighbor nodes, e.g., a parent that support a false claim might be refined if the majority responses refute
the parent node.

Top-Down Transformer. This model is designed to leverage the structure of Top-Down tree, which
is shown in Figure 2(d). Since Top-Down tree models how the information flows from source post
to the current node, our model visits each subtree hierarchically from the source node until the leaf
nodes. The transformer mechanism shares the similar intuition as the Bottom-Up transformer, thus node
representation is enhanced by capturing stances and self-corrected context information.
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4.3 The overall Model

To jointly capture the opinions expressed in the whole tree, we utilize an attention layer to select important
posts with accurate information, which is obtained based on the refined node representation. This yields:

αi =
exp(s′i · µ>)∑
j exp(s′j · µ>)

s̃ =
∑
i

αi · s′i
(6)

where s′i is obtained from either Bottom-Up Transformer or Top-Down Transformer2, and µ ∈ R1×d

contains the weights of the transformation. Here αi is the attention weight of node xi which is used to
produce the representation s̃ of an entire tree. Lastly, we use a fully connected output layer to predict the
probability distribution over the rumor classes.

ŷ = softmax(Vo · s̃+ bo) (7)

where Vo and bo are the weights and bias in the output layer.
Furthermore, there is a straightforward way to concatenate the tree representation from the Bottom-Up

transformer, with that from the Top-Down transformer to obtain a richer tree representation, which is then
fed into the above softmax(·) function to make rumor predictions.

Model Training. All our models are trained to minimize the squared error between the probability
distribution of the prediction and that of the ground truth:

L(y, ŷ) =
N∑

n=1

C∑
c=1

(yc − ŷc)2 + λ||Θ||22 (8)

where yc is the ground-truth label and ŷc is the predicted probability of class c, N is the number of trees
for training, C is the number of classes, ||.||2 is the L2 regularization term over all the model parameters
Θ, and λ is the trade-off coefficient.

During training, parameters are updated through back-propagation (Collobert et al., 2011) with Ada-
Grad (Duchi et al., 2011) for speeding up convergence. The training process ends when the model
converges or the maximum epoch number is met. We represent input words using pre-trained GloVe
Wikipedia 6B word embeddings (Pennington et al., 2014). We set model dimension d to 300 and the
dimension for feedforward network is 600. We used 1 and 6 layers of transformer encoder for token-level
representation and post-level representation respectively, and set the head number n as 12. The learning
rate is initialized as 0.01, and the dropout rate is 0.2.

5 Experiments and Results

5.1 Datasets

For experimental evaluation, we refer two publicly available tree datasets released by (Ma et al., 2017)
and (Kochkina et al., 2018), namely TWITTER and PHEME. In each dataset, a group of source tweets,
which form the tree roots, together with their replies are provided in the form of tree structure. Each tree is
annotated with one of the four class labels, i.e., non-rumor, true rumor, unverified rumor and false rumor.

To evaluate the robustness of our tree structured detection methods, we consider two types of datasets:
propagation trees with shallow depth and trees with deep depth (i.e., complex responsive relations). There-
fore, we regroup the trees in each of the datasets into TWO according to the tree depth. Specifically, we
split Twitter (PHEME) dataset into TWITTER-S (PHEME-S) and TWITTER-D (PHEME-D), comprised
by shallow trees and deep trees respectively. Table 1 displays the basic statistics of the four datasets.

2It can be s′′i if the node is refined twice, e.g., s′′2 in Figure 2(c) and 2(d).
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Table 1: Statistics of the datasets
Statistic TWITTER-S TWITTER-D PHEME-S PHEME-D
# of source tweets 1,293 813 1,946 1,842
# of tree nodes 29,142 72,365 28,550 60,943
# of non-rumors 334 244 1,231 1,248
# of false 326 231 167 134
# of true 389 183 310 277
# of unverified 244 155 238 183
Avg. time length / tree 212 Hours 628 Hours 15 Hours 25 Hours
Avg. depth / tree 1.82 8.02 2.39 7.71
Max depth / tree 3 84 3 47
Min depth / tree 1 4 2 4
Avg. # of posts / tree 22 89 14 33
Max # of posts / tree 203 788 51 346
Min # of posts / tree 2 7 3 5

5.2 Experimental Setup

For evaluation, we will make comprehensive comparisons between our proposed models and state-of-the-
art baselines on rumor classification and early detection tasks.

