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Abstract

Natural language understanding (NLU) aims at identifying user intent and extracting seman-
tic slots. This requires sufficient annotating data to get considerable performance in real-world
situations. Active learning (AL) has been well-studied to decrease the needed amount of the
annotating data and successfully applied to NLU. However, no research has been done on inves-
tigating how the relation information between intents and slots can improve the efficiency of AL
algorithms.
In this paper, we propose a multitask AL framework for NLU. Our framework enables pool-
based AL algorithms to make use of the relation information between sub-tasks provided by a
joint model, and we propose an efficient computation for the entropy of a joint model. Experi-
mental results show our framework can achieve competitive performance with less training data
than baseline methods on all datasets. We also demonstrate that when using the entropy as the
query strategy, the model with complete relation information can perform better than those with
partial information. Additionally, we demonstrate that the efficiency of these active learning
algorithms in our framework is still effective when incorporate with the Bidirectional Encoder
Representations from Transformers (BERT).

1 Introduction

Voice assistant becomes increasingly intelligent on the mobile phone. Given an utterance from the user,
the task of natural language understanding (NLU) aims at identifying the user’s intent and extracting
semantic information. This can help a voice assistant to convert the utterance to an executable instruction.
The task can be separated as two sub-tasks called intent detection (ID) and slot filling (SF) (Tur and
De Mori, 2011). Table 1 shows an example of ID and SF using query “Flights from Ontario to Orlando”.

Query Flights from Ontario to Orlando
Slots O O B-fromloc O B-toloc
Intent atis flight

Table 1: example from user query to semantic frame

Traditional pipeline models solved the task individually (Haffner et al., 2003; Raymond and Riccardi,
2007; Yao et al., 2014). Considering possible error propagation effect caused by pipeline method, the
joint model has been proposed to exploit the relation information between ID and SF (Liu and Lane,
2016; Goo et al., 2018; Chen et al., 2019a; Qin et al., 2019).

Sufficient data becomes another bottleneck in real-world situations. Both ID and SF need a consid-
erable amount of training data to get a satisfying performance. Acquiring annotated data is trivial and
expensive. The Active Learning (AL) method offers a promising solution to deal with this bottleneck
(Settles and Craven, 2008; Settles, 2009). It allows the model to query certain unlabeled samples to anno-
tate for training. For multitask framework, researchers proposed methods to select samples considering
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task priority or dependency (Reichart et al., 2008; Zhang, 2010; Fang and Tao, 2015). In recent years,
researchers tried to apply AL algorithms into NLU task. Peshterliev et al. (2019) proposed a CRF-based
ensemble AL method for detecting samples from a new domain. Chen et al. (2019b) focused on ID and
proposed a method based both on QBC (Seung et al., 1992) and uncertainty sampling (Lewis and Gale,
1994). Dimovski et al. (2018) introduced the submodularity-inspired selection method for SF. However,
to the best of our knowledge, most existing researches of AL for NLU did not make use of the relation
information between ID and SF from a joint model. This motivates us to build a multitask AL framework
for NLU to select samples that can benefit ID and SF jointly. Our contributions in this paper are listed as
follows:

• We propose a multitask AL framework for NLU. We employ a joint model in our framework to
model the relation information between ID and SF, and to provide necessary marginal distribution
for pool-based AL algorithms.

• We implement representative pool-based AL algorithms including Least Confidence (Settles, 2009),
Margin Sampling (Scheffer et al., 2001) and Entropy (Shannon, 1948) under the multitask scenario.
We also propose an efficient computation for the entropy of a joint-model by DP.

• Through simulated experiments, we show that our AL framework can achieve competitive perfor-
mance with less training data than baseline methods on all datasets.

• We demonstrate that these AL algorithms keep efficient when the joint model is changed to the
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019).

2 Related Work

Active learning (AL): AL is a method to improve the performance of a model using as few labeled
samples as possible (Settles, 2009). A famous scenario is pool-based AL, which uses different sampling
strategies to evaluate informativeness over a large pool of unlabeled data.

