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Olga Majewska, Ivan Vulić, Diana McCarthy, Anna Korhonen
Language Technology Lab, Theoretical and Applied Linguistics, University of Cambridge
{om304, iv250, alk23}@cam.ac.uk, diana@dianamccarthy.co.uk

Abstract

We present the first evaluation of the applicability of a spatial arrangement method (SpAM)
to a typologically diverse language sample, and its potential to produce semantic evaluation
resources to support multilingual NLP, with a focus on verb semantics. We demonstrate SpAM’s
utility in allowing for quick bottom-up creation of large-scale evaluation datasets that balance
cross-lingual alignment with language specificity. Starting from a shared sample of 825 English
verbs, translated into Chinese, Japanese, Finnish, Polish, and Italian, we apply a two-phase
annotation process which produces (i) semantic verb classes and (ii) fine-grained similarity scores
for nearly 130 thousand verb pairs. We use the two types of verb data to (a) examine cross-lingual
similarities and variation, and (b) evaluate the capacity of static and contextualised representation
models to accurately reflect verb semantics, contrasting the performance of large language-specific
pretraining models with their multilingual equivalent on semantic clustering and lexical similarity,
across different domains of verb meaning. We release the data from both phases as a large-scale
multilingual resource, comprising 85 verb classes and nearly 130k pairwise similarity scores,
offering a wealth of possibilities for further evaluation and research on multilingual verb semantics.

1 Introduction

Many recent efforts in semantic modeling have focused on unsupervised pretraining to extend the benefits
offered by recently proposed text encoders (Devlin et al., 2019) to new languages and domains. In
these approaches, general language representations are learned from large volumes of unlabeled text,
and subsequently leveraged in downstream systems by means of fine-tuning on a given supervised task.
The release of large multilingual pretrained encoders (Devlin et al., 2019; Conneau and Lample, 2019)
boosted the state of the art on a range of multilingual tasks (Kondratyuk and Straka, 2019; Wang et al.,
2019; Pires et al., 2019; Wu and Dredze, 2019; Hu et al., 2020; Artetxe et al., 2020; Qiu et al., 2020;
Mueller et al., 2020). In parallel, the number of language-specific pretrained architectures available has
also been steadily growing, with the advantage of being more attuned to the properties of the language in
question (Virtanen et al., 2019; Nozza et al., 2020). The ease of incorporating these powerful encoders into
downstream task pipelines has made them widely popular. However, there is a disproportionate shortage
of resources allowing for probing of the learned representations in most languages. The aim of this work
is to address this deficit by releasing a multilingual resource targeting verb semantics in a typologically
diverse selection of languages where no such datasets have hitherto been available. The motivation behind
the specific focus on verbs is twofold: (i) the importance of accurate and nuanced representation of verb
meaning in light of their pivotal role in sentence structure and the still subpar verbal reasoning ability
of SOTA models (Rogers et al., 2020), and (ii) the scarcity of verb data in evaluation datasets currently
available. To this end, we employ a recently proposed two-phase data collection method (Majewska et al.,
2020) combining semantic clustering (Phase 1) and finer-grained spatial arrangements of words based
on their similarity (Phase 2), and evaluate its cross-lingual applicability. Using cross-lingual mappings,
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Language ID N verbs N classes N pairs THR pairs

Chinese Mandarin ZH 771 17 23990 1898
Finnish FI 761 16 28641 10065
Italian IT 817 17 24747 6436
Japanese JA 704 17 22915 7916
Polish PL 850 18 28895 6735

Table 1: Data statistics including the number of unique verbs in each sample (translated from English) (N
verbs), the number of Phase 1 classes (N classes), the total number of pairwise scores in the final dataset
(N pairs) and the thresholded subset of each dataset (THR pairs) (See §4.2).

we carry out analyses of cross-language overlap in the semantic classes created in Phase 1, as well as
quantitative and qualitative comparisons of the semantic distance matrices from Phase 2. Subsequently,
we perform evaluation of static and contextualised representation models on the tasks of lexical similarity
and semantic clustering using the data from both phases. This allows us to identify models’ strengths and
shortcomings, as well as specific challenges posed by the languages’ properties and different domains
of verb meaning. The collected data, comprising semantic classes and fine-grained pairwise similarity
scores for Chinese, Japanese, Finnish, Italian, and Polish, are made freely available with this paper at
https://github.com/om304/Multi-SpA-Verb.

2 Background and Design Motivation

Word similarity has been widely used as a go-to intrinsic evaluation task, in which rankings of similarity
scores computed between word embeddings produced by representation models are compared against
ranked human similarity judgments. The dataset design involving sets of word pairs and their associated
rating on a discrete scale has been particularly common, due to its reliance on non-expert native speaker
judgments, quicker and cheaper to obtain than the large expert-curated lexical-semantic or semantic-
syntactic resources such as WordNet (Fellbaum, 1998) or VerbNet (Kipper Schuler, 2005; Kipper et
al., 2006). In English, examples include WordSim-353 (Finkelstein et al., 2002; Agirre et al., 2009),
MEN (Bruni et al., 2014) and SimLex-999 (Hill et al., 2015). Analogous datasets have been created in
other languages, either through translation from an existing English dataset (e.g., from SimLex: German,
Italian, and Russian (Leviant and Reichart, 2015), Hebrew and Croatian (Mrkšić et al., 2017) and Polish
(Mykowiecka et al., 2018)), or from a new set of concept pairs (e.g., Turkish (Ercan and Yıldız, 2018),
Mandarin Chinese (Huang et al., 2019), Japanese (Sakaizawa and Komachi, 2018)). While these datasets
are dominated by nouns (e.g., SimLex includes 222 verb pairs), verb-oriented datasets are harder to
come by. In English, these include datasets of Yang and Powers (2006) (130 verb pairs), Baker et al.
(2014) (143 verb pairs), Gerz et al. (2016) (3,500 verb pairs). A recent multilingual word similarity
dataset, Multi-SimLex (Vulić et al., 2020), extends coverage of verb semantic similarity to 469 verb
pairs in 12 languages, including Mandarin Chinese, Finnish, and Polish. Another recently introduced
large-scale English verb resource of Majewska et al. (2020) (hereafter SpA-Verb) comprises verb classes
and unmatched coverage of nearly 30k verb similarity scores. In this work, we demonstrate that their
large-scale dataset creation methodology based on spatial arrangement (SpAM) can be extended to other
and typologically diverse languages such as Mandarin Chinese, Japanese, Finnish, Polish, and Italian. For
each language, we create a dataset comprising 16-18 verb classes with similarity scores between all class
members, resulting in over 20k verb pair similarity scores within each language (Table 1).

