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Abstract

Scientific keyphrase identification and classification is the task of detecting and classifying
keyphrases from scholarly text with their types from a set of predefined classes. This task has a
wide range of benefits, but it is still challenging in performance due to the lack of large amounts
of labeled data required for training deep neural models. In order to overcome this challenge, we
explore pre-trained language models BERT and SciBERT with intermediate task transfer learn-
ing, using 42 data-rich related intermediate-target task combinations. We reveal that intermediate
task transfer learning on SciBERT induces a better starting point for target task fine-tuning com-
pared with BERT and achieves competitive performance in scientific keyphrase identification and
classification compared to both previous works and strong baselines. Interestingly, we observe
that BERT with intermediate task transfer learning fails to improve the performance of scientific
keyphrase identification and classification potentially due to significant catastrophic forgetting.
This result highlights that scientific knowledge achieved during the pre-training of language mod-
els on large scientific collections plays an important role in the target tasks. We also observe that
sequence tagging related intermediate tasks, especially syntactic structure learning tasks such as
POS Tagging, tend to work best for scientific keyphrase identification and classification.

1 Introduction

Scientific Keyphrase Identification and Classification (SKIC) is the task of identifying and classifying
scientific terms in research papers. An effective keyphrase identification and classification system can
benefit a wide range of natural language processing and information retrieval tasks including question
answering (Quarteroni and Manandhar, 2006), question generation (Subramanian et al., 2018), and expert
finding (Chen et al., 2015; Augenstein et al., 2017). Several works formulate SKIC as a classification
task using neural methods and word embeddings (Luan et al., 2018; Augenstein et al., 2017; Liu et al.,
2017) and show promising results compared to previous hand-crafted feature processing with sequence
labeling such as Conditional Random Fields (Lee et al., 2017).

Scientific keyphrases are very diverse and this diversity leads to a burden for the creation of large
dataset collections, which results in data scarcity problems for deep neural networks since domain experts
are required to obtain reliable annotations for keyphrase identification and classification. In order to
overcome the small size data problem of SKIC, Augenstein and Søgaard (2017) propose deep multi-task
learning and reveal that several related tasks such as noun and verb phrase chunking, super-sense tagging,
and multi-word expression identification are helpful to SKIC. However, the results of this approach are
still low (Augenstein et al., 2017), which implies that there is room for improvement.

Recent works in natural language processing show that employing unsupervised pre-trained language
models such as BERT (Devlin et al., 2019) and SciBERT (Beltagy et al., 2019), a variant of BERT that is
pre-trained on scholarly texts, can bring substantial improvement in the performance of various Natural
Language Understanding (NLU) tasks (Jiang and de Marneffe, 2019; Klein and Nabi, 2019). Further-
more, Phang et al. (2018) and Pruksachatkun et al. (2020) propose to further improve these language

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/



5410

models by using intermediate task transfer learning. Intermediate task transfer learning is a simple strat-
egy of fine-tuning on a data-rich intermediate task before fine-tuning on the downstream target tasks. To
this end, we investigate the performance of intermediate task transfer learning for SKIC. Specifically, we
run our experiments on seven intermediate tasks on BERT and SciBERT and six target tasks (three for
keyphrase boundary identification and three for keyphrase type classification) using three datasets of sci-
entific papers that cover different domains, e.g., Materials Science, Physics, Computer Science, Natural
Language Processing, and Artificial Intelligence.

Our contributions are summarized as follows: First, we build a transfer learning framework employing
a diverse range of intermediate tasks covering sequence tagging with semantic and syntactic aspects, and
natural language inference. We achieve competitive performance over both strong baselines and previous
works. While transfer learning using SciBERT successfully achieves improvement in performance, we
observe that intermediate transfer learning using BERT causes catastrophic forgetting (Chronopoulou et
al., 2019) with a significant performance deterioration. Second, we empirically observe that specific in-
termediate task types are more useful as intermediate tasks for SKIC. Specifically, sequence tagging tasks
such as POS tagging are preferable than natural language inference tasks such as entailment recognition.
Third, we provide a qualitative analysis of extracted keyphrases and show that our transfer learning
successfully returns keyphrases. This qualitative analysis proves the reliability of our proposed methods.