The main categories are summarized in (Settles, 2009), which introduced many different sampling
methods developed for pool-based AL, along with their application on various tasks. Expected Gradient
Length (EGL) (Settles et al., 2008) and Expected Error Reduction (EER) (Roy and McCallum, 2001)
are pool-based AL frameworks based on decision-theoretic methods. EGL aims to select utterances that
cause the largest change in new training gradient, and EER tries to select samples which can reduce
the expected future error maximally. However, these two methods are computationally expensive in
NLU scenario because of a large feature space. Seung et al. (1992) studied another sample selection
framework: Query-By-Committee (QBC). It determines the query uncertainty by a committee of models
and selects informative samples with most disagreement in the committee. Since it needs a committee
of models that are all trained on the labeled set, this will take a lot of time to do training and also need
extra memory. Our work mainly focuses on estimating uncertainty sampling which is the simplest and
most commonly query strategy algorithm in NLU.

Natural language understanding (NLU): According to whether ID and SF are separated in the
model, NLU models can be categorized as independent modeling methods and joint modeling methods.
Independent methods include hierarchical attention network (Yang et al., 2016), adversarial multitask
learning framework (Liu et al., 2017) which mainly focused on ID. Others for SF include encoder-labeler
deep LSTM (Kurata et al., 2016), joint pointer and attention model (Zhao and Feng, 2018).

As for the joint model, recent papers mainly construct neural network (NN) models to make use of
the relation information between ID and SF, which include the slot-gated model with attention (Goo
et al., 2018), joint BERT (Chen et al., 2019a), bi-directional interrelated model (E et al., 2019) and
stack-propagation method (Qin et al., 2019). Additionally, Jeong and Lee (2006) developed a joint NLU
model with a triangular-chain conditional random field (TriCRF), which is a unified probabilistic model
combining two related problems. Xu and Sarikaya (2013) proposed a CNN version of the TriCRF model
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Figure 1: BiLSTM-TriCRF model

to extract features and share with ID and SF.

Multitask Active Learning (MTAL): MTAL is proposed to select samples with more information to
annotate for all tasks involved. Reichart et al. (2008) focused on using rank combination protocol to rank
tasks and then choose the best samples for the chosen task, which can keep the performance for a set
of tasks close to single selection for every task. In multitask active learning setting, this method did not
leverage inter-task association for selecting instances.

In recent years, several works have been done to evaluate the possibility of applying active learning
methods on the NLU task. Chen et al. (2019b) proposed an AL method for automatically selecting the
most informative labeling, which mainly focused on intent identification, and Dimovski et al. (2018) in-
troduced the submodularity-inspired selection AL method and apply this selection criteria to the problem
of slot filling. Peshterliev et al. (2019) targeted AL for new domains in NLU and explored the majority-
CRF algorithm to select live utterances which achieved a statistically significant improvement compared
to random sampling and traditional AL methods. Although their method selected samples considering
the information from ID and SF at the same time, it did not utilize the inter-task relationship between
two tasks.

3 Multitask Active Learning for NLU

Our main goal is to enable AL algorithms to select samples for both tasks simultaneously. In order to
achieve this, the model should be able to directly provide the joint probability of intents and slots given
the input sequence. This joint probability contains the aforementioned relation information for ID and
SF. Any model that can provide above components can directly fit into our framework.

For the above reasons, we build our joint model from (Jeong and Lee, 2008) and (Huang et al., 2015)
as shown in Figure 1. This section briefly introduce the necessary components in our joint model, and
show how to apply AL algorithms by these components.

BiLSTM-TriCRF joint model: Jeong and Lee (2008) introduced Triangular Chain Conditional Random
Field (TriCRF) for NLU joint model. TriCRF jointly represents the slots and intents in probabilistic
graphic model, which can encode their dependencies and uncertainty.

In TriCRF, the potential of input sequence x = (x1, ..., xT ), slot sequence y = (y1, ..., yT ) and intent
z is described as

φt(z, yt, yt−1, x) = φ1t (yt, x) · φ2t (yt, yt−1) · φ3t (z, yt) (1)

where φ1t (yt, x), φ2t (yt, yt−1), φ3t (z, yt) respectively denotes the local potentials of input sequence x and
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Figure 2: Structure for the recursive computation of Joint Entropy H(y, z|x), the intermediate entropies
H(yji ) represents H(yi−1|yi = j, z = k, x), if i = 1, yi−1 = starttag.

slot yt, state transition yt and yt−1, and indent z and slot yt. The conditional distribution pθ(z, y|x) is
defined as

pθ(z, y|x) =
1

Z(x)

T∏
t=1

(
φt(z, yt, yt−1, x)

)
· ϕ(z, x) (2)

where Z(x) is defined to ensure that the target distribution is normalized, as Z(x) ,∑
y,z

∏T
t=1

(
φt(z, yt, yt−1, x)

)
· ϕ(z, x), and ϕ(z, x) is the potential of input sequence x with intent z.

