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Abstract

Joint intent detection and slot filling has recently achieved tremendous success in advancing
the performance of utterance understanding. However, many joint models still suffer from the
robustness problem, especially on noisy inputs or rare/unseen events. To address this issue,
we propose a Joint Adversarial Training (JAT) model to improve the robustness of joint intent
detection and slot filling, which consists of two parts: (1) automatically generating joint adversarial
examples to attack the joint model, and (2) training the model to defend against the joint adversarial
examples so as to robustify the model on small perturbations. As the generated joint adversarial
examples have different impacts on the intent detection and slot filling loss, we further propose a
Balanced Joint Adversarial Training (BJAT) model that applies a balance factor as a regularization
term to the final loss function, which yields a stable training procedure. Extensive experiments
and analyses on the lightweight models show that our proposed methods achieve significantly
higher scores and substantially improve the robustness of both intent detection and slot filling. In
addition, the combination of our BJAT with BERT-large achieves state-of-the-art results on two
datasets.

1 Introduction

Intent detection and slot filling are two critical components in dialogue systems. Although these two tasks
are normally considered as parallel tasks, they may inherently correlate with each other as one is helpful in
defining the other. Some existing works (Liu and Lane, 2016; Vu, 2016; Zhang and Wang, 2016) indicate
that sharing parameters in an encoder module to simultaneously detect the intent and fill the slots of an
utterance can utilize such correlation between the two tasks. The joint modeling of them has therefore
achieved tremendous success (Goo et al., 2018; Li et al., 2018; E et al., 2019) and further improved the
performance of spoken language understanding (SLU) systems.

However, recent outstanding joint models still show insufficient robustness. For example, some small
changes of inputs can mislead the models to give wrong prediction. As shown in Figure 1 (a), misspelled
words “SanFranciso” (missing a blank) and “pitsburgh” (missing “t”) are easily to fool the neural models
to produce wrong slot predictions. One might think that such wrong predictions are related to the input
word embeddings and using character embeddings can avoid these prediction errors. However, we find
in our preliminary experiments that character embeddings cannot fully eliminate such errors as it is not
easy to reconstruct the meaning of corresponding slot words based on character embeddings. In Figure
1 (b), word-level perturbations such as inserted word “video” or substituted word “movie” can lead to
incorrect prediction in either slot filling or intent detection. In real world, spelling errors are easily found
and word variances are pervasive as utterances are from different people with different text styles. This is
challenging for many joint models of intent detection and slot filling.
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(a) Spelling errors (b) Word insertion and substitution

Figure 1: Examples demonstrating that small perturbations (e.g., spelling errors in (a) and word insertion
& substitution in (b) ) in utterances result in wrong predictions in both intent detection and slot filling.

In this paper, we resort to adversarial training for solving this problem. Adversarial training provides a
way to inject perturbed inputs (adversarial examples) into training data to regularize models for robustness.
Specifically, we propose a Joint Adversarial Training (JAT) model to improve the robustness of the joint
intent detection (ID) and slot filling (SF). In JAT, we first add tiny noises to the original training data on
word (character) embeddings. The perturbed data created in this way are referred to as joint adversarial
examples. We then train the joint ID and SF model to defend against these adversarial examples so as to
make the model robust to small perturbations. By adding perturbations to word/character embeddings,
we enable the joint model to learn from adversarial examples previously unseen to deal with variances
and perturbations in utterances. In doing so, we hope that small changes in utterances cannot fool the
new joint model trained with adversarial examples. Furthermore, as the loss function of the joint model
is the combination of the ID loss and SF loss, the two losses are sensitive to adversarial examples in
different degrees, which may cause the joint training to be unstable. To overcome this, we further propose
a Balanced Joint Adversarial Training (BJAT) model. Particularly, we add a balanced factor to the joint
loss function as a regularization term to obtain the impact equilibrium that adversarial examples impose
on the ID and SF loss. BJAT shows a more stable training process and achieves better performance than
JAT.

To summarize, the contributions of this work are threefold as follows:
• We propose a joint adversarial training model to the joint intent detection and slot filling, which aims

to improve the robustness of the joint model in handling small perturbations in utterances. To the
best of our knowledge, this is the first attempt to adapt adversarial training to the joint ID and SF.
• We further propose a balanced joint adversarial training model that helps stabilize the joint adversarial

training procedure.
• We conduct experiments on the widely-used datatsets to validate the effectiveness the proposed JAT

and BJAT. Experiment results and analyses demonstrate that the proposed methods can substantially
improve the robustness of the joint ID and SF on noisy inputs, rare words and intent types. And the
BJAT built upon BERT-large achieves SOTA performance in the datasets.