2 Related Work

Scientific keyphrase identification and classification (SKIC) was proposed at SemEval 2017 Task 10 as
Task A: Keyphrase Identification, and Task B: Keyphrase Classification (Augenstein et al., 2017). The
authors of this shared task proposed to employ the BIO schema, which refers to the beginning (B),
inside (I), or outside (O) of keyphrases, respectively. Most of the earlier approaches to SKIC rely on
hand-crafted linguistic features. For example, Lee et al. (2017) and Marsi et al. (2017) employ syntactic
and semantic features such as Part-of-Speech tags and word lemmas, as input to Conditional Random
Fields (CRFs). Liu et al. (2017) formulate SKIC as a supervised multi-class classification problem.
They exploit pre-trained word embeddings and linguistically inspired features, e.g., noun phrase features
and orthographic features, which represent character and symbolic features of given tokens, as input to
Support Vector Machines. With the success of neural models, recent works try to address SKIC using
neural architectures while exploiting the BIO schema. Although both tasks, keyphrase identification
and keyphrase classification according to their types, are very important, many works focused only on
keyphrase extraction/generation or identification/segmentation (Meng et al., 2017; Xiong et al., 2019;
Patel and Caragea, 2019; Alzaidy et al., 2019; Chen et al., 2020). The classification task is less explored
possibly due to a lack of a large number of gold-label keyphrase classification datasets. Precisely, there
are only a few publicly available datasets for keyphrase classification (QasemiZadeh and Schumann,
2016; Augenstein et al., 2017; Luan et al., 2018) and these datasets are small in size. To overcome the
small dataset size problem, Augenstein and Søgaard (2017) proposed the multitask learning of SKIC.
According to this work, they reveal that sequence tagging auxiliary tasks such as Chunking, Super-sense
Tagging, Multi-words Expressions Identification, and FrameNet Target Identification are beneficial to
SKIC within a multitask learning framework (with one auxiliary task at a time).

The recent unsupervised pre-trained language models such as BERT (Devlin et al., 2019) achieve state-
of-the-art performance in many downstream NLP tasks, such as named entity recognition e.g., 95.5%
F1 on the CoNLL-2003 dataset (Tjong Kim Sang and De Meulder, 2003). Han and Eisenstein (2019)
apply BERT and use fine-tuning of BERT to reduce the vocabulary gap between canonical domains and
historical domains, within an unsupervised approach. Moreover, the domain-specific BERT models such
as SciBERT (Beltagy et al., 2019), produce better results compared to a general domain-based BERT
with respect to scientific knowledge required tasks such as scientific term classification e.g., 64.57% F1
on the SciIE dataset (Luan et al., 2018). To exploit these pre-trained language models, Phang et al. (2018)
propose a data-rich intermediate transfer learning and prove that this method provides a better starting
point of target tasks. Extended from this, in our work, we propose the transfer of the intermediate tasks
fine-tuning to overcome the scarcity of gold-labeled large SKIC datasets.
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Figure 1: The overview of intermediate task transfer learning for keyphrase identification and classifica-
tion by using pre-trained language models. The words from the input shown in bold represent keyphrases
and their types are shown in the classification output.

3 Methodology

Given a document d = {w1, w2, . . . wn}, where n denotes the length of the document and wk is a word
in d (k = 1, · · · , n), the objective of SKIC is to identify and classify keyphrases of d by employing
an output sequence {y1, y2, . . . yn}, where yk follows BIO scheme for pre-defined classes, e.g., task,
material, process. In the BIO scheme, ‘B’ denotes the beginning word of a keyphrase, ‘I’ refers to the
inside word of a keyphrase, and ‘O’ indicates all other words that are not part of a keyphrase. An example
of input-output pairs of keyphrase identification and classification is shown in Figure 1.

3.1 Experimental Pipeline

Our transfer learning consists of two phases as shown in Figure 1: (1) Pre-trained language models BERT
and SciBERT are fine-tuned respectively on a single intermediate task; (2) The pre-trained language
models’ fine-tuned-parameters are transferred to the target task and fine-tuned further on each target
task. In target task fine-tuning, we apply different learning rates to retain knowledge that is acquired from
intermediate tasks. Specifically, as shown in Figure 1, the target task’s fully connected classifier uses a
higher learning rate, while pre-trained language models’ parameters are assigned as a lower learning rate
to retain knowledge.