Referring to (Huang et al., 2015)’s work, the output of BiLSTM F = (f1, ...fT ) contains the transition
from input to slot at time step t. A transition score matrix [A]i,j means transition from i-th slot to j-th slot
for a pair of consecutive time steps. We use an intent-slot transition matrix [B]i,j to contain the transition
from i-th intent to j-th slot. Therefore, φ1t (yt, x), φ2t (yt, yt−1) and φ3t (z, yt) were computed as:

φ1t (yt, x) = eλft

φ2t (yt, yt−1) = e[A]i,j

φ3t (z, yt) = e[B]i,j

(3)

where λ is the parameter to be learned. In our model, the feature I is computed as I =
∑T

i fi to provide
the intent information. Using I , ϕ(z, x) is computed as

ϕ(z, x) = eλ
1I (4)

where λ1 is the parameter to be learned. See Jeong and Lee (2008), Huang et al. (2015) for more details.
After getting the output z and y from equation(2), the loss of joint model is defined as

Ljoint = − log
∏

(x,y,z)∈trainset

pθ(z, y|x) (5)

where θ = (λ, λ1, A,B,WBiLSTM )
Query Strategies: Our work mainly lies on the most common method-uncertainty sampling strategies.

The best training data will have highest uncertainty in the learner’s predictive distribution. We estimate
the following general heuristics for NLU model. The first one is Least Confidence(LC)(Settles, 2009)

x∗LC = argmax
x

(
1− pθ(y∗, z∗|x)

)
(6)

Where (y∗, z∗) = argmax
y,z

pθ(y, z|x) is the most likely sequence slots and intent for joint probability

distribution.
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Algorithm 1 Calculate margin sampling for NLU
Input: V ←Viterbi Algorithm

V 2←Viterbi Top2 Algorithm
z = z1, z2...zn ← all intents
Argmax2←Return two largest values and indexs in the input

Output: top1score− top2score
1: for z = z1, z2, ..zn do
2: calculate the most likely state sequence ints for every intent zi using Viterbi Algorithm
3: end for
4: find two largest values (int1s, int2s) and their intent indexes (int1id, int2id) in the ints using
Argmax2

5: find the second largest joint probability int1s2 for int1id using Viterbi Top2 Algorithm
6: the best joint probability in all intents top1score is int1s
7: compare int1s2 with int2s, and the bigger one is the second largest joint probability in all intents
top2score

8: return top1score− top2score

Scheffer et al. (2001) proposed another method called Margin Sampling(M):

x∗M = argmin
x

(
pθ(y∗1, z

∗
1 |x)− pθ(y∗2, z∗2 |x)

)
(7)

Here, (y∗1, z∗1), (y∗2, z∗2) are the first and second best sequence slots and intents under the current model
respectively. This method aims to select the instance with the smallest margin between the posteriors
of its top two most likely sequence slots and intents. This instance can be considered as the learner
has much doubt in distinguishing two possible intents and slot paths. When we select best two joint
probabilities on sequence slots and intents, we need to consider the joint probability over all intents
rather than considering the former two joint probability on one most possible intent.

TOP2
y,z

(
pθ(y, z | x)

)
= TOP2

y,z

(
pθ(y | z, x)pθ(z | x)

)
= TOP2

z

(
pθ(z | x)TOP2y

pθ(y | z, x)
) (8)

Considering the increasing number of intents and sequence slots paths, we adopt the Algorithm 1 to
accelerate the speed of calculation.