2 Related Work

2.1 Joint Training
The joint prediction of intent and slot labels has achieved higher performance due to information sharing
between the two tasks than the parallel modeling of them. (Liu and Lane, 2016) explore the sequence-to-
sequence model (Guo et al., 2014) for the joint task and achieve decent results. Many works follow this
idea and make further research. Models based on gating mechanism (Goo et al., 2018; Li et al., 2018; E et
al., 2019) have been proposed for dynamically modeling the relationship between slot filling and intent
detection. (Wang et al., 2018) propose a dual model which contains two correlated bidirectional LSTMs
with cross-impact features. (Chen et al., 2019) utilize large pre-trained language models to learn better
representations. Their work directly constructs the relationship between intent and slots from feature
interaction. In this work, we also use the joint training setting, but focus on the robustness problem of the
joint model in dealing with noises and variances.
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Figure 2: Illustration of the proposed model for joint intent detection and slot filling.

2.2 Adversarial Training
Adversarial examples (Goodfellow et al., 2015) have been originally introduced in the context of image
classification to fool neural models with unperceivable perturbations on images. After that, adversarial
training (AT) that uses automatically generated adversarial examples to strengthen the robustness of neural
models has become a popular research topic. (Miyato et al., 2017) adapt AT to text classification by
adding perturbations on word embeddings. Following that, many researchers (Wu et al., 2017; Yasunaga
et al., 2018; Bekoulis et al., 2018; Ju et al., 2019) have attempted to explore the potential benefits that AT
can bring to NLP tasks. (Yasunaga et al., 2018) use AT on POS tagging and find that AT not only improves
overall tagging accuracy, but also helps the model to learn cleaner word representations. The same benefits
have also emerged in the text classification task with AT (Miyato et al., 2017). Joint intent detection
and slot filling is a multi-task learning problem. It is more challenging to develop an AT algorithm that
naturally fits in multi-task learning. Different from previous works on adapting AT to single NLP tasks,
we propose a balanced AT technique for joint models, which achieve significant improvements over the
strong baselines.

3 Methodology

In this section, we elaborate the proposed joint adversarial training model for the joint ID and SF and its
balanced variant. We first introduce the joint model that we use as our baseline for intent detection and
slot filling.

3.1 The Baseline Joint Model
Following previous works, we also use a combination of LSTM encoder-decoder with a stacked CRF to
build the joint model, as shown in Figure 2 without the perturbation module. Particularly, given a sentence
s = [w1, w2, ..., wn] (wi is the combination of word and character embeddings), the bidirectional LSTM
encoder encodes the sentence into a sequence of hidden representations H = [h1, h2, .., hn]. The last
hidden state of H is input to the LSTM decoder that learns context vectors C = [c1, c2, ..., cn] for decoder
states with an attention network (Bengio and LeCun, 2015). The outputs of the LSTM decoder are then
feed into the stacked CRF layer that predicts slot labels.Unlike previous works, we use two different
methods to learn the representation of the input sentence for intent detection: an attention-based method
building an attention network over H to have the overall representation of the sentence and a max-pooling
over each hidden state dimension across all his to have the final sentence representation. We refer to the
joint model with attention+CRF as AC and the joint model with max-pooling+CRF as MC.

As a multi-task learning task, the loss function of the joint model comprises two parts: intent detection
loss and slot filling loss.

Intent Detection Loss Given an input sentence s = [w1, w2, ..., wn] (wi is the combination of word
and character embeddings), we estimate the conditional probability of the true intent as: p(y|s; θ1) where
θ1 represents all parameters from the intent detection module.

During training, we minimize the negative log likelihood, which is the intent detection loss:
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IL(θ1; s, yintent) = −logp(yintent|s; θ1) (1)
where yintent is the true intent for the given sentence.

Slot Filling Loss We pass a list of features from the forward LSTM decoder to the stacked first-order
chain CRF. The final loss function for training this module is defined as follows:

SL(θ2; s, yslot) = −logp(yslot|s; θ2) (2)
where θ2 represents all parameters from the slot filling module (including parameters of the shared encoder
and those of the decoder together with CRF), while yslot denotes the ground-truth slot sequence for the
given sentence.