We start from the English SpA-Verb sample translated into five target languages and apply the two-phase
annotation method combining semantic clustering and spatial arrangements based on semantic similarity
proposed in Majewska et al. (2020). The method adapts a SpAM approach previously used in cognitive
science and psychology in behavioural studies of visual similarity between concrete objects (Kriegeskorte
and Mur, 2012; Mur et al., 2013; Cichy et al., 2019) to lexical stimuli. In Phase 1, a large word sample is
divided into a number of broad categories of similar and related items. Each of these classes is then used
as input in Phase 2, where the related class members are arranged in a 2D space based on their semantic
similarity, with similar words placed closer together. Each item placement simultaneously communicates

https://github.com/om304/Multi-SpA-Verb
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Figure 1: Consecutive Phase 2 trials on a class of Polish emotion verbs. In the first trial (1-2), the whole
class is displayed around the arena and word labels are placed one by one based on the similarity of their
meaning. Words put closer together in the first trial (2) are subsampled for the subsequent trial (3), and
arranged again in a less crowded space (annotators are asked to use the entire space available in each trial
and the relative inter-item distances, not the absolute on-screen distances, represent the dissimilarities).

its semantic distance to all other items present and the inter-stimulus Euclidean distances represent
pairwise dissimilarities between words in the sample. The arrangements are performed repeatedly over
numerous trials first on the entire word set and subsequently on subsets of items, selected by an adaptive
algorithm which optimises the evidence collected for the dissimilarity estimates (see Figure 1). The final
representational dissimilarity matrix (RDM) estimate is produced by statistically combining the evidence
from multiple subsequent 2D arrangements and contains a dissimilarity estimate for each pairing of words
in the set (see Kriegeskorte and Mur (2012) for the details). The dissimilarities collected for each Phase 1
class are then normalised to ensure inter-class consistency in the final dataset.

The main advantages of the spatial arrangement method lie in its intuitiveness, rooted in psychology
(Lakoff and Johnson, 1999; Gärdenfors, 2004; Casasanto, 2008), and flexibility, due to the reliance on
fluid item placements simultaneously expressing multi-way similarity judgments, rather than discrete
numerical scores. By repeatedly considering subsets of items, the users reflect on relative differences in
meaning between different configurations of words, which decreases bias from placement error, order
of presentation and judgment context. The two-phase design offers a practical advantage for porting the
method to other languages. The approach starts from a verb sample, rather than a set of word pairs, which
allows for easy translation into the target language, avoiding many of the complications encountered
in translation of pairs, including cases where both words in the source language pair translate into the
same word (e.g., cup - mug→ Italian tazza - tazza), or several pairs in the source language translate into
identical target pairs (e.g., easy - hard, easy - difficult→ Polish łatwy - trudny).1

3 Data Collection and Analysis

We sampled languages from 5 different language families to ensure typological diversity: Sino-Tibetan
(Mandarin Chinese ZH), Japonic (Japanese JA), Uralic (Finnish FI), Slavic (Polish PL) and Romance
(Italian IT). Following translation from English (EN), the two data collection phases were set up on an
online platform (meadows-research.com) as two separate studies for each language. Recruitment
was carried out on a crowd-sourcing website, prolific.co. Participants were native speakers of the
target language with at least undergraduate education level and at least a 90% approval rating. Each phase
featured a short qualification task testing the participants’ understanding of the guidelines.

3.1 Word Sample Translation

Translation was carried out by one native speaker translator per language. In case several equally suitable
candidates were identified for one source word, all of them were kept. This was especially true for
polysemous English verbs which translated to more than one target verb, each expressing a distinct sense

1By translating on a word-by-word basis, each unique source word receives its best target translation, unless no equivalent
exists; conversely, if a source word translates into several equally adequate target words, all candidates are included, and thus
shortages in one lexical area are compensated in another avoiding major reduction in dataset size.
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of the source word (e.g., bear→ Finnish (1) kantaa, ‘carry’, (2) sietää, ‘endure’). On the other hand,
if two English words had only one adequate translation equivalent, the two-to-one mapping was kept
where unavoidable (e.g., restrict, limit→Mandarin Chinese限制). Table 1 shows the number of unique
verbs in the final target sample for each language. Additional design choices concerned the following: (i)
multi-word expressions, which we permitted if they were the natural translation choice, so as to accurately
reflect target language lexical semantics; (ii) intransitive and transitive translation variants of the same
English verb (both variants were kept only if they captured important meaning distinctions beyond valency,
e.g., in Polish: impose→(1) narzucać, ‘to force someone to accept something’, (2) narzucać się, ‘to cause
inconvenience to someone by demanding their attention’); (iii) verbal aspect (translators selected the
variant most closely capturing source word meaning, e.g., in Finnish: jump→hypätä but bounce→hyppiä
(continuative aspect)).