Another more common uncertainty-based method is entropy(H) (Shannon, 1948):

x∗H = argmax
x

(
−
∑
y,z

pθ(y, z|x)logpθ(y, z|x)
)

(9)

Where (y, z) ranges over all possible slots and intents for a sequence. This method represents the infor-
mation needed to “encode” a joint distribution (y, z), and it can be thought as posteriors of our model
over its slots and intents. In practice, since the number of possible labels increases sharply with the
length of sequence, the quantity of candidate intents and labels combinations grows exponentially. Pre-
vious work by Kim et al. (2006) has employed N-best Sequence Entropy (NSE) that the entropy of the
N parses with the highest probabilities. In our scenario, it can be rewritten as:

x∗ = argmax
x

HNSE (y, z | x)

HNSE (y, z | x) = H(z | x) +
∑
z

pθ(z | x) ·HNSE (y | z, x)

HNSE (y | z, x) = −
∑
y∈N

pθ(y|z, x)logpθ(y|z, x)

(10)

Where N = (y∗1, y
∗
2, ...y

∗
n), the set of the N-best state sequences in a certain intent. It is an approxima-
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Algorithm 2 Calculate joint entropy for NLU
Input: z = z1, z2...zn ← all intents
n←the length of sequence
PZZ ← marginal distribution for intent z ; // The detail in Equation (15)

PXzi ← partition function in one intentzi ; // The detail in Equation (16)
TAGS = t1, t2....tj , starttag, endtag ←all possible tags value for y

Output: H(y, z | x)
for z = z1, z2, ..zn do

calculate intent entropy intent entropy using PZzi ;
for TAGS = t1, t2....tj do

calculate pθ(y1 = tk | z = zi, x) and H(∅ | y1 = tk, z = zi, x);
for s = 1...n− 1 do

for tm = TAGS = t1, t2....tj do
for tk = TAGS = t1, t2....tj do

firstitem += H(ys = tk | ys+1 = tm, z = zi, x);
seconditem += pθ(ys = tk | ys+1 = tm, z = zi, x) ·H(y1...ys−1 | ys = tk, z = zi, x);

H(y1..ys | ys+1 = tm, z = zi, x) = firstitem+ seconditem;
for TAGS = t1, t2....tj do

ynfirst += Hθ(ys=n = tk | z = zi, x);
ynsecond += pθ(ys=n = tk | z = zi, x) ·H(y1...ys−1=n−1 | ys = tk, z = zi, x);

H(y1...ys=n | z = zi, x) = ynfirst+ ynsecond;
sequence entropy += PZzi ·H(y1...ys=n | z = zi, x);

return H(y, z | x) = sequence entropy + intent entropy

tion to make computational entropy feasible. Mann and McCallum (2007) and Hernando et al. (2005)
introduced an efficient calculation for true sequence entropy in linear-chain CRFs. We use this algorithm
to derive Algorithm 2 to calculate the true Joint Entropy Equation (9) for our model:

x∗ = argmax
x

H(y1, ..., yT , z | x)

H(y1, ..., yT , z | x) = H(z | x) +
∑
z

pθ(z | x) ·H(y1, ..., yT | z, x)

H(y1, ..., yT | z, x) = H(yT | z, x) +
∑
yT

pθ(yT | z, x) ·H(y1, ...yT−1 | yT , z, x) (11)

H(y1, ..., yT−1 | yT , z, x) = H(yT−1|yT , z, x) +
∑
yT−1

pθ(yT−1 | yT , z, x) ·H(y1, ..., yT−2 | yT−1, z, x)

Using this decomposition, we can define a dynamic programming over entropy. We introduce the detailed
computation and proof of Algorithm 2 in NLU to the Appendix A.

4 Experiments

Dataset: Schuster et al. (2019) contributed a dataset which contains 43k labelled English utterances
across the three domains: Facebook-Weather, Facebook-Alarm, and Facebook-Reminder1. In our
experiment, each domain is treated as an independent dataset. ATIS dataset (Tur et al., 2010) is the most
commonly used dataset for NLU task, which is consisted of spoken queries on flight-related information
2. The training, development and test sets contain 4478, 500 and 893 queries respectively. Snips dataset
(Coucke et al., 2018) is collected from the Snips personal voice assistant3. The training, development
and test sets, consist of 13084, 700 and 700 utterances, respectively. The size of the dataset is called Di,

1https://fb.me/multilingual task oriented data
2https://www.kaggle.com/siddhadev/ms-cntk-atis
3https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
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Figure 3: Overall accuracy of our framework and baseline framework on five datasets.
Dataset ATIS SNIPS FB-Weather FB-Reminder FB-Alarm Average