Joint Loss The joint loss is defined as the sum of IL and SL (Liu and Lane, 2016):

JL(θ; s, y) = IL+ SL (3)
where y denotes the combined representation of yintent and yslot and θ = θ1 ∪ θ2.

3.2 Balanced Joint Adversarial Training
Based on the baseline joint model, we propose the balanced joint adversarial training model as illustrated
in Figure 2. In order to build this new model, we need to generate adversarial examples and train the
model on these examples.

Generating Joint Adversarial Examples Adversarial training leverages continuous perturbations of
inputs to robustify neural models. We therefore define perturbations at the level of dense word (with
character) embeddings in a way similar to (Miyato et al., 2017)’s work. For a given sentence s, we
generate perturbations bounded by a small norm ε, which maximize the loss function of the joint model:

η = argmax
η′ :‖η‖≤ε

JL
(
θ̂; s+ η

′
, y
)

(4)

where θ̂ is a fixed copy of the current value of model parameters θ with no gradient, while y denotes the
combination of target intent and slot labels. Unfortunately, the exact maximization with respect to η is
intractable for neural networks (Miyato et al., 2017; Liu et al., 2017). In order to solve this, (Goodfellow
et al., 2015) propose a first-order approximation method called Fast Gradient Method, which can obtain
an approximate worst-case perturbation of norm ε, by a single gradient computation:

η = εg/‖g‖2, where g = ∇sJL
(
θ̂; s, y

)
(5)

Note that η is an approximation of the worst-case perturbation in the direction that significantly increases
the joint loss JL. We add η to the embedding (word and character) layer to generate a joint adversarial
example sjadv, which can be expressed as follows:

sjadv = s+ η (6)

Training against Joint Adversarial Examples When we train the joint model on these generated joint
adversarial examples, the new loss functions for intent detection and slot filling can be defined as:

ILadv = IL(θ; sjadv, yintent) (7)

SLadv = SL(θ; sjadv, yslot) (8)
The joint adversarial loss is the sum of these two losses as:

JLadv = ILadv + SLadv (9)

During the training process, we generate joint adversarial examples against the current model, and
minimize the loss on both the clean examples and joint adversarial examples. Therefore, the loss function
for the joint adversarial training model is defined as:

L = JL+ JLadv (10)

If the norms of word embeddings are not bounded, the model can simply make perturbations insignificant
by learning to magnify the norms of word embeddings. To prevent this problem, the word embeddings in
the JAT model are normalized so that each entry has a mean of 0 and a variance of 1. To ensure a fair
comparison, we also normalize input embeddings in our baseline model in the same way.
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Adding Balance Factor As described above, the joint adversarial examples are generated to maximize
the joint loss of intent detection and slot filling. The two parts IL (intent loss) and SL (slot filling loss) of
the joint loss often have a large difference in their values and sometimes even in an order of magnitude.
This may make the loss of intent detection and slot filling suffer from very unbalanced impacts from the
joint adversarial examples. In other words, the learned perturbations may bring a big increase to the loss
of the slot filling task but a very tiny change to the loss of the intent detection task. This unbalanced
problem can cause oscillations in the learning of the JAT model, which can be seen at the last subsection
of Analysis section in Figure 5.

To address this problem, we further propose a balanced joint adversarial training model, which
introduces a balance factor α to balance the impacts on the training of the two tasks imposed by joint
adversarial examples:

α =

∣∣∣∣ILadv − ILIL+ β
− SLadv − SL

SL+ β

∣∣∣∣ (11)

There are two parts in the balance factor, each of which measures how much the adversarial training
affects the corresponding task. β is a smoothing constant parameter to prevent division by zero.

In BJAT, we add α to the final loss, which is to be minimized during training:

BL = JL+ JLadv + α (12)

The balance factor α can be also considered as a regularization term. When α is optimized to the
minimum (i.e., zero) along with the loss L, the degree of impact from perturbations to JL and IL will be
same.

4 Experiments

We conducted intensive experiments on two benchmark datasets to validate the effectiveness of the
proposed two adversarial training models for joint intent detection and slot filling.