- DT-Rank: (Zhao et al., 2015) proposed a Decision-Tree-based Ranking model to identify trending
rumors by searching for inquiry phrases.

- DTC: An information credibility model using a Decision-Tree Classifier (Castillo et al., 2011) using
hand-crafted features that are based on the overall statistics of the posts without temporal information.

- RFC: A Random Forest Classfier which used three fitting parameters as temporal properties and a set
of hand-crafted features based on user, linguistic and structural properties (Kwon et al., 2013).

- SVM-TK: A SVM classifier that uses a Tree Kernel (Ma et al., 2017) which try to capture propagation
structure via kernel learning.

- GRU-RNN: A rumor detection model based on recurrent neural networks (Ma et al., 2016) with GRU
for learning rumor representations by modeling sequential structure of relevant posts.

- BU-RvNN and TD-RvNN: The rumor detection models respectively based on bottom-up and top-
down RvNN models (Ma et al., 2018) for integrating tweet contents and structure clues.

- PLAN: A rumor detection model based on transformer networks (Khoo et al., 2020) to model long
distance interactions between any pair of tweets that oversimplifies responsive relations.

- BU-TRANS, TD-TRANS and HD-TRANS : Our proposed tree transformer models respectively with
Bottom-Up, Top-Down and Hybrid manner (see Section. 4).

We implement DT-Rank, DTC and RFC using Weka3, SVM-TK using LibSVM4 and all neural-
network-based models with pytorch5. We use micro-averaged and macro-averaged F1 score, and class-
specific F-measure as evaluation metrics. We hold out 10% of the datasets for tuning the hyper parameters,
and conduct 5-fold cross-validation on the rest of the datasets.

5.3 Rumor Classification Performance

Table 2 demonstrate the performance of all the compared methods respectively based on the shallow trees
and deep trees from TWITTER and PHEME datasets. The results indicate that our proposed methods
outperform all the baselines6, confirming the advantages of Tree transformer for rumor detection task.

It is observed that the performances of the three baselines in the first group based on handcrafted
features are obviously poor. RFC perform relatively better because of the usage of additional temporal
traits. Among the baselines without feature engineering in the second group, the sequential neural model
GRU-RNN without considering structural information performs slightly worse than SVM-TK, because
SVM-TK is an integrated kernel that utilize the propagation structure by comparing the trees based on

3www.cs.waikato.ac.nz/ml/weka
4www.csie.ntu.edu.tw/˜cjlin/libsvm
5pytorch.org
6We use micF to evaluate TWITTER-S (D) datasets, but macF for PHEME-S (D) datasets owing to the imbalanced class

prevalence (see Table 1), to capture competitive performance beyond the majority class (Zubiaga et al., 2016a)



5462

Table 2: Results of comparison among different models. (NR: non-rumor; FR: false rumor; TR: true
rumor; UR: unverified rumor)