3.2 Intermediate Tasks

To explore what intermediate tasks are effective for keyphrase identification and classification, we choose
various tasks. Intermediate tasks statistics are shown in Table 1. Note that for intermediate tasks that are
related to sequence tagging, we report phrase-level instance numbers.

We choose seven intermediate tasks based on the following considerations: 1) Augenstein and Sø-
gaard (2017) propose several auxiliary tasks where they improve performance of SKIC using a multitask
learning framework; 2) Pruksachatkun et al. (2020) prove the usefulness of Natural Language Inferences
(NLIs) in intermediate task transfer learning for general Natural Language Understanding. In our set-
ting, document understanding is essential to identifying the precise keyphrases (or the important parts)
for a document. In experiments, we use two NLI tasks where each task has different vocabulary sets,
i.e., general domain (MNLI) and scientific domain (SciTail); 3) A traditional NLP sequence tagging
task, i.e., Part-Of-Speech Tagging, to understand whether a model that acquire better ability of under-
standing grammatical structures improves the performance of SKIC. The detailed information of each
intermediate task follows.

Supersense Supersense tagging (Johannsen et al., 2014) is the task of mapping semantic units such as
compounds, phrase and several other linguistic terms to Wordnet’s lexicographers classes using Semcor
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Task Name |Train| |Dev| |Class| Task Type Domain

Supersense 8,006 1,186 3 Sequence tagging Newswire, Novel
MWEs 11,890 1,146 57 Sequence tagging Online review
FrameNet 9,334 4,000 92 Sequence tagging Open domain
Chunking 104,054 11,588 12 Sequence tagging Wall Street Journal
SciTail 23,596 1,304 2 Natural language inference Science exams
MNLI 392,703 20,000 3 Natural language inference Fiction, Letters, Telephone Speech
POS Tagging 334,180 54,138 15 Sequence tagging Wikipedia, Talks, Literature

Table 1: The overview of intermediate tasks in our experiments.

3.0 corpus.1 In this work, we focus on noun supersense classes which are Person, Location and Group.
For example, in a given sentence ‘Boston Red Sox outfielder Jackie Jensen said he played baseball on
monday night’, the supersense of Boston Red Sox is Group, and that of Jackie Jensen is Person.

MWEs Multiword Expressions Identification and Classification (Schneider and Smith, 2015) is the
task of detecting and classifying idiosyncratic noun and verb combinations to literal categories, which
are high-level ontological semantic classes, using Streusle corpus.2 For example, in a given sentence
‘We have been blessed to find elite flyers online and would not use anyone else to handle our postcards
posters etc.’, examples of high-level ontological semantic classes are: for blessed is verb.cognition, for
find is verb.cognition, for use is verb.social and for postcards posters is noun.artifact.

FrameNet FrameNet Target Identification (Das et al., 2014) is the task of detecting semantic frame
evoking word sequences or words in the FrameNet 1.7 corpus, which contains lexical and predicate-
arguments. Frames are words or phrases that describe events, relations, objects and the participants in it.
For example, a target such as moist in a sentence evokes the frame Being as state.

SciTail SciTail (Khot et al., 2018) is the task of recognizing the entailment of a hypothesis that is
constructed from a science question and its corresponding answer by employing the premise. The dataset
is collected by crowd-sourcing and by multiple-choice science questions from 4th-grade and 8th-grade
exams. For example, the relation between the following two sentences, ‘Neurons receive information
from dendrites which are then passed to the soma cell body.’ and ‘Dendrites from the cell body receives
impulses from other neurons.’ is labeled as Entail.

MNLI Multi-Genre Natural Language Inference (Williams et al., 2018) is the task of determining
textual entailment in sentence pairs across a variety of genres of written and spoken English, ranging
from fiction to face-to-face conversations. For example, the relation between the following two sentences,
‘This approach provides perhaps a better technique for isolating the actual costs of the emissions caps.’,
‘There is no way to estimate the actual cost of emissions caps.’ is labeled as Contradiction.

Chunking Text Chunking is the task of detecting the chunks of words in CoNLL-2000 shared dataset
(Tjong Kim Sang and Buchholz, 2000). The chunk tags include various grammatical classes such as
noun phrase, verb phrase, prepositional phrase and these tags follow the BIO schema. For a sentence
‘He reckons the current account deficit will narrow to only #1.8 billion in September’ can be annotated
as,‘[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8
billion] [PP in] [NP September]’, where NP refers to noun phrase, VP refers to verb phrase, PP refers
to prepositional phrase.