4.1 Datasets

We used two datasets: The ATIS dataset (Tür et al., 2010) is widely used in SLU research. This dataset
contains audio recordings of people making flight reservations. The training set consists of 4478 sentences,
while the test set 893 sentences, with a total of 18 intent classes and 127 slot labels. We used another 500
sentences as the development set. The SNIPS dataset is collected from the Snips (Coucke et al., 2018)
personal voice assistant. The training set contains 13,084 sentences. Both the test and development set
contain 700 sentences. There are 72 slot labels and 7 intent types in the SNIPS dataset.

4.2 Training & Evaluation Details

Baselines We used two lightweight models (AC & MC) and BERTs (DistilBERT, BERT-base and
BERT-large) as our baseline models.

Model Settings In AC & MC, the word and character embeddings were initialized according a random
uniform from -0.1 to 0.1. Based on the amount of data, the word embedding dimension was set to 64
for ATIS and 128 for SNIPS, the dimension of character embedding was 30 for ATIS and 50 for SNIPS.
Similarly, we set the dimension size of hidden LSTM states to be 64 for ATIS and 128 for SNIPS. And
we set the norm of a perturbation ε to 0.08 for all the experiments. In BJAT, the smoothing constant β of
the balanced factor was set as 1e-8. In addition, we used distilbert-base-uncased, bert-base-uncased and
bert-large-uncased. In BERTs, the norm of a perturbation ε was set to 0.008 for all the experiments. And
the perturbations are added to the final layer.

Optimization In AC & MC, the model parameters were trained by Adam optimizer with batch size 16
and learning rate 0.001. We also used a gradient clipping of 5.0. The number of epochs was set to 80 on
both ATIS and SNIPS. In BERTs, the basic settings were the same as (Chen et al., 2019).



4931

Method
ATIS SNIPS

ICA SF1 SOA ICA SF1 SOA
AC 0.951 0.939 0.805 0.966 0.897 0.758
AC+JAT 0.956 0.946 0.829 0.963 0.917 0.801
AC+BJAT 0.967 0.953 0.846 0.975 0.937 0.841
MC 0.955 0.934 0.796 0.971 0.902 0.777
MC+JAT 0.960 0.947 0.830 0.974 0.921 0.812
MC+BJAT 0.965 0.951 0.842 0.977 0.931 0.833

Table 1: Comparison with JAT, BJAT and
the baseline models on the ATIS and SNIPS
datasets.

Method
ATIS SNIPS

ICA SF1 SOA ICA SF1 SOA
Seq2Seq

(Liu and Lane, 2016)
0.911 0.942 0.789 0.967 0.878 0.741

Self-attention
(Li et al., 2018)

0.957 0.938 0.822 0.967 0.899 0.793

Slot-Gated
(Goo et al., 2018)

0.936 0.948 0.822 0.970 0.888 0.755

SF-ID
(E et al., 2019)

0.977 0.958 0.869 0.974 0.922 0.805

DistilBERT
(Sanh et al., 2019)

0.976 0.955 0.877 0.985 0.964 0.918

BERT-base
(Chen et al., 2019)

0.979 0.960 0.886 0.984 0.967 0.926

BERT-large
(Devlin et al., 2019)

0.978 0.960 0.882 0.991 0.968 0.930

DistilBERT+BJAT 0.978 0.961 0.884 0.991 0.962 0.917
BERT-base+BJAT 0.981 0.960 0.887 0.991 0.969 0.930
BERT-large+BJAT 0.982 0.959 0.888 0.991 0.973 0.932

Table 2: Comparison to BERT and other previ-
ous state-of-the-art models.

Evaluation Metrics We used the following three metrics for evaluation:

• Intent Classification Accuracy (ICA): this metric was used for the evaluation of intent detection.

• Slot F1 (SF1): a standard F1 score was used to evaluate slot filling.

• Sentence Overall Accuracy (SOA): this was used as a metric for the joint evaluation of the two
tasks, where a test sentence is considered correct only if intent and all slot labels of the sentence are
correctly predicted.

4.3 Results

Results with Lightweight Models Table 1 shows the results. We find that both JAT and BJAT achieve
substantial improvements over baseline models on all metrics, and BJAT performs better than JAT. We
highlight scores with significant improvements in bold. On the ATIS dataset, AC+BJAT obtains +3.3%
improvement on ICA, +1.5% improvement on SF1, and +5.1% improvement on SOA over the baseline AC.
Similarly, significant improvements can be also found on the SNIPS dataset. On this dataset, MC+BJAT
gains +0.6% improvement on ICA, while AC+BJAT obtains +4.5% improvement on SF1 and +10.9%
improvement on SOA over the corresponding baseline. It can be seen that both JAT and BJAT can achieve
larger improvements on slot filling than intent detection. This may be because slot labels are more sensitive
to changes of word embeddings than intents.