(a) TWITTER-S (-D) dataset
Dataset TWITTER-S TWITTER-D

Method NR FR TR UR NR FR TR UR
micF macF F1 F1 F1 F1 micF macF F1 F1 F1 F1

DT-Rank 0.467 0.443 0.622 0.329 0.520 0.299 0.566 0.516 0.447 0.577 0.555 0.484
DTC 0.523 0.502 0.728 0.418 0.512 0.349 0.538 0.497 0.758 0.516 0.332 0.381
RFC 0.599 0.550 0.782 0.470 0.561 0.385 0.582 0.533 0.774 0.501 0.461 0.395
SVM-TK 0.719 0.714 0.705 0.683 0.785 0.682 0.669 0.663 0.698 0.649 0.689 0.615
GRU-RNN 0.715 0.701 0.700 0.697 0.780 0.620 0.646 0.645 0.645 0.624 0.714 0.598
BU-RvNN 0.738 0.728 0.734 0.672 0.825 0.681 0.698 0.699 0.674 0.693 0.741 0.687
TD-RvNN 0.749 0.738 0.724 0.729 0.830 0.684 0.705 0.704 0.725 0.677 0.759 0.656
PLAN 0.764 0.757 0.742 0.744 0.840 0.699 0.719 0.715 0.746 0.708 0.760 0.646
BU-TRANS 0.774 0.729 0.750 0.772 0.821 0.753 0.753 0.745 0.771 0.772 0.767 0.670
TD-TRANS 0.776 0.772 0.739 0.780 0.826 0.742 0.755 0.748 0.778 0.773 0.740 0.701
HD-TRANS 0.789 0.787 0.749 0.784 0.837 0.776 0.768 0.764 0.773 0.781 0.783 0.721

(b) PHEME dataset
Dataset PHEME-S PHEME-D

Method NR FR TR UR NR FR TR UR
micF macF F1 F1 F1 F1 micF macF F1 F1 F1 F1

DT-Rank 0.557 0.319 0.722 0.194 0.323 0.037 0.543 0.303 0.710 0.136 0.187 0.177
DTC 0.614 0.424 0.763 0.308 0.341 0.286 0.695 0.465 0.819 0.271 0.442 0.328
RFC 0.701 0.482 0.825 0.304 0.486 0.332 0.708 0.515 0.820 0.231 0.528 0.484
SVM-TK 0.771 0.656 0.864 0.610 0.629 0.523 0.776 0.639 0.862 0.578 0.572 0.578
GRU-RNN 0.765 0.632 0.872 0.698 0.574 0.384 0.781 0.610 0.868 0.629 0.510 0.393
BU-RvNN 0.775 0.649 0.862 0.622 0.592 0.523 0.789 0.651 0.877 0.606 0.583 0.546
TD-RvNN 0.783 0.668 0.874 0.607 0.631 0.561 0.786 0.667 0.881 0.634 0.648 0.508
PLAN 0.800 0.688 0.872 0.645 0.629 0.605 0.798 0.681 0.879 0.689 0.602 0.551
BU-TRANS 0.794 0.704 0.875 0.683 0.621 0.636 0.831 0.731 0.908 0.652 0.708 0.656
TD-TRANS 0.790 0.701 0.881 0.730 0.620 0.570 0.825 0.722 0.904 0.681 0.667 0.635
HD-TRANS 0.793 0.710 0.872 0.728 0.600 0.644 0.839 0.745 0.806 0.715 0.755 0.702

both textual and structural similarities. Tree-structured neural models, i.e., BU-RVNN and TD-RvNN,
make further improvements since it deeply bridge the content semantics and propagation clues.

Among all the baselines, PLAN perform best since it leverage the representation power of transformer by
modeling dependencies between any two tweets, but this may under-utilize the structural information. In
contrast, our proposed TRANS-based models (in the third group), not only inherently leverage propagation
structure but also take advantages of the representation power of transformer, thus beat PLAN on the
four datasets. Among our three TRANS-based models, BU-TRANS and TD-TRANS perform comparable
because both explore tree structure utilizing Transformer. And combing them makes further improvements
as HD-TRANS did, suggesting that the learned pattens from the two models are complementary.

Furthermore, when drilling down to the performance of our TRANS-based models on specific datasets,
we find that there are distinct observations of model performance between the shallow tree and deep
tree. Specifically, on TWITTER-D and PHEME-D datasets, we observe the tree-based baselines (e.g.,
BU-RvNN and TD-RvNN) perform comparable to PLAN, and the improvements of our models over
PLAN range from 5.31%−6.82% (7.34%−9.40%) accuracy (macroF score) on Twitter-D (PHEME-D).
The reason is that PLAN is originally proposed and experimented on shallow trees (Khoo et al., 2020),
which may not be generalize well on trees with deep and/or complex responsive relationships.

