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Abstract

An essential task of most Question Answering (QA) systems is to re-rank the set of answer
candidates, i.e., Answer Sentence Selection (AS2). These candidates are typically sentences either
extracted from one or more documents preserving their natural order or retrieved by a search
engine. Most state-of-the-art approaches to the task use huge neural models, such as BERT, or
complex attentive architectures. In this paper, we argue that by exploiting the intrinsic structure
of the original rank together with an effective word-relatedness encoder, we achieve the highest
accuracy among the cost-efficient models, with two orders of magnitude fewer parameters than
the current state of the art. Our model takes 9.5 seconds to train on the WikiQA dataset, i.e., very
fast in comparison with the ∼ 18 minutes required by a standard BERT-base fine-tuning.

1 Introduction

In recent years, there has been a renewed interest in Question Answering (QA) led by industrial needs, e.g.,
the development of personal assistants and academic research on neural networks. Regarding the latter,
AS2 (Wang et al., 2007; Yang et al., 2015) and Machine Reading Comprehension (MRC) (Richardson et
al., 2013; Rajpurkar et al., 2016) have been largely explored.

AS2 consists of selecting sentences that are answers to a target question from documents or paragraphs
retrieved from the web by a search engine. MRC regards the extraction of an exact text span from a
document answering the question, where the document is usually provided with the target question.

Even though MRC is gaining more and more popularity, AS2 is more suitable for a production scenario,
where a combination of a retrieval engine and an automatic sentence selector can already constitute a QA
system. In contrast, MRC has been mainly developed to find answers in a paragraph or a text of limited
size. Several models for adapting MRC to an end-to-end retrieval setting have been proposed, e.g., Chen
et al. (2017a) and Kratzwald and Feuerriegel (2018), the deployment of MRC systems in production is
challenged by two key factors: the lack of datasets for training MRC with realistic retrieval data, and the
large volume of content needed to be processed, i.e., MRC cannot efficiently process a large amount of
retrieved data.

In contrast, AS2 research originated from the TREC competitions (Wang et al., 2007); thus, it has
targeted large databases of unstructured text from the beginning of its development. Neural models have
significantly contributed to AS2 with new techniques, e.g., Wang and Jiang (2016), Qiao et al. (2019) and
Nogueira and Cho (2019). Recently, new approaches for pre-training neural language models on large
amount of data, e.g., ELMO (Peters et al., 2018), GPT (Radford et al., ), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), have led to major advancements in several NLP subfields. These pre-training
techniques allow for creating models that automatically capture dependencies between the sentence
compounds. Interestingly, the resulting models can be easily adapted to different tasks by fine-tuning
them on the target training data.

Unfortunately, all the models above (especially Transformer-based architectures) require a considerable
number of parameters (up to 340 million for BERT Large). This poses three critical challenges for having
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How long was I Love Lucy on the air ?
I Love Lucy is an American television sitcom starring Lucille Ball , Desi Arnaz , Vivian Vance , and William

Frawley .
The black-and-white series originally ran from October 15, 1951, to May 6, 1957, on the Columbia

Broadcasting System (CBS).
After the series ended in 1957, however, a modified version continued for three more seasons with 13 one-hour
specials, running from 1957 to 1960, known first as The Lucille Ball-Desi Arnaz Show and later in reruns as The

Lucy–Desi Comedy Hour .
I Love Lucy was the most watched show in the United States in four of its six seasons, and was the first to end

its run at the top of the Nielsen ratings (an accomplishment later matched by The Andy Griffith Show and
Seinfeld ).

I Love Lucy is still syndicated in dozens of languages across the world

Table 1: An example of question/answer-candidate from WikiQA. In green the answer to the question.

such models in production: firstly, it requires powerful GPUs to achieve an acceptable service latency;
secondly, although the classification of candidates can be parallelized, the necessary number of GPUs will
prohibitively increase the operational cost and creating substantial environmental issues, as pointed out in
Strubell et al. (2019); last, transformer-based architectures require many resources for pre-training, e.g.,
both data and compute power (TPUs). These resources may not be available for low resource languages
or domain-specific applications.