POS Tagging POS Tagging is the task of labeling each word in a sentence with its part of speech tag.
In this work, we employ the English POS tagging annotation collection of universal dependency parsing
(McDonald et al., 2013). As an example, the following sentence, ‘Aesthetic appreciation and spanish
art.’, has the grammar class sequence as [‘ADJ’, ‘NOUN’, ‘CCONJ’, ‘ADJ’, ‘NOUN’].

1https://web.eecs.umich.edu/ mihalcea/downloads.html
2https://github.com/nert-nlp/streusle
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Task Name |Train| |Dev| |Test| |Class| |Avg KP per Doc| |Avg Doc Word Count| Domain

SemEval 2017 5,992 1,076 1,817 3 18 162
Computer Science, Physics,

and Material Science
ACL RD-TEC 2.0 1,930 214 1,088 7 12 107 Natural Language Processing
SciIE 5,712 641 1,677 6 17 120 Artificial Intelligence

Table 2: The statistics of target tasks in our experiments.

3.3 Target Tasks

Table 2 shows the characteristics of our target tasks. The detailed information is presented below.

SemEval 2017 Task 103 SemEval 2017 (Augenstein et al., 2017) is a scientific keyphrase boundary
identification and classification dataset. The SemEval 2017 dataset covers three domains: materials
science, physics, and computer science. The dataset has three pre-defined classes which are Process,
Task, and Material.

ACL RD-TEC 2.04 ACL (QasemiZadeh and Schumann, 2016) is a term and entity categorization
task in scientific text. The ACL dataset covers the domain related to natural language processing. The
ACL dataset has seven pre-defined classes, which are Technology (Tech), Tool, Language Resources (Lr),
Language Resources Product (Lr-prod), Measurement, Model, and Other. Note that the class Other here
is different from the class Other in the BIO scheme that represents non-keyphrase.

SciIE5 SciIE (Luan et al., 2018) covers the task of detecting scientific entities, their relations, and
coreference clusters. In this work, we focus on term identification and classification. The SciIE dataset
covers the domain related to artificial intelligence in computer science. The SciIE dataset has six pre-
defined classes, which are Generic, Metric, Method, Task, Material, and OtherScientificTerm (Other).

4 Experiments

Baseline We compare the intermediate task transfer learning with the following baselines.

• BiLSTM (Augenstein and Søgaard, 2017) A 3-layer BiLSTM with SENNA embeddings6 for each
target task.

• BiLSTM-MTL (Augenstein and Søgaard, 2017) Multitask learning of 3-layer BiLSTMs with
SENNA embeddings.

• BERT (Devlin et al., 2019) BERTbase fine-tuning on a single target task.

• SciBERT (Beltagy et al., 2019) SciBERT fine-tuning on a single target task.

Experimental Setup For the SemEval 2017 and SciIE, we use the published train, validation, and test
sets. For the ACL RD-TEC 2.0 dataset, we perform 60/10/30 split to create the train, validation, and test
sets. We estimate models’ hyper-parameters via a grid search over combinations. The ranges of param-
eters we explore are the following: Batch size [1,4,8,16,32,64], learning rate [0.01, 0.0001], momentum
[0.5, 0.9]. The information about the best hyper-parameters setting is as follows. For each target task,
we use the batch size 1. The intermediate tasks of Supersense, MWEs, FrameNet use batch size 4, while
Chunking uses 32, POS Tagging uses 64, SciTail uses 16, and MNLI uses 4. For BERT and SciBERT
fine-tuning, we use SGD optimizer with learning rate 5e-3 with momentum 0.9. In intermediate-task
transfer learning, we train intermediate tasks with learning rate 5e-3 without applying momentum. We
set a higher learning rate as 5e-3 and set a lower learning rate as 5e-4, both with momentum 0.9. We run

3https://scienceie.github.io/
4https://github.com/languagerecipes/acl-rd-tec-2.0
5http://nlp.cs.washington.edu/sciIE/
6https://ronan.collobert.com/senna/
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SemEval 2017 Task 10 ACL RD-TEC 2.0 SciIE
Identification Classification Identification Classification Identification Classification