3.2 Phase 1: Semantic Clustering

Five native speakers per language independently performed a rough clustering of the initial verb sample
into broad semantic classes. Users dragged words one by one from a queue and placed them in circles
representing broad semantic groupings (see Figure 2).

Figure 2: Finnish Phase 1 task interface
(zoomed in; the label font is enlarged).

The annotators were instructed to create groupings of
similar and related verbs, each containing roughly 30-50
words. This rule of thumb, applied previously (Majewska
et al., 2020), ensures similar granularity across languages.
To ensure annotation quality, the produced classifications
were manually reviewed to identify rogue annotators and
low-effort responses (e.g., multiple consecutive words in
the queue were placed in the same class indiscriminately
or large numbers of words were placed in the trash circle
and missing from the final classification), which were sub-
sequently discarded. The final sets of classes for Phase
2 were produced in each language by first identifying the
overlap in Phase 1 classifications (i.e., all the verb pairs put in the same class by all annotators in a
given language), which determined the class structure and broad semantics of each class (e.g., movement,
emotion, communication), and then populating the classes based on majority decisions. Finally, for each
language, the cross-subject classes were reviewed manually by a native speaker adjudicator; in the process,
the verbs missing from the intersection of individual clusterings were added to valid classes of related
verbs (based on the criterion of semantic similarity and relatedness, ensuring semantic coherence of the
resultant classes). Phase 1 produced 16-18 classes in each language (Table 1) and took between 2.5
(Finnish) and 3.5 hours (Mandarin Chinese) to complete.

Cross-lingual Overlap. Table 3 summarises Phase 1 output. Given the similar granularity of classifica-
tions, we aligned classes with most overlap (via English mappings) and shared broad semantics for an
easier comparison. We see a lot of high-level category overlap (e.g., ‘possession’, ‘motion’, ‘cognition’).

ZH JA PL FI IT
ZH 0.561 0.526 0.544 0.491
JA 0.304 0.368 0.368 0.246
PL 0.400 0.334 0.684 0.737
FI 0.343 0.332 0.398 0.614
IT 0.397 0.339 0.565 0.399

Table 2: Pairwise Phase 1 overlap (B-Cubed
F-scores) (lowerM) vs. proportion of shared
WALS typological features (upperO).

To measure the degree of alignment, we calculate
pairwise item-level overlap using the B-Cubed met-
ric (Jurgens and Klapaftis, 2013; Amigó et al., 2009)
between all language pairs. We examine whether
stronger alignment corresponds to a greater typolog-
ical affinity by confronting the results with the degree
of overlap in syntactic, morphological and lexical ty-
pological features from the WALS database (Dryer
and Haspelmath, 2013) (Table 2).2 The two languages
with the strongest class alignment, Italian and Polish
(0.565), also share the most structural properties. Japanese, the only SOV language in the selection, has

2Feature overlap is a proportion of shared feature values (see Appendix C for a full list of typological features considered).
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ID Class Chinese Japanese Polish Finnish Italian
# Label size ρ size ρ size ρ size ρ size ρ

1 emotion 26 0.38 54 0.66 21 0.36 37 0.57 41 0.63
2 cooking 30 0.39 22 0.53 54 0.30 48 0.42 34 0.39
3 possession 30 0.39 49 0.13 46 0.35 36 0.14 38 0.28
4 motion (S) 74 0.13 76 0.18 92 0.13 87 0.18 86 0.14
5 motion (A/P) 66 0.09 39 0.46 88 0.16 82 0.13 82 0.13
6 sensory perception 32 0.28 - - 32 0.36 ↓ ↓ 38 0.40
7 physiology 52 0.24 53 0.25 55 0.20 64 0.23 49 0.39
8 state of being ↑ ↑ 24 0.43 ↑ ↑ ↓ ↓ ↑ ↑
9 change 38 0.44 45 0.35 29 0.47 47 0.26 23 0.58
10 cognition 44 0.24 58 0.29 79 0.17 61 0.18 62 0.24
11 physical contact 47 0.24 ↓ ↓ 55 0.34 37 0.31 44 0.45
12 violence ↑ ↑ 84 0.31 ↑ ↑ 36 0.40 ↑ ↑
13 law/crime 75 0.04 ↑ ↑ 68 0.20 69 0.23 73 0.23
14 negative interaction 73 0.07 - - 50 0.20 50 0.36 ↑ ↑
15 interaction 69 0.18 60 0.21 49 0.30 79 0.35 69 0.28
16 work/organisation 74 0.07 64 0.24 67 0.19 71 0.21 58 0.38
17 handicraft 51 0.11 63 0.23 60 0.14 ↑ ↑ 71 0.14
18 destruction 39 0.24 46 0.22 39 0.20 52 0.21 26 0.39
19 sound 48 0.13 28 0.32 32 0.34 74 0.33 27 0.25
20 communication ↑ ↑ 52 0.26 55 0.23 ↑ ↑ 44 0.29
21 combining - - 29 0.50 - - - - - -

Table 3: Semantic classes produced in Phase 1, aligned cross-lingually based on member overlap (size =
number of verbs in class, ρ = Spearman’s IAA); English labels serve to identify broad semantic categories.
↑/↓ indicate a category is subsumed by the one above or below. S/A/P labels signal arguments typically
selected by class members (agent-like (A), patient-like (P), or sole argument of an intransitive verb (S)).