In this paper, we study and propose solutions to design accurate AS2 models, still preserving high
efficiency. We first note that (i) the primary source of inefficiency is, unfortunately, the contextual
embedding, e.g., language models produced by Transformer networks or other methods such as ELMo.
These introduce at least one order of magnitude more parameters in the AS2 models than standard models
based on CNNs or LSTMs. (ii) The other significant source of inefficiency is the attention mechanism.
As both of the above features critically impact accuracy, we provide an alternative approach to preserve
it as much as possible. In particular, we jointly model all candidates for a given question to capture the
global structure of the document or the rank as provided in input to the model. Our experiments verify
the hypothesis that in several AS2 datasets, the data often presents an underlying ranking structure that
refers not only to the relations between a question and all its candidates but also to the inter-dependencies
among the candidates themselves. Additionally, the availability of the representation of several candidates
can help weaker models to improve their inference, e.g., in case there are two correct and similar answers,
they can get strength from each other, or even a wrong answer sentence can provide additional context to
make a better inference.

Our approach can both (i) capture structure in the original rank and (ii) exploit the representation of
multiple candidates. For this purpose, we show that it is essential to implement two main logic blocks:
(i) an encoder able to capture the relation between the question and each of its candidates, e.g., using
an attention mechanism; and (ii) the structure of the sentences in the original rank, which is the original
order of the sentences in the document or in the rank retrieved by the search engine. Regarding the second
block, we use an additional layer constituted by a bidirectional recurrent neural network (BiRNN), which
is fed with the representation of question/answer candidate pairs. The latter are joint representations of
the question and the answer obtained by the question-answer encoder. For the attention mechanism, we
propose Cosinet, a network that uses a sort of static attention, given by the cosine similarity between the
embedding representation of the question and answer words. We show that this solution is very efficient
and does not cause almost any drop compared to the use of standard attention.

We tested our models on four different datasets, the well-known WikiQA dataset, the adaptation of
SQuAD (Rajpurkar et al., 2016), and Natural Questions (Kwiatkowski et al., 2019) datasets to the AS2
task. Our comparative experiments show that (i) our models achieve better results than other efficient
approaches, but (ii) the lack of contextual embeddings prevents the model from learning more complex
functions, leading to lower results than the very expensive solutions. We partially solve this problem by
using our joint model, which significantly improves the accuracy of efficient methods. Despite this adds a
small overhead during training and testing, it is crucial to capture the structure of data. For example, the
results on WikiQA show that BiRNN added to the Cosinet improves of ∼ 4 points previous baselines.
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Finally, our word-relatedness encoder can replace the standard attention to enhance the speed of the
fast attention-based approaches, resulting in a fast and accurate network in the class of fast methods.
Our research will gain more and more important also in the light of improving the efficiency of large
architecture using our models for sequential re-ranking (Matsubara et al., 2020; Soldaini and Moschitti,
2020).

2 AS2: Answer Sentence Selection

The task of Answer Sentence Selection (AS2) can be formalized as follows: given a question q and a
set of answer sentence candidates C = {c1, c2, ..., cn}, assign a score si for each candidate ci such that
the sentence receiving the highest score is the one that most likely contains the answer, i.e., the answer
sentence. It is interesting to note that AS2 can be, in fact, modeled as a re-ranking task.

Although re-ranking is a structured output problem, most state-of-the-art approaches treat it as point-
wise classification, i.e., classifying answer sentences as positive and all the others as negative. This design
bias prevents AS2 models from capturing the underlying structure of the original rank. However, in this
paper, we argue that building systems capable of capturing such information is crucial for improving the
performance of efficient AS2 models.