Results with Pre-trained Language Models We further applied BJAT on the pre-trained language
model BERT and compared with previous state-of-the-art models. Results in Table 2 demonstrate that the
combination of our BJAT with BERT models achieves new state-of-the-art results on the two datasets.

Results on Noisy Data We have shown improvements gained by our models on the standard clean
benchmark datasets. Here we further evaluate the robustness of JAT and BJAT models on data with
artificially generated noise. We experimented with three types of perturbations on the two test sets (please
see the definitions for slot/contextual word in the next section.):

• OP1 We randomly choose 1 slot word from each sentence and add, change, or delete some characters
of it.

• OP2 We randomly choose 1 contextual word of slot words from each sentence and add, change, or
delete some letters of it.

• OP3 This is an combination of OP1 and OP2, where we randomly change 1 slot word and 1
contextual word for each sentence.

Table 3 show the ICA and SF1 results on noisy input. We also calculated the average performance drop
of each model on OP1-3 against the clean data. It is clearly seen that both JAT and BJAT outperform all
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(a) ICA

Method
ATIS SNIPS

OP1 OP2 OP3 Drop OP1 OP2 OP3 Drop
AC 0.907 0.947 0.893 3.72% 0.919 0.951 0.882 5.04%
AC+JAT 0.913 0.954 0.917 2.93% 0.931 0.958 0.918 2.80%
AC+BJAT 0.926 0.960 0.924 3.13% 0.944 0.966 0.933 2.77%
MC 0.916 0.948 0.907 3.29% 0.926 0.950 0.903 4.60%
MC+JAT 0.927 0.957 0.919 2.68% 0.939 0.962 0.924 3.29%
MC+BJAT 0.927 0.959 0.922 3.01% 0.943 0.971 0.930 2.97%
BERT 0.930 0.974 0.940 3.16% 0.975 0.968 0.948 2.13%
BERT+BJAT 0.941 0.977 0.944 2.55% 0.975 0.978 0.951 1.62%

(b) SF1

Method
ATIS SNIPS

OP1 OP2 OP3 Drop OP1 OP2 OP3 Drop
AC 0.829 0.834 0.772 13.56% 0.776 0.721 0.625 21.15%
AC+JAT 0.883 0.849 0.758 12.26% 0.784 0.743 0.633 21.48%
AC+BJAT 0.935 0.851 0.771 10.57% 0.847 0.783 0.679 17.85%
MC 0.833 0.823 0.725 15.02% 0.760 0.710 0.628 22.48%
MC+JAT 0.873 0.837 0.762 12.98% 0.780 0.757 0.645 21.03%
MC+BJAT 0.927 0.861 0.805 9.12% 0.834 0.787 0.667 18.08%
BERT 0.819 0.790 0.673 20.8% 0.908 0.806 0.728 15.8%
BERT+BJAT 0.826 0.808 0.701 18.9% 0.917 0.812 0.731 15.2%

Table 3: ICA and SF1 results of the baseline (AC & MC & BERT), JAT and BJAT on noise data.

Figure 3: An example illustrating wrong predictions of intent and slot labels on perturbed data.

baseline models across all noise types. Specifically, for ICA, BERT+BJAT drops only 2.55% on the ATIS
noisy test set; BERT+BJAT drops 1.62% on the SNIPS noisy test set. For SF1, the performance drop is
much more significant and our proposed methods have successfully reduced the drop to 9.12% on the
ATIS noisy test set and 15.2% on the SNIPS noisy test set. In addition, we find that pre-trained language
models (BERT-base-uncased in this experiment) are also sensitive to noisy data, and the performance drop
due to noise is much larger on ATIS SF1 than SNIPS SF1.

Figure 3 shows an example with slot labels and intents predicted by the AC baseline and AC+BJAT. In
this example, word “is” and “series” are misspelled as “s” and “seies” in the noisy input. Such spelling
errors do not change the basic meaning of the input. However, the baseline AC model is completely
fooled by these two errors to wrongly predict the intent as BookRestaurant and “app store” as a city
name. In contrast, the proposed BJAT correctly predict both the intent and slot labels despite of spelling
perturbations.