the lowest average pairwise overlap with other languages both in terms of features and Phase 1 classes.
Manual examination of the classes provides additional insights into the factors (beyond purely semantic)
impacting classification decisions across languages. For instance, in both Polish and Italian we observe
a class split corresponding to the reflexive vs. non-reflexive distinction: reflexive motion verbs (e.g.,
PL kołysać się, ‘to sway’, obracać się, ‘to spin’; IT abbassarsi, ‘to lower’, ritirarsi, ‘to retreat’) end up
separated from their non-reflexive counterparts (PL kołysać, obracać, IT abbassare, ritirare). Whereas
in Chinese, we observe complex causative verbs (formed with the causative使 shı̌, ‘to make, cause’)
clustered together (e.g.,使失望 shı̌ shı̄wàng, ‘disappoint’,使心烦 shı̌ xı̄nfán, ‘upset’,使厌恶 shı̌ yànwù,
‘disgust’), forming a grouping of verbs denoting causing negative emotions. In §3.3, we zoom into specific
semantic classes to analyse patterns of similarity and variation in-depth.

3.3 Phase 2: Similarity Multi-Arrangement

The classes from Phase 1 were fed into Phase 2, divided into 5-6 batches of 3-4 classes each. Verbs from
one class are annotated independently from all others. Annotators are instructed to arrange presented
verbs in a circular arena based on similarity of their meaning, putting similar words closer, disregarding
similarity of sound, letters or simple association. For each batch, the aim was to obtain at least 5
valid sets of annotations and recruitment continued until this condition was satisfied. We employed the
following post-processing quality assurance protocol: first, we filtered annotators who performed the first
arrangement too quickly (i.e., averaging less than 1 sec per word placement upon first seeing the sample,
following Majewska et al. (2020)); next, for each class, we filtered out annotators for whom the average
pairwise Spearman’s correlation of arena dissimilarities with those of all other annotators was more than
one standard deviation below the mean of all such average correlations (as done by Hill et al. (2015) and
Majewska et al. (2020)). To produce the final dataset and ensure consistency between differently sized
classes, we calculated the average of the Euclidean distances from all accepted annotators for each verb
pair and then normalised them, using the approach from previous work (Kriegeskorte and Mur, 2012;
Majewska et al., 2020) where each dissimilarity matrix is scaled to have a root mean square (RMS) of 1.

Cross-lingual Comparisons. We compute inter-annotator agreement (IAA) in Phase 2 using Spearman’s
rank correlation coefficient (ρ) as the average correlation of an individual annotator with the average
of all other annotators for each class in each language (Table 3). We observe that certain classes
proved consistently easier to judge across languages (‘emotion’, ‘change’, ‘cooking’), while some were
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consistently more challenging (‘motion’, ‘handicraft’, ‘law/crime’).3

EN ZH JA PL FI IT
EN 0.326 0.364 0.246 0.393 0.434
ZH 0.852 0.373 0.284 0.323 0.259
JA 0.620 0.796 0.311 0.403 0.420
PL 0.729 0.819 0.794 0.234 0.252
FI 0.732 0.725 0.649 0.781 0.430
IT 0.872 0.811 0.684 0.878 0.664

Table 4: Mantel test results (Pearson’s r) for cross-
lingual pairs of Phase 2 distance matrices (including
EN SpA-Verb) for classes ‘motion (S)’ (upperO) and
‘change’ (lowerM) (all correlations with p ≤ .001).

The availability of complete dissimilarity ma-
trices enables analyses of cross-lingual similar-
ities in how concepts pertaining to a given do-
main are organised. To illustrate this, we focus
on two semantic areas, verbs of motion (#4)
and change (#9), and compute the correlation
between the intersection of distance matrices
for all language pairs, and additionally English
SpA-Verb data, using the non-parametric Man-
tel test (Mantel, 1967). We find statistically
significant correlations between all pairings of
languages (p ≤ .001), but the results show cross-
lingual and cross-domain differences (Table 4). Overall, we observe substantially higher correlations on
verbs of change than movement verbs, mirroring the intralingual IAA patterns (Table 3): while there is
more room for variation in pairwise distances in a more populated ‘motion’ class, the alignment on verbs
of change is also due to the nature of the class, dominated by antonymous verb pairs of opposite polarity
(e.g., increase-decrease, grow-shrink), which are consistently spread out in the arena. The moderate to
strong correlations recorded indicate that the dimensions which underlie the organisation of concepts in
this class - especially the polarity dimension - are cross-lingually shared. As observed in Phase 1 (Table
2), Italian and Polish correlate the most, while Japanese is the least aligned with other languages.

Comparison with the ‘motion’ class illustrates that there is variation in patterns of cross-lingual affinities
across different semantic domains. While Italian correlates the most with English, the correlation with
Polish motion verbs is weak. Running agglomerative clustering on top of distance matrices revealed that in
all three there emerge subclusters corresponding to the different medium of movement ([dive, swim, flow],
[run, walk, crawl]) and a separation between static and dynamic verbs ([lounge, poise, remain], [chase,
dance, dash]. However, Polish makes some additional fine-grained distinctions based on manner and
speed of movement (e.g., jumping, fast vs. slow movement, motion with a change of direction). Whereas
in Italian and English, verbs describing motion towards the speaker/listener form a distinct cluster. These
preliminary analyses suggest that the collected semantic multi-arrangement data may support many other,
fine-grained and in-depth lexical-typological analyses in future work, e.g., focusing on cross-lingual
comparisons of the organisation of different semantic fields and examination of the most salient meaning
dimensions underlying a given conceptual space.

4 Evaluation

Evaluation is focused on two types of representation architectures: static word embeddings (Bojanowski
et al., 2017) and more recently proposed large pretrained encoders (Devlin et al., 2019). We compare their
ability to capture word-level semantics across languages and domains of verb meaning. We also contrast
the performance of language-specific BERT models with their massively multilingual counterpart (Devlin
et al., 2019), and examine the impact of computing word-level representations in context, rather than by
feeding items to a pretrained model in isolation.