In comparison, on TWITTER-S and PHEME-S dataset, PLAN perform better than TD-RvNN (i.e.,
the best tree-structured baseline) in a larger margin, and our TRANS-based models improve over PLAN
by 1.31%−3.27% (2.33%−3.20%) in terms of accuracy (macroF score) on TWITTER-S (PHEME-S)
dataset, which is relatively lower than the improvements made on TWITTER-D and PHEME-D datasets.
This is because the homogeneous edges (e.g., majority responsive nodes straightforwardly direct at the
source post) in shallow trees have limited identical structure clues for rumor detection. This also verifies
the hypothesis we made in Section 1 that tree-structured methods is more effective for deep trees.
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5.4 Early Rumor Detection Performance

(a) TWITTER-S (b) TWITTER-D (c) PHEME-S (d) PHEME-D

Figure 3: Early rumor detection accuracy at different checkpoints in terms of elapsed time.

Debunking rumors at early stage of their propagation is very important so that preventive measures can
be taken in a timely manner. In early rumor detection task, we compare different detection methods at
a series of elapsed time checkpoints. Figure 3 shows the performance of our HD-TRANS model versus
PLAN (the best performed baseline), TD-RvNN (the best tree-structured neural model), RFC (the best
system based on feature engineering), and DT-Rank (an algorithm proposed for early rumor detection).

We observe that within the first few hours, the performance of our HD-TRANS model grows more
quickly and starts to supersede the other models at the early stage of propagation. Particularly, HD-TRANS

achieves 75.0% (72.3%) accuracy on TWITTER-S (-D) and 65.9% (69.5%) macF score on PHEME-S
(-D) within 12 hours. Although all the methods are getting saturated as time goes by, HD-TRANS only
need around 14 (12) hours on TWITTER-S (-D) and about 15 (10) hours on PHEME-S (-D), to achieve
the comparable performance of the best baseline model (i.e., PLAN), indicating superior early detection
performance of our method especially when comes to more complex or deeper propagation pattens.

(a) A deep (false rumor) tree

(b) A shallow (false rumor) tree

Figure 4: Examples of correctly detected false rumors at early stage of our model.

To get an intuitive understanding of what is happening when we use HD-TRANS model, we design an
experiment to highlight the nodes with higher attention scores (i.e., “αi” in Eq. 6) at the tree representation
layer. Specifically, we sample two trees from TWITTER dataset, i.e., a shallow tree and a deep tree, at the
early stage of propagation, that both have been correctly classified as false rumors by our HD-TRANS.
In Figure 4, we observe that: 1) the highly ranked nodes with higher attention scores by HD-TRANS (in
yellow), illustrated obvious structured rumor-indicative pattens, e.g., denial post spark affirmative replies
as x11 → [x111, x112] shows in the deep tree; 2) the nodes attended by PLAN (in green) are generally
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independent of structure but taking coherent stances or semantics; and 3) the results of HD-TRANS and
PLAN are significantly different on the deep tree, but similar results can be found on the shallow tree,
implying that more complex propagation pattens can be better captured by our proposed model.

6 Conclusions and Future Work

In this paper, with the analysis that modeling propagation structure is an essential factor for detecting
rumors, we propose three variants of transformer to further enhance the representation learning directed at
tree-structured modeling: a Bottom-up transformer, a Top-down tranformer, and a Hybrid model. The
results on four benchmark datasets confirm the advantages of our methods as compared to state-of-the-art
baselines, especially well-generalized on trees with more complex responsive contexts. For future work,
it is promising to include other types of edges/relationships besides the responsive relation to enhance
rumor detection, such as friends/followers, quotation, mention, etc. We also plan to investigate the role of
non-textual media such as images or videos on the effectiveness of detecting rumors.
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