2.1 AS2 Datasets

AS2 datasets can be divided into two categories: retrieval based and document-based. The difference
between the two categories resides in the source of the answer candidates. In the former, answer candidates
are retrieved from a search engine, i.e., TrecQA (Wang et al., 2007) and, more recently, MSMarco (Bajaj
et al., 2016). For the latter, a search engine is often used to retrieve relevant documents, but the task is
to select the relevant answer candidate from the document itself. Notable examples of document-based
AS2 are the WikiQA dataset (Yang et al., 2015) and the ”long-answer” version of Natural Question
(Kwiatkowski et al., 2019). Although the datasets are different in terms of annotation, they seem to require
similar features for detecting relevant answers in the candidate set. These are essentially the lexical
overlap between the question and the answer candidate as well as the global candidate structure, i.e., the
original order of the sentences in the rank.

2.1.1 Lexical Overlap

One of the most reliable features in AS2 datasets is the lexical overlap, i.e., whether words appear in both
questions and answer candidates.

WikiQA SQuAD-sent NQ-LA
# questions (Q) 633 11873 6230
# sentences (C) 6165 63959 193k
% Q answered 38.39 49.92 55.47
avg. # passages 9.74 5.38 30.95
avg. Q length 7.28 10.02 9.38
avg. C length 25.36 23.75 98.76
P@1 (random) 14.43 18.34 3.24
MAP (random) 25.15 43.81 12.33
P@1 (WO) 32.51 65.48 23.06
MAP (WO) 51.02 77.90 38.08
P@1 (RR) 46.09 30.54 46.06
MAP (RR) 64.21 53.53 57.30
P@1 (WO+RR) 56.38 73.12 41.01
MAP (WO+RR) 68.25 83.60 53.98

Table 2: Statistics of the different datasets (the test-
set are taken into account).

The importance of this feature is highlighted
in Table 2. We used the number of unique words
in both the question and the candidates as a sin-
gle feature, which is called word-overlap WO,
to rank question-answer pairs. From the table, it
is clear that this feature alone significantly out-
performs the random baseline in most datasets.
For SQuAD-sent, our adaptation of the SQuAD v.
2.0 dataset to the task of identifying the sentence
containing the answer, this feature alone identi-
fies the answer sentence 65.48% of the times. All
recent work models have tried to model such fea-
tures; for example, Severyn and Moschitti (2016)
uses a relational feature that marks words appear-
ing in both the question and the answer, and many
state-of-the-art approaches have primarily used
the attention mechanism (Wang and Jiang, 2016;
Bian et al., 2017; Sha et al., 2018).
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2.1.2 Global Structure

Another relevant feature for the AS2 datasets is the global structure present in the original rank. The
structure of the document provides an essential signal for AS2. Table 2 shows that, in the case of
WikiQA, SQuAD, and Natural Questions, there is a high chance that the answer is contained in the first
sentence/paragraph. This is particularly true for WikiQA and Natural Questions. In these datasets, the
Precision at one (P@1), computed on the original sentence rank (RR) (order of the sentences in the raw
text), is ∼ 46. There may be several reasons for this distribution. For example, we believe that there is an
intrinsic correlation between the real-world distribution of questions and the structure of the Wikipedia
document: encyclopedic knowledge is usually organized such that more general information about a topic
is summarized and organized at the beginning of the document.

In contrast, the signal is less present in other datasets, such as SQuAD, where annotators are asked to
write questions after reading the whole paragraph, i.e., they target each part of the text by construction.
Thus, the answer distribution is less skewed. However, following this procedure, the annotators also tend
to introduce more lexical overlap bias when writing questions after reading the source of the answers.

Additionally, Table 2 shows that the combination of the two features, word-overlap (WO), and reciprocal
rank (RR), gives a strong baseline for all the datasets in consideration. This simple rule-based model ranks
candidates according to the lexical overlap between question and candidates, and, in the case when two
sentences have the same amount of overlapping words, it uses the reciprocal rank (RR) as a discriminator.