Representation Models. We evaluate FASTTEXT (FT) as a representative non-contextualised word
embedding model with proven representation capabilities on diverse NLP tasks (Mikolov et al., 2018) and
coverage of 157 languages. For multi-word expressions, we compute their representations by averaging
the vectors of their constituent words. We contrast the performance of FT vectors with the omnipresent
state-of-the-art BERT model (Devlin et al., 2019). We derive word-level BERT representations of words and
multi-word expressions in two different ways: (a) in isolation and (b) in context. In method (a), we follow
the steps of Liu et al. (2019) by (1) feeding each item to the pretrained model in isolation, (2) averaging

3The easier, higher-IAA classes tend to include verbs whose meanings are more concrete (boil, bake, grate) or are organised
along clear dimensions of meaning, e.g., based on increasing or decreasing intensity (negative and positive emotions, negative
and positive rate of change); lower-IAA classes are usually bigger and hence more heterogeneous.
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Models Chinese Japanese Polish Finnish Italian
k = gold optimal gold optimal gold optimal gold optimal gold optimal

FASTTEXT .314 .333 .250 .259 .358 .377 .326 .386 .341 .389
BERT
(1) ISO .246 .250 .221 .249 .190 .227 .249 .267 .205 .231
+WWM - - .215 .244 - - - - - -
+XXL - - - - - - - - .205 .220
(2) CTX .333 .352 .251 .253 .238 .265 .269 .306 .269 .270
+WWM - - .237 .253 - - - - - -
+XXL - - - - - - - - .268 .300

M-BERT
(1) ISO .260 .284 .247 .264 .169 .216 .171 .211 .185 .196
(2) CTX .264 .303 .257 .271 .216 .277 .200 .254 .227 .255

Table 5: Clustering results (F1 score) on Phase 1 classes, for the optimal clustering solution (highest F1
score) and with k clusters equal to the number of gold classes in each language (see Table 1). We report
scores for (M-)BERT embeddings computed in isolation (ISO) and in context (CTX) (see §4).

the H hidden representations for each of the subword tokens constituting the item, and finally (3) taking
the average of these subword representations to obtain the final d-dimensional representation (d = 768
in BERT-BASE). Again, following Liu et al. (2019), we average over all layers (12 with BERT-BASE).
In (b), we encode word meaning in context of other words using external corpora4 in the following
way. First, we randomly sample N sentences containing each item in the corpus, then, we compute the
item’s representation in each of N sentential contexts (averaging over constituent subword representations
and hidden layers as in steps (2)-(3) above), and finally average over the N sentential representations
to obtain the final representation for each item.5 We evaluate the uncased multilingual BERT model
(M-BERT) (Devlin et al., 2019), pretrained on monolingual Wikipedia corpora of 102 languages, as well
as language-specific pretrained BERT encoders released for ZH, JA (BERT-BASE with and without whole
word masking (+WWM)), PL, FI, and IT (BERT-BASE and BERT-BASE-XXL trained on a larger Italian
corpus), available in the Transformers repository (Wolf et al., 2019).4

4.1 Semantic Verb Clustering
First, we evaluate the models on semantic clustering, where the task is to group the starting verb sample
(Table 1, N verbs) into clusters based on semantic similarity. For each vector collection, we apply the
spectral clustering algorithm (Meila and Shi, 2001; Yu and Shi, 2003), shown to produce strong results
in previous work on verb clustering (Sun et al., 2010; Scarton et al., 2014; Vulić et al., 2017), and
evaluate the produced groupings against the Phase 1 classes in each language using standard clustering
evaluation metrics, modified purity (MPUR) (i.e., mean precision of induced verb clusters) and weighted
class accuracy (WACC), calculated as follows:

MPUR =

∑
C∈Clust,nprev(C)>1 nprev(C)

ntest_verbs
(1) WACC =

∑
C∈Gold ndom(C)

ntest_verbs
(2)

where (1) each cluster C from the set of all KClust automatically induced clusters Clust is associated
with its prevalent Phase 1 class, and nprev(C) is the number of verbs in an induced cluster C appearing in
that class (all other verbs are considered errors). ntest_verbs is the total number of test verbs, and singleton
clusters (nprev(C) = 1) are not counted. In Eq. (2), for each C from the set of Phase 1 classes Gold we
identify the dominant cluster from the set of induced clusters which has most verbs in common with C
(ndom(C)). The metrics are combined into an F1 score, the balanced harmonic mean of MPUR and WACC.

Table 5 includes the results for the optimal number of clusters (highest F1), and for a fixed k equal
to the number of gold truth classes. We observe several interesting patterns in the F1 scores. First, we
note that FT vectors clearly outperform the BERT models in languages using the Latin script, IT, FI, PL,

4We provide details and URLs for the models and corpora used in this study in Appendices A and B.
5We tested different values of N (10, 100, 500) and due to negligible differences in scores only report results for N = 100.
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Models Chinese Japanese Polish Finnish Italian
THR #1 #9 #2 THR #1 #9 #2 THR #1 #9 #2 THR #1 #9 #2 THR #1 #9 #2

FT .261 .277 .111 .425 .067 .038 −.03 .022 .254 .316 .138 .239 .248 .286 .307 .414 .326 .243 .030 .288
BERT
(1) ISO .187 .219 .041 .307 .054 .086 −.01 .230 .097 .205 −.02 .165 .112 .157 .110 .108 .097 .090 .008 .030
+WWM - - - - .052 .164 −.06 .211 - - - - - - - - - - -
+XXL - - - - - - - - - - - - - - - .073 .083 .073 .016
(2) CTX .315 .344 .231 .330 .067 .128 .064 .201 .124 .237 .130 .073 .188 .042 .245 .108 .134 .117 .085 .038
+WWM - - - - .083 .165 .063 .269 - - - - - - - - - - - -
+XXL - - - - - - - - - - - - - - - .168 .128 .123 .079