5 Analysis

In this section, we further take a deep look into data to investigate how the proposed adversarial training
models improve intent detection and slot filling.

5.1 Slot Filling on Rare and Unseen Words

In the last section, we have conducted experiments to examine the robustness of the JAT and BJAT on
noisy data with artificially generated perturbations. Now our interest is to evaluate the robustness of the
two models on real data where perturbations occur in the way of unknown or rare words. Specifically, we
want to study the robustness of the proposed models on slot filling over unseen/rare words.

Word Level If a word occurs less than 10 times in the training data, it is a rare word. We categorized all
words in the test sets into four types: UNK (unseen words), U neighbor (the preceding and succeeding
word of a UNK word), Rare (rare words) and R neighbor (the preceding and succeeding word of a rare
word). We distinguish rare/unseen words from their neighboring words because we want to see the
differences in the slot filling accuracy on these words. Table 4 display the results of models on the two
datasets, and the percentages of these four types of words in all words. It can be seen that the percentages
of these words on the ATIS dataset are much smaller than those on the SNIPS dataset.We can also find
that the performance gap between UNK and U neighbor is larger than that between Rare and R neighbor.
This is consistent with our intuition that unseen words are much more difficult to be correctly labeled
even with correctly recognized neighbors than rare words. Both JAT and BJAT substantially improve the
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(a) ATIS
Word UNK U Neighbor Rare R Neighbor

Percent. 0.56% 0.87% 2.99% 5.34%
AC 0.314 0.950 0.869 0.933
AC+JAT 0.549 0.963 0.905 0.947
AC+BJAT 0.510 0.963 0.927 0.955
MC 0.235 0.950 0.872 0.939
MC+JAT 0.333 0.963 0.916 0.943
MC+BJAT 0.549 0.963 0.927 0.951

(b) SNIPS
Word UNK U Neighbor Rare R Neighbor

Percent. 5.81% 10.47% 11.08% 19.74%
AC 0.772 0.862 0.879 0.894
AC+JAT 0.808 0.886 0.912 0.928
AC+BJAT 0.848 0.928 0.932 0.946
MC 0.772 0.859 0.885 0.906
MC+JAT 0.846 0.916 0.923 0.939
MC+BJAT 0.886 0.931 0.903 0.923

Table 4: Slot prediction accuracy on rare/unseen words and their neighboring words in the test set.

Slot
ATIS SNIPS

UNK Rare UNK Rare
Percent. 0.90% 4.78% 10.84% 20.73%
AC 0.091 0.800 0.792 0.885
AC+JAT 0.333 0.851 0.834 0.916
AC+BJAT 0.242 0.891 0.868 0.935
MC 0.091 0.806 0.792 0.888
MC+JAT 0.121 0.874 0.873 0.932
MC+BJAT 0.333 0.897 0.899 0.904

Table 5: Slot prediction accuracy on rare/unseen
slot words on the ATIS and SNIPS test set. Per-
cent. denotes the percentage of unseen/rare slot
words in all slot words.

Method SF1
(Kim et al., 2019) 0.929
(Yoo et al., 2019) 0.893
AC+BJAT (ours) 0.937
MC+BJAT (ours) 0.931

Table 6: Comparison to recent data augmenta-
tion approaches on the SNIPS SF1.

performance on all these types of words. The improvements on unseen words are larger than those on rare
words.

Slot Level We further distinguish two groups of words: slot words (i.e., words labeled as “B-XXX”
or “I-XXX”) and contextual words (i.e., words labeled as “O”). Table 5 show the results on unseen/rare
slot words and their neighbors. It can be clearly seen that the prediction performance on unseen/rare slot
words are also significantly improved.

Comparison to Data Augmentation Approaches Due to the higher percentages of UNK and Rare
words as described in Section 5.1, the SNIPS dataset contains more uncertainty on slot filling task.
Therefore, we further compared with two data augmentation approaches recently proposed on SNIPS SF1.
Results in Table 6 show that our method achieves better performance. For fair comparison, we only used
lightweight models (AC & MC).