3 Related Work

Despite the importance of global structure, most state-of-the-art models (Severyn and Moschitti, 2016; He
et al., 2015; Madabushi et al., 2018; Tay et al., 2018b; Garg et al., 2019) do not take the global structure
of candidates into account. They use a point-wise approach to maximize the score of positive candidates,
i.e., those containing the answer, and minimize the score of those not containing the answer. Most models
treat ranking as a binary classification problem. Nevertheless, other methods have been studied, e.g.,
contrastive pair-wise and, more recently, list-wise approaches.

In the case of contrastive pair-wise training (Rao et al., 2016), given a question q, the loss maximizes
the score of the model for a positive question candidate pair (q, ĉ+) in contrast to the score of the
negative pair (q, ĉ−). This approach intrinsically balances the distribution of positive and negative
examples in training and can improve the overall results. In particular, when paired with a hard negative
sampling strategy. However, the comparison between the answer candidates is just performed at the
score level; therefore, the model is still point-wise in terms of internal representation. The list-wise
approach was proposed in a recent paper by Bian et al. (2017). The approach predicts the score for
each question candidate pair individually, but it applies a softmax function on top of the set of scores,
s1, s2, ..., sn = softmax(φ(q, c1), φ(q, c2), ..., φ(q, cn)). This helps in providing stability in the training
process. However, the model is agnostic of the global structure of the rank.

Most AS2 models have a way to identify the lexical overlap and, in particular, the semantic word-overlap
between question and answer. The first neural models developed to solve the task (Yu et al., 2014; Severyn
and Moschitti, 2015) directly added the lexical overlap feature in the model by concatenating it to the
question-candidate representation or as a feature concatenated to the word embeddings of Convolutional
Neural Network (CNN). Subsequent approaches, e.g., (Wang and Jiang, 2016; Bian et al., 2017), use
a word-level attention mechanism to identify the semantic overlap between each word in the question
and each word in the answer candidate. Despite obtaining better results than previous approaches,
the computational cost of performing word-level attention and the aggregation steps to leverage the
information extracted by the attention mechanism increases the computational cost of previous methods.
More recent models, e.g., (Lai et al., 2019; Garg et al., 2019; Yoon et al., 2018), leverage contextualized
word representation, e.g., pre-trained using BERT, ELMo, RoBERTa, etc. These approaches achieve
state-of-the-art results for AS2, but they require significant computational power for both pre-training,
fine-tuning, and testing on the final task.
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4 Efficient Model for AS2

To build an efficient yet accurate model for AS2, it is crucial to leverage all the strong signals present in
the dataset without increasing the complexity of the model itself. For this reason, we design a model as
follows: (i) We build an efficient encoder to capture the question-candidate pair’s lexical-overlap, i.e.,
our Cosinet. (ii) We add a recursive neural network on top of the question-candidate pairs to capture the
original rank’s global structure. (iii) We apply a global, list-wise, optimization approach to rank all the
candidate pairs jointly.

4.1 Cosinet

The Cosinet has three building blocks: (i) a word-relatedness encoder that performs the cosine similarity
between the word embeddings in the question and the answer (generating word relatedness features);
(ii) similarly to (Severyn and Moschitti, 2016), the relational features are concatenated to the word
embeddings and given in input to one layer of CNN, to create a representation for the question and
candidate pair; and (iii) similarly to (Chen et al., 2017b), the information of the question and the candidate
is combined at classification stage, by concatenating the vectors. That is, we use the component-wise
multiplication and difference between question and answer vectors.