M-BERT
(1) ISO .161 .079 .166 .326 .098 .118 .060 .034 −.01 .201 .039 .024 .032 .028 .001 .137 .009 .043 −.22 .062
(2) CTX .265 .305 .236 .213 .101 .116 .098 .128 .063 .093 .166 −.01 .076 .075 .174 −.07 .088 .146 .021 .004

Table 6: Word similarity evaluation results (Spearman’s ρ) on the thresholded sets (THR) and three
semantic domains, ‘emotion’ (#1), ‘change’ (#9), and ‘cooking’ (#2), in each language.

achieving the top three F1 scores overall (0.389, 0.386, 0.377).6 In Chinese and Japanese, FT vectors
surpass BERT embeddings in isolation, but are outperformed by BERT vectors computed in context (in
ZH) and by the multilingual BERT in Japanese. The stronger performance of the massively multilingual
model in Japanese and Chinese contrasts with the results in PL, FI and IT, where it mostly lags behind the
language-specific counterparts. In terms of relative scores, we see that BERT and M-BERT embeddings
computed over a number of sentential contexts consistently outperform their in isolation counterparts
across all languages. On the other hand, we observe that whole word masking does not reliably improve
clustering performance in Japanese, nor does using a larger training corpus in Italian (BERT-XXL).

Error Analysis. Manual inspection of the induced clusters reveals some common pitfalls and areas of
difficulty. First, the evaluated models are largely oblivious to idiomatic meaning. In Polish and Italian,
the FT model produces a cluster of ‘possession’ verbs (EN have, give, lend, buy), including the verbs
mieć (PL,‘to have’), dać and dare (PL/IT,‘to give’). However, it also incorporates all phrasal verbs and
multi-word expressions featuring these words, with meanings unrelated to the rest of the class: PL mieć
coś przeciw (‘to mind/object to’), mieć nadzieję (‘to hope’), mieć wpływ (‘to influence’), dać klapsa (‘to
spank’); IT dare un’occhiata (‘to glance’). This is even more evident in Finnish, where a separate cluster
of phrasal verbs with olla (‘to be/have’) emerges (e.g., olla varuillaan, ‘beware’, olla peräisin, ‘originate’,
olla samaa mieltä ‘agree’). Similarly, all Polish models produce a cluster of just reflexive verbs (e.g.,
ślizgać się (‘to slide’), cieszyć się (‘to rejoice’), zdarzyć się (‘to happen’)), regardless of discrepancies in
meaning. In Italian, BERT models fall into the same trap, clustering reflexives regardless of their meaning
(informarsi ‘to inquire’, precipitarsi ‘to rush’, abbronzarsi ‘to tan’); however, FT vectors are more robust:
we observe a separate cluster of movement verbs, with both reflexives and non-reflexives (saltare ‘to
jump’, precipitarsi ‘to rush’, andare ‘to go’), and of knowledge-related verbs (informarsi ‘to inquire’,
studiare ‘to study’, istruire ‘to instruct’). The attention to subword signal is apparent in clusters produced
by BERT models. In languages using logographic scripts, this yields valid groupings, e.g., Japanese再
現する saigen suru ‘to reproduce/reappear’,再生する saisei suru ‘to reproduce’,再生利用する saisei
riyō suru ‘to recycle’. In Polish, however, narzucać się (‘to impose’) and podrzucać (‘to toss’), and
polować (‘to hunt’) and malować (‘to paint’) end up clustered together. While it could be argued that a
weak semantic link (apart from the etymological one) exists between the first pair, the second pair has only
coincidental orthographic overlap. Similarly, a semantically heterogeneous cluster of Italian verbs ending
in -lare is produced (coccolare ‘cuddle’, capitolare ‘capitulate’, scongelare ‘defrost’).Whether computed
in context or in isolation, BERT word-level representations capture a lot of subword- and surface-level
information without fully capturing higher-level semantic signal, which negatively affects cluster quality.

4.2 Word Similarity
We compute Spearman’s ρ correlation between the ranks of models’ similarity scores and those of human
judgments from Phase 2. To ensure reliability of the results, we perform evaluation on a thresholded

6Note that lower absolute scores are also due to the overlap in Phase 1 classes, while models perform hard clustering.
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subset of each dataset focusing on classes with IAA above ρ = 0.3 (THR) (Table 1). We also compare the
models’ capacity to discriminate between related concepts within a narrow semantic domain and report
scores on three semantic classes: ‘emotion’ (#1), ‘change’ (#9), ‘cooking’ (#2)7 (Table 6).

The primacy of FT vectors in Polish, Finnish, and Italian is again conspicuous, while in Chinese
and Japanese the pretrained encoders are in the lead, with noticeably lower FT performance recorded
for Japanese than in the other languages. Results achieved on the THR sets repeat the patterns seen in
the clustering task: contextualised variants of BERT embeddings (CTX) outperform those computed in
isolation (ISO), and the language-specific encoders prove to capture richer semantics than the massively
multilingual model - with the exception of Japanese, where contextualised M-BERT again achieves the top
result (albeit noticeably lower than top THR scores in other languages). The relatively stronger M-BERT

results on Japanese, as well as Chinese, illustrate the known unfavourable characteristic of multilingual
pretraining with a subword vocabulary shared by 102 languages. The languages with scripts distinct
from those of the majority of languages covered by M-BERT do not share their subwords with a large
number of other languages, and their language-specific subwords constitute a large proportion of the
total subword vocabulary; in consequence, the model can capitalise on this proliferation to produce
higher-quality representations. Conversely, the representation quality is degraded for languages with very
rich and productive morphology like Finnish or Polish, despite the availability of training data. This also
applies to language-specific BERT models: given the same vocabulary capacity, morphologically rich
languages have many words split into subwords and fewer full words represented in the vocabulary than
analytic languages like Chinese or English.