Size 4478 13084 14339 6900 9282 -

Random
Qneeded 3843 11535 9803 4863 5403 -

Percentage 85.8% 88.2% 68.4% 70.5% 58.2% 74.2%

Majority-CRF

Qneeded 2691 9303 10403 4053 5808 -

Percentage 60.1% 71.1% 72.6% 58.7% 62.6% 65.0%

Change -25.7% -17.1% -4.2% -11.8% +4.4% -9.20%

Least Confidence

Qneeded 1411 4281 2803 1983 1893 -

Percentage 31.5% 32.7% 19.6% 28.7% 20.4% 26.6%

Change -54.3% -55.4% -48.8% -41.8% -37.8% -47.6%

Entropy

Qneeded 2179 4839 2203 2523 2298 -

Percentage 48.7% 37.0% 15.4% 36.6% 24.8% 32.5%

Change -37.1% -51.2% -53.0% -33.9% -33.4% -41.7%

Margin

Qneeded 1859 4839 2603 2613 2163 -

Percentage 41.5% 37.0% 18.2% 37.9% 23.3% 31.6%

Change -44.3% -51.2% -50.2% -32.6% -34.9% -42.6%

NSE

Qneeded 1859 5397 2603 2703 2298 -

Percentage 41.5% 41.3% 18.2% 39.2% 24.8% 33.0%

Change -44.3% -46.7% -50.2% -31.3% -33.4% -41.2%

Table 2: Detailed values for all query strategies on all evaluation dataset. For each dataset (column), the
best result is shown in bold and the second best is shown underlined.

and the index i is the name of the datasets.

Framework Architecture The hidden size of BiLSTM-TriCRF is 256 and the batch size is 512. Word
embedding is implemented directly by PyTorch. We use Adam (Kingma and Ba, 2015) as the opti-
mizer and the learning is set as 0.01. Every selected data consumes one annotating budget. We call the
number of samples annotated every round as query size. For each dataset, the query size is set asDi/100.
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Active Learning Baseline: Two schemes are implemented and compared in our experiments: (a)
pipeline model which does not consider relation information between ID and SF, and (b) passive random
sampling, which randomly select samples from the unlabeled data pool.

We refer to Majority-CRF (Peshterliev et al., 2019) for building the pipeline model. Their framework
uses Least Confidence as the basic query strategy and uses the QBC method to improve the quality
of the query strategy. Additionally, they reported that their method can be reusable if the models are
changed. We adjust several settings in this pipeline model to make it more suitable to compare in our
experiment. The samples selected from the pipeline framework are then provided to the same NLU joint
model in our framework.

Framework Performance: For each of the datasets, we use all data to test the performance of different
active learning algorithms. All algorithms start training from a seed-set by random selection. For each
dataset, different AL algorithms should eventually achieve the same performance since the data and the
training model are the same. We treat the final overall accuracy as a performance baseline and record
the least quantity of samples needed for different AL algorithms to achieve this baseline. We call this
quantity as Qneeded in our experiment. The percentage of Qneeded on different dataset is computed as
Qneeded/Di. For different AL method, we compute the percentage change comparing to the random
sampling. We notice that the accuracy curve does not monotonically increase when the amount of
annotations increases. Therefore using Qneeded may introduces randomness into the results. To mitigate
this impact, we also use the area under curve (AUC) as a metric. Figure 3 shows the results on 5 datasets
and Table 2 shows detailed values for Qneeded , percentage and percentage change. Table 3 shows the
detailed AUC value for all datasets in Appendix B.

From experiment results,Qneeded and AUC show similar tendency on five datasets. All AL algorithms
including Majority-CRF perform better than the random sampling on most datasets. Majority-CRF
achieves about 9% percentage decrease on average, while our methods can achieve more than 40%.
This indicates that our framework with the relation information between ID and SF does have a positive
impact on these pool-based AL algorithms. We observe that Majority-CRF does not work better than
Random Sampling on Facebook-Alarm dataset for Qneeded. A possible reason is that Majority-CRF is
originally designed for acquiring data from a new domain. It is more probable to be influenced by the
distribution of the dataset. The result also shows that the exact computation of entropy does bring better
performance than the approximation, although it also costs more computation time.