4.1.1 Word-Relatedness encoder
To encode the word-relatedness information, we first map the words in the question and the answer to their
respective word embeddings. We then perform comparisons between all the embeddings in the question
wq
i and all the embedding of the answer wc

j using the cosine similarity, ri,j = (wq
i · wc

j)/(‖w
q
i ‖ ·

∥∥∥wc
j

∥∥∥).
Instead of using the weighted sum of the embeddings as in standard attention, for each word in the

question, we take the maximum relatedness score between its embedding and each word embedding of
the candidate, i.e., ri = maxj(ri,j). The same process is performed for each word in the answer. This
value represents how much a word is similar to the most similar word in the other text. The value is
concatenated to the word embedding of the question, i.e., ŵq

i = [wq
i ; ri]. A similar procedure is applied to

the candidate to find rj = maxi(ri,j), which is used to obtain the vector ŵc
j = [wc

j ; rj ]. The two vectors,
ri and rj are passed to the question-candidate encoder to create a pair representation. It is important to
note that we keep the word embedding static during training, thus this operation does not cause much
overhead during training as we do not need to back-propagate through it.

For this model, we use the Numberbatch (Speer and Lowry-Duda, 2017) embeddings since they are
more accurate than unsupervised word embeddings, such as Glove (Pennington et al., 2014), which
may introduce noisy or non-common-sense relations. In particular, Faruqui et al. (2016) showed that
unsupervised word embeddings tend to cluster according to the frequency of words of the dataset used for
training them. For this reason, Speer and Lowry-Duda (2017) adopted retrofitting. This technique aims
at reducing the distance between word embeddings of entities that are related in a knowledge base, i.e.,
ConcepNet.

4.1.2 Question-Candidate encoder
Similarly to Severyn and Moschitti (2016), we encode the question and candidate independently using
two single layers of CNN with a kernel size of 5 and global max pooling, producing two embeddings for
the question qe and the candidate ce. These are then combined using their point-wise multiplication and
their difference, i.e., qce = [qe � ce; qe − ce].

4.2 Global optimization

Standard approaches take the pair representation qce and apply a feed-forward network that outputs the
score si for the pair (q, ci). However, this simple model cannot capture the inter-dependencies between
the candidates for the question q, i.e., it does not capture the global structure of the rank.

In contrast, we use a Recurrent Neural Network applied on top of the qce representations for each ci of
a given question q, to leverage the global structure of the rank. The resulting contextual representations
q̂ce are passed to the feed-forward network (in our experiments, we use a single layer to produce the final
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score). Finally, similarly to Bian et al. (2017), we apply a softmax function to the scores s1, .., sn of all
the n candidate answers of a given question. Then, we minimize the KL-divergence of the predicted
probabilities and the normalized gold labels. The latter are normalized to generate a valid probability
distribution over the candidates since there may be more than one answer sentence for each question. Bian
et al. (2017) showed that this approach could improve the convergence speed of the model with respect to
point-wise approaches.

5 Experiments

In these experiments, we first report the results of simple baselines and the state of the art for efficient and
expensive models. Then, we present the results of our models carrying our comparison with the previous
results.

5.1 Datasets
We used one dataset specific to AS2 and two datasets we adapted from MRC to AS2:

WikiQA Questions are randomly sampled from the Bing search engine logs. The candidate answers
are the sentences that constitute the first paragraph of the related English Wikipedia article. Additionally,
answers are concentrated in the first part of the paragraph.

SQuAD-sent For each question, the SQuAD dataset provides a paragraph and annotations for the exact
answer span. To adapt SQuAD to the AS2 task, we split the paragraph into sentences using the SpaCy
sentence tokenizer. We infer the sentence labels from the answer span labels, i.e., if a sentence contains
the answer span, we labeled it as a positive example. Otherwise, we labeled it as a negative example.
Since the SQuAD test set is not publicly available, we use the original validation set for testing and 10%
of the questions of the training set for validation.

It should be noted that QNLI (the GLUE adaptation of SQuAD (Wang et al., 2018)) provides an even
amount of positive and negative question/answer pairs, sampled from the SQuAD dataset, therefore
removing many sentences. This creates a dataset of decontextualized sentences, which prevents us from
exploiting the sequential structure. In contrast, we propose a dataset that maintains the original document
structure. Finally, for all datasets, we remove the questions without answers and, we lowercase and
tokenize1 questions and passages to align with previous work.