To explore the potential of generating stronger word-level embeddings from BERT models, we investi-
gated the impact of two parameters on lexical representation extraction: the number of hidden layers we
average over (all 12 or first 8) and the inclusion of the special classification token ([CLS]) in the subword
averaging step. Table 7 summarises the results for Polish and Finnish. We note that including the CLS

token yields better lexical embeddings in both languages, however, whether averaging over 12 or 8 layers
produces strongest results is language-specific. Notably, the top-performing Finnish BERT configuration
(ρ = 0.250) outperforms FT embeddings (ρ = 0.248) on the THR set. While a full evaluation of all
parameter configurations is beyond the scope of this paper, these findings suggest careful language-specific
tuning of the extraction configuration is crucial to achieve optimal performance.

BERT Polish Finnish
L CLS THR #1 #9 #2 THR #1 #9 #2

12 - .097 .205 −.019.165 .112 .157 .110 .108
+ .172 .228 .083 .202 .227 .186 .151 .190

8 - .086 .183 −.011.141 .151 .223 .141 .160
+ .142 .185 .081 .175 .250 .234 .205 .280

Table 7: Results for Polish and Finnish BERT in
isolation vectors, averaged over all 12 or first 8
layers (L), with the CLS token (+) or without it (-).

Although more variation in terms of primacy of
one model variant over the other is expected on
the semantic classes due to smaller dataset size,
the general pattern whereby computing BERT em-
beddings by averaging N contextualised represen-
tations boosts performance applies in 72% of cases.
Additional observations can be drawn from results
on individual domains. Class #9, including verbs
describing change in size or speed (e.g., accelerate,
increase, shrink), is especially rich in synonyms
and antonyms. Due to antonyms’ high semantic overlap they are often confused with synonyms by
distributional models learning purely from patterns of occurrences in raw text. This effect also emerges in
our results, where performance on this class is the lowest for most model configurations and languages.
Finnish is the exception, possibly due to the slightly broader coverage of this class, which also incorporates
verbs of being and existence (Table 3), with smaller proportion of antonymous pairs. Interestingly, this
class is where the multilingual model outperforms the language-specific counterparts in ZH, JA, PL. In
Italian, where class #9 has only 23 members, most of which stand in antonymous relations (e.g., crescere -
decrescere ‘increase - decrease’, aumentare - diminuire ‘rise - drop’, iniziare - finire ‘begin - finish’), the
BERT model trained on the larger corpus is the most robust. Results on this class illustrate that semantic
areas which are easier for humans to reason about are not necessarily less challenging for models.

An area where greater ease of human judgment is reflected in relatively higher model performance is

7We carried out evaluation on all classes but report selected results (on highest IAA classes cross-lingually) for brevity.
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the domain of cooking verbs in ZH, FI, JA, where the highest overall scores are recorded (>0.4 for FT in ZH

and FI), and the top model scores in Japanese (BERT). While we do not report all class-specific correlations
for brevity, they reveal further interesting patterns as to the semantic domains which prove easiest for
models to accurately capture. In IT, we record highest model correlations for verbs of communication
and destruction (top scores >0.4 (FT)), while verbs of physical violence are the domain with highest
correlations in PL (>0.3 FT), FI (>0.4 FT) and ZH (>0.4 BERT). In Japanese, the best result overall is
achieved on verbs of cognition (0.276 BERT), followed by verbs of physiological processes with >0.2
correlations scored by the contextualised BERT models. Similar analyses on specific semantic domains
can help identify strengths and deficiencies of different types of embeddings and highlight the areas of
meaning which pose challenges across languages, guiding further developments in representation learning.

4.3 Main Observations
Our evaluation revealed the dataset to be a challenging benchmark, and provided a number of insights
into the potential of the evaluated models to capture verbal lexical semantics across languages.

• Overall, model performance across tasks shows a split pattern: the pretrained encoders surpass static
word embeddings in Chinese and Japanese, but are outperformed by FASTTEXT by a significant
margin in languages using the Latin script, Polish, Finnish, and Italian. There is potential to
derive higher-quality word-level BERT embeddings in those languages through careful selection of
language-specific lexical representation extraction parameters.

• BERT word-level embeddings derived by averaging over N occurrences in context prove predomi-
nantly stronger than those obtained by feeding words into the pretrained model in isolation, with
more variation observed in the case of the smaller semantic sets.

• The results achieved on the thresholded datasets show a clear advantage of monolingual pretraining
over the massively multilingual pretraining - with the exception of Japanese, where M-BERT achieves
the top results, as is the case in semantic clustering.

• Error analysis revealed that clustering performance of the pretrained encoders suffers due to the
primacy given to low-level subword signal over the high-level semantic information, while an
important area of difficulty for all models in the lexical similarity task is the problem of teasing apart
antonymous and synonymous word pairs.