Influence of Multitask: This experiment aims at investigating what difference would be made when
MTAL considers only single task rather than multitask. We use Entropy as the basic query strategy. AL
strategies here only consider slots or intents information for computation, and provide these samples
to the same joint-model in our framework. We call them Intent Entropy and Slot Entropy in our
experiments. Detailed computation is shown in Appendix A. Figure 4 shows the results on 3 datasets
from Facebook.

From the figure, the results of three computation of entropies show little difference at the early stage
of training. As the number of queried sample grows, the Intent Entropy show stabler tendency earlier
than the Entropy and the Slot Entropy. After a certain point, the Entropy and the Slot Entropy can firmly
achieve higher overall accuracy than the Intent Entropy. We notice that the Entropy and the Slot Entropy
show almost the same performance on these datasets. According to the equation (25), the Entropy is
approximated as the sum of the Intent Entropy and the Slot Entropy. With the growth of the sequence
length, the amount of Slot Entropy also grows while the Intent Entropy almost stays the same. Therefore
the Slot Entropy becomes the decisive part of the Entropy and shows similar performance as the Entropy.
With the help of the Intent Entropy, the Entropy can outperform the Slot Entropy on three of all datasets
according to the results. These results indicate that the completeness of information is crucial for the
complete NLU task.
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Figure 4: Overall accuracy of our framework with Intent Entropy, Slot Entropy and Entropy on five
datasets.

Influence of Different Base Model: To demonstrate that our framework can still be effective when
the base model is changed, we introduce BERT (Devlin et al., 2019) into our framework and conduct
experiments on all datasets. The output of BiLSTM is replaced by the output of BERT and the feature
I is now replaced by special embedding ([CLS]) to provide intent information. Other components keep
the same as previous settings. The result is shown in Figure 5 in Appendix B.

From the figure, all AL methods still achieve Qneeded earlier than the random sampling. Although
BERT can provide richer semantic information and made the model get higher overall accuracy than
previous model, it is still difficult for random sampling to keep the uptrend after the early stage. With the
help of uncertainty sampling, the model can quickly get rid of this dilemma and achieve Qneeded. This
indicates that our framework can still be effective when the base model is changed.

5 Conclusion

In this paper, we propose a multitask active learning framework for NLU that focuses on making use of
the relation information between ID and SF. We implement representative pool-based query strategies
that include Least Confidence, Margin Sampling and Entropy in our framework. We also perform an
efficient computation for the entropy of a joint-model. Experimental results show above query strategies
with our framework can achieve competitive performance with less training data than baseline methods
on all datasets. The results also demonstrate that making use of the relation information between tasks
may achieve better performance rather than only consider intents. Additionally, our framework is still
useful when the model is changed. These results suggest that the framework has the potential to be
applied for industrial use.
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Appendix A Joint Intent And Slot Filling Entropy

We aim to calculate the joint entropy H(Y, Z | X), where Y = (y1, y2, .....yt) and Z = (z1, z2...zj)
range over all possible sequence slots and intents for input sequence X , additionally, |x| = |Y | = t
and each slot yi has its different possible state. Note, in order to efficiently calculate all subsets, we can
factor the entropy given a linear-chain CRF of Markov order 1, because yi+2 is independent of yi given
yi+1 (Mann and McCallum, 2007). According to the model introduction of TriCRF (Jeong and Lee,
2008), the above independence still holds. Now, recall the decomposition formulas for entropy firstly:

H(X,Y ) = H(X) +H(Y | X) (12)

H(Y | X) =
∑
x

p(X = x)H(Y | X = x) (13)

Secondly, αt (z, yt) is the forward value and βt (z, yt) is the backward value in forward–backward
recursions for TriCRF. If y0 = start, the base cases of the forward value are defined as α0(z, y0) = 0.
Similarly, if yt+1 = end, we define βt+1(z, yt+1) = 1. In forward-backward algorithm, it also can be
shown αt+1(z, end) =

∑
z αt(z, tt). The detail of forward and backward algorithm for TriCRF can be

seen in (Jeong and Lee, 2008). Using the above formulas, we can decompose H(Y, Z | X) as follow:

H(Y,Z | X) = H(Z | X) +
∑
z

pθ(Z = z | X) ·H(Y | Z = z,X) (14)