BiLSTM (Augenstein and Søgaard, 2017) 67.71 38.01 81.85 58.51 72.33 58.05
BiLSTM-MTL w/ Supersense 63.93 43.54 81.36 58.95 72.65 54.33
BiLSTM-MTL w/ MWEs 72.42 45.49 80.69 56.87 72.92 55.21
BiLSTM-MTL w/ FrameNet 65.18 45.24 81.68 58.89 70.44 52.60
BiLSTM-MTL w/Chunking 63.96 42.86 81.37 57.84 75.40 59.43

BERT (Devlin et al., 2019) 60.40 46.82 79.50 51.67 81.02 65.44
Transfer From Supersense/ BERT 63.52 49.02 71.03 44.78 75.53 57.40
Transfer From MWEs/ BERT 59.22 45.92 70.70 43.13 75.22 57.05
Transfer From FrameNet/ BERT 61.81 46.06 71.04 42.64 73.82 55.06
Transfer From SciTail/ BERT 60.11 47.81 63.77 39.87 74.59 55.73
Transfer From MNLI/ BERT 49.44 44.52 64.51 40.22 73.21 54.42
Transfer From Chunking/ BERT 65.87 47.90 77.72 45.54 75.81 55.18
Transfer From POS Tagging/ BERT 59.64 42.08 76.97 45.77 75.87 52.89

SciBERT (Beltagy et al., 2019) 66.70 48.21 79.77 65.11 81.02 67.44
Transfer From Supersense/ SciBERT 70.39 51.58 81.62 67.75 82.65 70.20
Transfer From MWEs/ SciBERT 72.09 50.90 83.65 67.55 80.55 67.94
Transfer From FrameNet/ SciBERT 73.89 53.70 82.95 66.73 80.94 69.63
Transfer From SciTail/ SciBERT 68.49 55.52 82.89 68.20 81.28 67.57
Transfer From MNLI/ SciBERT 70.35 54.08 76.51 63.16 76.51 75.23
Transfer From Chunking/ SciBERT 72.07 53.75 83.28 66.35 77.08 66.20
Transfer From POS Tagging/ SciBERT 70.90 56.90 88.01 69.90 78.62 66.64

Table 3: The results of BERT and SciBERT intermediate task transfer learning in comparison with
previous work. We use the micro-average F1 score. The results are highlighted with green (↑) and

red (↓) with respect to BERT (middle) and SciBERT (bottom). Underlined scores are best within each
group and bold scores are best overall.

training for a maximum of 10 epochs with negative log-likelihood loss. Aside from these details, we fol-
low the SciBERT paper for all other training hyper-parameters. All experiments are done in p3.2xlarge
settings of Amazon Web Services. All model parameters are estimated on the validation set of each task.
We evaluate the performance of each model using phrase-level micro-averaged F1 and use the exact
match metric (Kim et al., 2010).

5 Results and Analysis

5.1 Discussion

Table 3 presents our identification and classification results. We make the following observations.
First, we observe that SciBERT generally shows higher performance across all of our target tasks

in comparison to BERT. Interestingly, BERT and SciBERT have different vocabulary set which only
overlapped 42% (Beltagy et al., 2019). We posit that scientific knowledge that is available in SciBERT
boosts the performance of SKIC. However, the fine-tuning of SciBERT on keyphrase identification for
both SemEval 2017 and ACL datasets still remains challenging since the performance is lower than the
best performance of the previous work (Augenstein and Søgaard, 2017). For example, the best baseline
F1-score on SemEval 2017 keyphrase identification is 72.42%, whereas that of SciBERT fine-tuned on
SemEval 2017 keyphrase identification achieves only 66.70%.

Second, our SciBERT transfer learning achieves the best results in all identification and classification
target tasks. This implies that intermediate task fine-tuning leads to better starting points for the target
task fine-tuning by injecting the knowledge related to SKIC. Specifically, in keyphrase identification and
classification of the SemEval 2017 dataset, the model gains significant effectiveness when FrameNet is
employed as an intermediate task (+7.19 F1), and when POS Tagging (+8.69 F1) is used as an interme-
diate task, respectively. For the ACL dataset, we observe that exploiting POS Tagging as an intermediate
task achieves the best performance of both identification (+6.16 F1) and classification (+4.79 F1). This
implies that a better syntactic understanding ability of the model induces performance improvement. The
SciIE dataset performs the best with transfer from Supersense in keyphrase identification (+1.63 F1), and
MNLI in keyphrase classification (+7.79 F1).
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Figure 2: The keyphrase classification results confusion matrix visualization of each target dataset. The
x-axis refers to true classes and the y-axis refers to predicted classes in each target task. The numbers
are normalized by the count of predicted keyphrases.