We evaluate our models using two metrics: Precision at 1 (P@1) and Mean Reciprocal Rank (MRR).
For SQuAD-sent, MAP is redundant since each paragraph contains, at most, one answer sentence.
Additionally, SQuAD-sent exhibits a much more substantial lexical overlap between question and answer
passages. This effect can be noted in Tab. 2: the simplest baseline that selects sentences in terms of
word-overlap counts, i.e., counting the unique words that appear in both question and passage, achieves a
P@1 of 65.48.

NQLA The Natural Question dataset uses question sampled from the Google search engine logs. The
questions are given to the annotators together with the retrieved English Wikipedia page. The annotator is
asked to select (i) a long answer, which is the smallest HTML bounding box containing all the information
needed to answer the question, and (ii) a short answer (if available), that is, the actual answer to the
question. In this work, for consistency with the other two datasets, we consider only paragraphs as long
answers, removing tables and lists. As the latter requires a different semantic approach than the one
typically used for free text. A paragraph is defined by the HTML bounding box <p>and <\p>.

The dataset has a similar answer distribution of the others, i.e., P@1 46.06% and MAP 57.30, even if
the candidates are much longer (paragraphs). These results are impressive, considering that a Wikipedia
page contains an average of 30.95 paragraphs (of 98.76 words). We note that most pages give essential
information about an entity in the first paragraph, i.e., in the summary paragraph.

Similarly to SQuAD, the annotations for the test set of Natural Questions are not publicly available.
Therefore, we used the official development set as our test set and a portion of the training set for
validation.

1The tokenization is performed using spaCy v.2.1 https://spacy.io/
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Model MAP MRR
Baselines

RR 64.21 64.26
WO 51.02 51.24
WO+RR 68.25 69.43

Related Work w/o pre training
(Tay et al., 2018a) 71.20 72.70
W&J 2016 74.33 75.45
W&J 2016† 72.38± 1.4 73.44± 1.5
(Sha et al., 2018) 74.62 75.76
(Bian et al., 2017) 75.40 76.40

Related Word with pre-training
(Yoon et al., 2018) 83.40 84.80
(Lai et al., 2019) 85.70 87.20
(Garg et al., 2019) 92.00 93.30

Table 3: Related Work on WikiQA test-set. †We run the official implementation with different random
seeds.

5.2 Models and parameters
In our experiments, we used two different encoder architectures: the newly proposed Cosinet and our
re-implementation of the Compare-Aggregate (CA) architecture. The former uses static Numberbatch
embeddings2 of size 300; a convolution hidden layer of size 300, and a kernel of size 5. For the CA
architecture, we use the standard parameters of the original paper, but in contrast with it, we keep the
embedding static as we empirically found that it leads to similar results while having a lower number
of trainable parameters. For the RNN and the LSTM, we used the same hidden size as the input, i.e.,
the double of the size of the convolutional operation hidden layer. For the Bidirectional variations, i.e.,
BiRNN and BiLSTM, we set the hidden size as half of the input size in each direction, resulting in a
comparable number of parameters.

All the models were trained for three epochs using slanted triangular learning rate scheduling (Howard
and Ruder, 2018) without early stopping. In the case of the point-wise models, we used Adam optimizer
with a maximum learning rate set at 2e-3, whereas for the list-wise approaches, we used a learning rate of
2e-4. All the experiments are performed on an Nvidia GTX 1080 ti GPU and an Intel Core I9-7900X
processor.

5.3 State-of-the-art Results
Table 3 shows the state-of-the-art results with respect to the WikiQA dataset. The first block reports
the performance of the baselines; these models are computed using the simple features described in
Section 2.1, i.e., the reciprocal rank (RR), the lexical overlap (WO), and their combination WO+RR. The
latter achieves results comparable with baseline CNN architectures. The second block of results shows
the performance of models from previous work that do not use pre-trained language models. The third
block presents the results of models that use both pre-trained language models and transfer learning. In
particular, Yoon et al. (2018) use ELMo and transfer learning on the QNLI dataset; Lai et al. (2019) use
BERT and perform transfer learning on the QNLI dataset, and Garg et al. (2019) use RoBERTa large and
perform transfer learning from the Natural Question dataset. We note that the MAP of efficient models
ranges between 71% to 75%, while the MAP of expensive models ranges between 83% to 92%.