In (Jeong and Lee, 2008),

pθ(Z = z | X) =
Z(z,X)

Z(X)
(15)

Z(z,X) = αt+1(z, end) · ϕ(z,X) (16)

Z(X) =
∑
z

αt+1(z, end) · ϕ(z,X) (17)

Equation (14) needs range all potential intents. Now, consider a certain intent z and compute H(Y |
Z = z,X). We can define a dynamic program over the entropy by the decomposition formulas of
Equation (12) and Equation (13).For explicitly, we will denote H(Y | Z = z,X) as H(y1, y2, .....yt |
Z = z,X);

H(y1, y2, .....yt | Z = z,X) = H(yt|Z = z,X)

+
∑
yt

pθ(yt | Z = z,X) ·H(y1, y2, ...yt−1 | yt, Z = z,X) (18)

H(yt|Z = z,X) = −
∑
yt

pθ(yt | Z = z,X) · logpθ(yt | Z = z,X) (19)

According to the formulas in (Jeong and Lee, 2008),pθ(yt|Z = z,X) will be

pθ(yt | Z = z,X) =
αt (z, yt) · βt (z, yt)

Z(z,X)
· ϕ(z,X) (20)

We further use Equation (13) to decompose the second part of Equation(18):

H(y1, y2, ...yt−1 | yt, Z = z,X) =H(yt−1|yt, Z = z,X)

+
∑
yt−1

pθ(yt−1 | yt, Z = z,X) ·H(y1, y2, ...yt−2 | yt−1, Z = z,X)

(21)
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We can do dynamic programming by iterating this formula, and the base case for this formula is
H(∅ | y1, Z = z,X) = −

∑
y1
pθ(y1 | Z = z,X)log pθ(y1 | Z = z,X).The conditional probabilities

pθ(yt−1 | yt, Z = z,X) can be factorized into the following

pθ(yt−1 | yt, Z = z,X) =
pθ(yt−1, yt, Z = z | X) · pθ(X)

pθ(yt, Z = z | X) · pθ(X)
(22)

In(Jeong and Lee, 2008) work:

pθ (yt, yt−1, Z = z | X) =
αt−1 (z, yt−1) · βt (z, yt)

Z(X)
· φt(z, yt, yt−1, X) · ϕ(z,X) (23)

Where φ andϕ are the potentials over triangular-chain graphs.
Therefore,pθ(yt−1 | yt, Z = z,X)can be rewrited as:

pθ(yt−1 | yt, Z = z,X) =
αt−1 (z, yt−1)

αt (z, yt)
· φt(z, yt, yt−1, X) (24)

Now, We can calculate Equation (18) by using Equation (24) to iteratively compute Equation (21).
In Experiment Influence of Multitask, the single entropy only consider slots or intents information

compared to our joint entropy. We can directly compute single Intent Entropy H(Z|X) with Equation
(15) and single Slot Entropy H(Y |X) can be computed using similar decomposition with H(Y | Z =
z,X) and Equation (24). For explicitly, we will denote H(Y | X) as H(y1, y2, .....yt | X) :

H(y1, y2, .....yt | X) = H(yt | X) +
∑
yt

pθ(yt | X) ·H(y1, y2, .....yt−1 | yt, X)

H(y1, y2, .....yt−1 | yt, X) = H(yt−1 | yt, X) +
∑
yt−1

pθ(yt−1 | yt, X) ·H(y1, y2, ...yt−2 | yt−1, X)

(25)

pθ(yt−1 | yt, X) =
∑
z

pθ(Z = z | X) · pθ(yt−1 | yt, Z = z,X)
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Appendix B Experiment Results

Dataset ATIS SNIPS FB-Weather FB-Reminder FB-Alarm
Random 0.875 0.872 0.920 0.934 0.961

Majority-CRF 0.876 0.876 0.921 0.940 0.964
Least Confidence 0.928 0.915 0.937 0.958 0.970

Entropy 0.927 0.907 0.936 0.957 0.973
Margin 0.929 0.910 0.937 0.957 0.975

NSE 0.917 0.902 0.936 0.949 0.978

Table 3: Detailed AUC values for all query strategies on all evaluation dataset. For each dataset (column),
the best result is shown in bold and the second best is shown underlined.

Figure 5: Overall accuracy of our framework with BERT on five datasets.