More interestingly, the contribution of intermediate tasks to target tasks is different by their task types.
When natural language inference tasks are employed as intermediate tasks, we generally observe perfor-
mance degradation, while most of the sequence tagging tasks are consistently helpful for SKIC. Syntac-
tically sequence tagging tasks such as chunking and POS Tagging are also generally helpful to SKIC.
Another important observation is that the domain difference in natural language inference tasks (general
and scientific domain) results in different outputs. For example, in all three datasets, transferring from
MNLI in SciBERT shows better performance than transferring from SciTail in BERT. MNLI and SciTail
lie on similar inference recognition settings but have different domains, which are general domains and
scientific domains, respectively.

Third, we observe that BERT potentially suffers from catastrophic forgetting as opposed to SciBERT.
In BERT transfer learning, most of the intermediate tasks fail to provide useful knowledge for the target
tasks (i.e., they appear to make the fine-tuned models forget the good information learned within the
pre-trained BERT), and hence, result in a severe deterioration of performance. For example, on the ACL
RD-TEC 2.0 keyphrase identification task, when SciTail is employed as an intermediate task on BERT
transfer learning, the performance is decreased by as much as -15.73 in F1, compared to single BERT
fine-tuning. As we can see from Table 3, all cases of BERT intermediate task transfer learning in ACL
and SciIE dataset degrade performance in comparison to BERT, while most of the cases in SciBERT
transfer learning improve performance compared to that of SciBERT.
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Article from SemEval 2017 Task 10

PV cells are one of the most promising technologies for conversion of incident solar radiation into electric power.
However, this technology is still far from being able to compete with fossil fuel-based energy conversion technologies
because of its relatively low efficiency and energy density. Theoretically, there are three unavoidable losses that limit the solar
conversion efficiency of a device with a single absorption threshold or band gap Eg: (1) incomplete absorption,
where photons with energies below Eg are not absorbed; (2) thermalization or carrier cooling, where solar photons
with sufficient energy generate electron-hole pairs and then immediately lose almost all energy in excess of Eg in the form of heat;
and (3) radiative recombination, where a small fraction of the excited states radioactively recombine with the ground state
at the maximum power output (Hanna & Nozik, 2006; Henry, 1980). Taking an air mass of 1.5 as an example,
for different band gap Eg these three losses can be calculated and the results are indicated by areas S1, S2, and S3 in Fig. 1.
Note that the area under the outer curve is the solar power per unit area, and that only S4 can be delivered to the load.

Gold Keyphrases

(‘PV cells’, ‘Task’) (‘conversion of incident solar radiation into electric power’, ‘Process’)
(‘incident solar radiation’, ‘Material’) (‘electric power’, ‘Material’)
(‘fossil fuel-based energy conversion’, ‘Process’) (‘absorption’, ‘Process’)
(‘incomplete absorption’, ‘Process’) (‘thermalization’, ‘Process’) (‘carrier cooling’, ‘Process’)
(‘photons’, ‘Material’) (‘solar photons’, ‘Material’)
(‘electron-hole pairs’, ‘Material’) (‘radiative recombination’, ‘Process’) (‘solar power’, ‘Process’)

Keyphrase Outputs of Transfer from POS Tagging/ SciBERT

(‘PV cells’, ‘Material’) (‘conversion of incident solar radiation into electric power’, ‘Task’)
(‘fossil fuel based energy conversion technologies’, ‘Material’) (‘absorption’, ‘Process’)
(‘incomplete absorption’, ‘Process’) (‘carrier cooling’, ‘Process’),
(‘photons’, ‘Material’) (‘photons’, ‘Material’)
(‘electron-hole pairs’, ‘Material’) (‘heat’, ‘Process’) (‘radiative recombination’, ‘Process’)
(‘air mass’, ‘Material’) (‘solar’, ’Material’)

Table 4: The comparison between gold keyphrase and classified keyphrase outputs of SemEval 2017
Task 10 dataset.