5.4 Our models
The state of the art has shown that pre-trained Transformer models can achieve up to 17 absolute points
more than efficient approaches. Thus, the reader may wonder why we should even attempt to partially fill
the gap with them. The answer is straightforward: in most cases, the cost of such models is prohibitive
for industrial scenarios. Most importantly, we can still obtain the efficiency we require and keeping the
cost low by applying sequential re-ranking. For example, we can use a fast classifier to select a subset

2https://github.com/commonsense/conceptnet-numberbatch
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Model RNN MAP MRR params train-time
Baselines

RR - 64.21 64.26 - -
WO - 51.02 51.24 - -
WO + RR - 68.25 69.43 - -

Our Models
Cosinet - 70.95± 0.6 72.86± 0.7 904k 6 sec
Cosinetlist - 71.22± 0.2 73.07± 0.3 904k 5.5 sec
Cosinetlist RNN 74.78± 0.6 76.35± 0.6 1.17M 7.5 sec
Cosinetlist BiRNN 75.62± 0.8 77.13± 0.9 1.12M 8.9 sec
Cosinetlist LSTM 74.31± 0.8 75.78± 0.9 1.99M 7 sec
Cosinetlist BiLSTM 75.32± 0.6 76.85± 0.5 1.81M 9.5 sec
CA - 72.03± 1.6 73.39± 1.7 2.89M 19 sec
CAlist - 71.43± 1.0 73.55± 1.0 2.89M 18 sec
CAlist RNN 74.73± 1.0 76.35± 1.2 5.05M 20 sec
CAlist BiRNN 74.97± 1.2 76.44± 1.2 4.87M 21 sec
CAlist LSTM 74.82± 1.1 76.42± 1.2 11.53M 25 sec
CAlist BiLSTM 74.27± 1.0 75.74± 1.1 10.81M 25 sec
BERTbase - 81.32 82.50 110.00M 17 min 50 sec

Table 4: Model comparison on the WikiQA test-set.

of candidates, which will then be given in input to the expensive approach. The latter selects the final
answer, just running on a small number of the candidate. Matsubara et al. (2020) shows that this approach
can reduce the number of candidates by one order of magnitude without losing an accuracy point. In this
perspective, the more accurate the fast reranker is, the higher the final accuracy will be.

Thus, our aim is to improve efficient models. Our approaches are shown in Table 4. Cosinet and CA are
the standard point-wise approach, trained on all the data using a fixed batch size and binary cross-entropy
(BCE). Cosinetlist and CAlist are the same base architecture but trained with a listwise approach, with
KL-Divergence loss on all the question-answer candidate pairs for the same question.

We note that: (i) The Cosinet architecture achieves comparable results with respect to the more complex
CA while having much lower trainable parameters. (ii) BiRNN seems the best at (a) exploiting the rank
structure, as it gets the higher results on Cosinetlist, and (b) outperforming the other models consistently.
(iii) In contrast, for both Cosinet and CA, we found that there is no much statistical difference between
RNN and LSTM.

Model RNN P@1 MRR params train-time
Baselines

RR - 30.55 53.53 - -
WO - 65.48 77.90 - -
WO + RR - 73.12 83.60 - -

Our Models
Cosinet 86.18± 0.2 91.81± 0.1 904k 1 min 47 sec
Cosinetlist 85.12± 0.1 91.16± 0.1 904k 8 min 10 sec
Cosinetlist BiRNN 86.18± 0.2 91.97± 0.1 1.12M 12 min 30 sec
CA 85.71± 0.2 91.49± 0.1 2.89M 6min 30 sec
CAlist 85.17± 0.6 90.69± 1.0 2.89M 24 min 11 sec
CAlist BiRNN 86.32± 0.3 92.05± 0.2 4.87M 28 min 30 sec
BERTbase - 92.44 95.62 110.00M 6 hr 50 min

Table 5: Model comparison on the SQuAD sent test-set.