5.2 Slot Filling on Multi-Slots Sentences
In Table 1, we find that both JAT and BJAT achieve slight improvements on ICA, but high improvements
on SOA. To explain this, we made a further analysis. We introduce a new metric called sentence-level
slot accuracy (SSA) to measures the percentage of sentences where all slot labels are correctly predicted.
We group sentences according to the number of slots1 in sentences. Generally speaking, the more slots
there are in a sentence, the harder it is to correctly predict all slot labels for the sentence. Sentences in
the test sets are classed into two groups: sentences with ≤ 3 slots and sentences with ≥ 4 slots. Figure 4
shows the SSA results on the two groups of sentences in the ATIS and SNIPS test set. We can find that
both JAT and BJAT achieve large improvements on the two test sets in terms of SSA. As many sentences
have a correctly predicted intent label but a wrongly predicted sentence-level slot label sequence, the large
improvements in SSA naturally lead to large improvements in SOA.

The improvements on the second group (≥ 4 slots) of the ATIS test set are larger than those of the
SNIPS test set. This may be because the number of slots in ATIS ranges from 0 to 13 while SNIPS 0 to 6.
We also find that the performance improvements obtained by the proposed models on sentences with 4+
slots are larger than those on sentences with ≤ 3 slots in the ATIS test set. This indicates that the baseline
models is weak at dealing with multi-slot filling while our models are capable of handling complex slot
filling cases. Different from ATIS, on the SNIPS test set, our models achieve large improvements on

1A slot is defined as a span starting from a word labeled as “B-XXX” and ending at a word just before the nearest word
labeled as “O”.
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Figure 4: Results on sentences with multiple slots in the two test sets.

Intent Type atis flight other intents
percent 73.9% 26.1%
AC 0.986 0.879
AC+JAT 0.989 0.888
AC+BJAT 0.987 0.932
MC 0.986 0.895
MC+JAT 0.989 0.902
MC+BJAT 0.990 0.918

Table 7: ICA results of the
baseline, JAT and BJAT
models.

Figure 5: Learning curves of the JAT vs. BJAT model on the two datasets. The ordinate axis is calculated
by JLadv − JL. The abscissa axis denotes the number of epochs.

sentences with ≤ 3 slots, comparable to those on sentences with 4+ slots. We conjecture that this is
because sentences in the SNIPS test set have more rare/unseen words, which makes it difficult for the
baseline to predict correct slot labels even for sentences with less than 3 slots.

5.3 Unbalanced Intent Distribution

ATIS contains of 19 different intent types including multi-intent like “atis flight#atis airfare”. Unlike
SNIPS, the distribution of intent types in ATIS are highly unbalanced, where “atis flight” accounts for
73.9% while other 18 types of intent account for only 26.1%, distributing sparsely . To investigate the
effect of JAT and BJAT on this unbalanced intent distribution problem, we evaluated ICA results on the
“atis flight” intent versus other intents, which are shown in Table 7. We observe that the ICA scores of
the two baseline models are very high as the prediction on this intent type is well trained with sufficient
instances. The improvements are therefore small. However, for the sparse intent types, the JAT and BJAT
models achieve remarkable improvements over the baseline models in terms of ICA, indicating that the
proposed models are robust on rare intent types, similar to slot filling on rare/unseen words.

5.4 Learning Curves

In Figure 5, we demonstrate the learning curves of the proposed JAT vs. BJAT model on the two datasets
in terms of the difference between the joint adversarial loss on the joint adversarial examples and the
joint loss on the original data along with training epochs. We observe that the generated joint adversarial
examples make the training of the JAT model vibrate substantially even after sufficient training epochs
(e.g., 40 epochs) as the adversarial examples have very different impacts on the ID and SF loss. By
contrast, the training of the BJAT model with the proposed balance factor is much more smoothing and
stable.

6 Conclusion

We have presented a joint adversarial training framework to improve the robustness of the joint intent
detection and slot filling. To balance the impacts of the joint adversarial examples on the intent detection
loss and slot filling loss, we further propose a balanced joint adversarial training model with a balance
factor as a regularization term. Experiment results on the ATIS and SNIPS datasets demonstrate the
capability of our approaches in improving both the performance and robustness. Our in-depth analyses
further disclose that both JAT and BJAT can (1) boost slot filling accuracy for rare/unseen words, (2) deal
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with noisy inputs such as spelling errors to some extent, (3) perform well on complex sentences with
multiple slots, and (4) successfully handle the problem of unbalanced intent distribution. Our experiments
and analyses also suggest that the balanced JAT is better than JAT in both the performance and training
stability.
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