5.2 Error Analysis

We visualize confusion matrices of the best performing SciBERT transfer learning keyphrase classifi-
cation results in Figure 2. Specifically, for the SemEval 2017 Task 10 dataset and the ACL dataset, we
plot the result of SciBERT transfer learning from POS tagging. For the SciIE dataset, we plot the re-
sult of SciBERT transfer learning from MNLI. The numbers in Figure 2 represent how many classified
keyphrases belong to each true class. For example, in SemEval 2017 Task 10 dataset confusion matrix,
the cell corresponding to row Process and column Task refers to the ratio of keyphrases predicted as Task
but which should be classified as Process to the total number of keyphrases that are classified as Task.
Consequently, each row in every confusion matrix sums up to 1.

We observe that SemEval 2017 data suffers from mis-classifying the class Task possibly due to the
imbalanced data distribution. The distribution of categories in SemEval 2017 Task 10, Process, Mate-
rial, Task is 50%/35%/15%, respectively. Moreover, our SciBERT transfer learning makes erroneous
predictions between Process and Task categories due to the subjectivity of two classes as shown in Table
4. Table 4 presents an example article of the SemEval 2017 and its keyphrase classification comparison
between gold labels and SciBERT transfer learning from POS Tagging. We observe that the keyphrase
conversion of incident solar radiation into electric power is annotated as Process, while it is reasonable
to think of it as Task, which is the output of our transfer learning model prediction. This type of er-
ror is not necessarily a shortcoming of SciBERT, but rather of the data annotation and its subjectivity.
According to this, we can also confirm the difficulties of the SKIC data collections.

For the ACL dataset, we observe that the category Language Resource (LR) is mis-classified as Other
class. For example, treebank is annotated as LR but our model predicts it as Other. Further, the data
imbalanced also causes performance degradation in the ACL dataset. This is because the proportion of
LR, which is one of the classes in the ACL dataset, is very small in size (5.7%), while the percentage of
Other is significantly higher (42.8%). Interestingly, in contrast to the above two target datasets, in the
SciIE dataset, our SciBERT transfer learning generally performs very well.
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6 Conclusion, Discussion, and Future Work

We investigated the performance of data-rich intermediate task transfer learning for scientific keyphrase
identification and classification (SKIC) using pre-trained language models BERT and SciBERT. We per-
form experiments on SciBERT and BERT with a total of 42 pairs of intermediate and target tasks, where
intermediate tasks are drawn from sequence tagging and natural language inference. We found that
employing sequence tagging tasks as intermediate tasks on SciBERT performs the best on three pub-
licly available keyphrase identification and classification datasets. Further, the intermediate task transfer
learning using SciBERT outperforms both the previous work and strong baselines by a large margin.
Specifically, for the SemEval 2017 Task 10 dataset, using FrameNet as an intermediate task on SciBERT
transfer learning yields +7.19 improvement in F1 in keyphrase identification, and using POS Tagging
yields +8.69 improvement in F1 in keyphrase classification. For the ACL RD-TEC 2.0 dataset, using
POS Tagging leads to +6.16 F1 in keyphrase identification, and +4.79 F1 in keyphrase classification.
For the SciIE dataset, using Supersense brings +1.63 F1 in keyphrase identification, and +7.79 F1 in
keyphrase classification. According to these results, syntactic structure learning related intermediate
tasks such as POS Tagging are preferable for SKIC tasks. Further, looking at our intermediate task do-
main difference that lies in natural language inference tasks, we explore their impact on the pre-trained
language models. In particular, we empirically showed that using MNLI as an intermediate task on
SciBERT transfer learning returns higher performance than employing SciTail as an intermediate task on
BERT transfer learning. Future works in this area will benefit from the improvement of the available in-
termediate tasks and other related intermediate tasks will be explored. Moreover, a better understanding
of when and why these intermediate tasks are working is one of the interesting future directions.

Interestingly, we observe that BERT suffers from a serious drop in performance possibly due to catas-
trophic forgetting. In particular, we observe that almost all of the intermediate tasks fail to provide better
starting points for SKIC pre-trained language models fine-tuning. While SemEval 2017 Task 10 dataset
achieves the best results when transfer from Chunking on BERT, this result is lower than single SciB-
ERT fine-tuning. On ACL RD-TEC 2.0 and SciIE, no intermediate task produces higher performance on
BERT intermediate task transfer learning. One potential reason could be a large vocabulary gap between
our domain and the collections used to pre-train BERT. In the future, we plan to analyze the differences
between BERT and SciBERT to better understand the effects of transfer learning for SKIC.
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