Similar findings can be derived from the results of the SQuAD dataset in Table 5. Our base architecture
achieves comparable results with the more complex CA model. Moreover, adding the BiRNN to the
model further improves the results. It is important to note that simple semantic matching models can
achieve very high results on the SQuAD task. This because the lexical overlap feature is more prominent
than the global rank feature. Therefore the primary impact is given by the joint model using BiRNN.

Finally, Table 6 shows the results derived using the bigger Natural Question dataset. Despite the
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Model RNN MAP MRR params train-time
Baselines

RR - 57.30 60.41 - -
WO - 38.09 39.57 - -
WO + RR - 53.98 56.45 - -

Our Models
Cosinet 69.74 72.69 904k 1 hr 13 min
Cosinetlist 68.16 71.06 904k 17 min
Cosinetlist BiRNN 73.28 76.05 1.12M 34 min
CA 69.88 72.77 2.89M 5h 39min
CAlist 69.82 72.78 2.89M 2h
CAlist BiRNN 74.21 76.88 4.87M 2h 10 min

Table 6: Model comparison on the NQLA test-set.

different nature of the data, i.e., the candidates are paragraphs rather than sentences, our proposed model
improves the baselines, especially, when combined with the BiRNN. Overall, we note an improvement
over CA of 4.5 absolute points, e.g., from 69.88 to 74.21.

5.5 Efficiency analysis

From the experiments on all three datasets, it is clear that the proposed Cosinet architecture is more
efficient than CA since it has much fewer parameters and more efficient attention computation. On the
small WikiQA dataset, the model takes up to 9.5 seconds to train, achieving results comparable with the
best models that do not make use of pre-trained language models — in contrast, training BERT-base on
the same dataset requires 17 min and 50 sec. Additionally, our model has roughly 100x less trainable
parameters than BERT-base, effectively reducing the memory requirement of the model. The difference
between the two models is evident when comparing the training time on the SQuAD dataset. The BiRNN-
Cosinet trains in about 12 minutes, which is much lower than the 6 hours and 50 minutes needed to train
BERT-base on the same task, and around half the time required by the CA architecture.

6 Conclusions

In this paper, we argue that by exploiting the intrinsic structure of the original rank and an effective
word-relatedness encoder, we can achieve competitive results in comparison with state of the art, while
retaining high efficiency. We first analyzed the structure of standard datasets, highlighting the importance
of the original rank’s global structure. Capitalizing on this, we propose a model that both exploits (i) the
rank structure using a simple RNN and (ii) the standard word-relatedness features while preserving high
efficiency. The model uses around 1M parameters depending on the configuration and achieves better
results than the previous work that does not make use of computationally expensive pre-trained language
models. Our model takes 9.5 seconds to train on the WikiQA dataset, i.e., very fast compared to the ∼ 18
minutes required by a standard BERT-base fine-tuning. On SQuAD, this difference is even higher, i.e.,
minutes vs. hours required by Transformer-based models.

It should be stressed the fact that our very fast and accurate models are essential for at least two
real-world application scenarios: (i) when the efficiency and computation cost does not allow for using
pre-trained Transformer models; and (ii) in case of sequential re-ranking, our model can be positioned
earlier in the re-ranking pipeline.

Recent work has also been devoted to distill cheaper versions of Transformer models (Sanh et al., 2019;
Aguilar et al., 2020). These inevitably lose accuracy with respect to the original larger models. Our joint
models can be potentially applied to them to limit their accuracy drop. Additionally, our Cosinet is still
competitive in terms of speed with any distilled models, as none of them can ever have such a low number
of parameters. This means that Cosinet can always be valuable in the first position of a sequential reranker,
possibly followed by distilled versions of Transformer models.
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