5 Conclusion and Future Work

We presented the first large-scale multilingual evaluation resource, constructed via spatial arrangement and
targeting verb semantics in Chinese, Japanese, Polish, Finnish, and Italian. It includes semantic classes and
fine-grained pairwise lexical similarity scores, which we release with this paper. The dual nature and vast
coverage of the dataset enables evaluation of representation models on two tasks, semantic clustering and
word similarity, and focused probing analyses on specific semantic domains, revealing aspects of verbal
meaning which elude models’ representation capacity. The low overall model performance indicates that
estimating similarity between a large number of semantically proximate concepts linked by fine-grained
relations is a challenging task. In future work, we will use the spatial arrangement data for in-depth
analyses of cross-lingual typological variation and model evaluation on fine-grained semantic clusters
from Phase 2 to explore the potential for (semi-)automatic creation of verb classes and semantic resources
in languages where those are still lacking. We will also evaluate cross-lingual representation learning
algorithms on mapped cross-lingual verb similarity datasets for all language pairs created in this project.
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A Representation Models

We provide URLs to the models used in this study in Table 8 below. For all languages, we used the
pre-trained uncased BERT-base models. We also evaluate 300-dimensional fastText vectors (Mikolov
et al., 2018), trained on Common Crawl and Wikipedia data of each language using an extension of the
CBOW word2vec model (Mikolov et al., 2013) with position-weights over 10 training epochs, with
character n-grams of length 5, window size of 5, and 10 negative examples.

Language Model URL
Chinese BERT https://huggingface.co/bert-base-chinese

Finnish BERT https://huggingface.co/TurkuNLP/
bert-base-finnish-uncased-v1

Italian BERT https://huggingface.co/dbmdz/bert-base-italian-uncased

+XXL https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased

Japanese BERT https://huggingface.co/cl-tohoku/bert-base-japanese

+WWM https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking

Polish BERT https://huggingface.co/dkleczek/
bert-base-polish-uncased-v1

Multilingual BERT https://huggingface.co/bert-base-multilingual-uncased

all FT https://fasttext.cc/docs/en/crawl-vectors.html

Table 8: Links to the models used in this study. For each language, we used the uncased BERT-base
model(s) (including the variant with whole word masking (+WWM) for Japanese and the XXL Italian
BERT-base model trained on a larger (81GB) corpus) and 300-dimensional fastText (FT) vectors
available for that language.

B External Corpora

The corpora used to extract sentential contexts for the in context BERT word embeddings are listed
below (Table 9). We randomly sampled 1 million sentences of maximum sequence length 512 from each
monolingual corpus.

Language Corpus URL Word segmenter
Chinese United Nations Parallel Corpus http://opus.nlpl.eu/UNPC.

php
https://github.com/fxsjy/
jieba

Finnish Europarl http://opus.nlpl.eu/
Europarl.php

-

Italian Europarl http://opus.nlpl.eu/
Europarl.php

-

Japanese Polyglot Wikipedia https://sites.google.com/
site/rmyeid/projects/
polyglot?authuser=0

https://github.com/
Kensuke-Mitsuzawa/
JapaneseTokenizers

Polish Europarl http://opus.nlpl.eu/
Europarl.php

-

Table 9: Links to the external corpora used for extraction of N sentences for computing BERT representa-
tions in context and the word segmenters used, where appropriate.

C WALS Features

Table 10 lists the morphological, syntactic and lexical typological features from the World Atlas of
Language Structures (WALS) (https://wals.info) used in cross-lingual comparisons in Section
3.2 (Table 2), selected based on the availability of corresponding entries for the languages in our sample.

https://huggingface.co/bert-base-chinese
https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
https://huggingface.co/dbmdz/bert-base-italian-uncased
https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased
https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/dkleczek/bert-base-polish-uncased-v1
https://huggingface.co/dkleczek/bert-base-polish-uncased-v1
https://huggingface.co/bert-base-multilingual-uncased
https://fasttext.cc/docs/en/crawl-vectors.html
http://opus.nlpl.eu/UNPC.php
http://opus.nlpl.eu/UNPC.php
https://github.com/fxsjy/jieba
https://github.com/fxsjy/jieba
http://opus.nlpl.eu/Europarl.php
http://opus.nlpl.eu/Europarl.php
http://opus.nlpl.eu/Europarl.php
http://opus.nlpl.eu/Europarl.php
https://sites.google.com/site/rmyeid/projects/polyglot?authuser=0
https://sites.google.com/site/rmyeid/projects/polyglot?authuser=0
https://sites.google.com/site/rmyeid/projects/polyglot?authuser=0
https://github.com/Kensuke-Mitsuzawa/JapaneseTokenizers
https://github.com/Kensuke-Mitsuzawa/JapaneseTokenizers
https://github.com/Kensuke-Mitsuzawa/JapaneseTokenizers
http://opus.nlpl.eu/Europarl.php
http://opus.nlpl.eu/Europarl.php
https://wals.info
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ID Feature ID Feature
26A Prefixing vs. Suffixing in Inflectional Morphology 86A Order of Genitive and Noun
29A Syncretism in Verbal Person/Number Marking 87A Order of Adjective and Noun
33A Coding of Nominal Plurality 88A Order of Demonstrative and Noun
36A The Associative Plural 89A Order of Numeral and Noun
40A Inclusive/Exclusive Distinction in Verbal Inflec-

tion
90A Order of Relative Clause and Noun

44A Gender Distinctions in Independent Personal Pro-
nouns

91A Order of Degree Word and Adjective

45A Politeness Distinctions in Pronouns 92A Position of Polar Question Particles
46A Indefinite Pronouns 95A Relationship between the Order of Object and Verb

and the Order of Adposition and Noun Phrase
47A Intensifiers and Reflexive Pronouns 96A Relationship between the Order of Object and Verb

and the Order of Relative Clause and Noun
48A Person Marking on Adpositions 97A Relationship between the Order of Object and Verb

and the Order of Adjective and Noun
49A Number of Cases 100A Alignment of Verbal Person Marking
50A Asymmetrical Case-Marking 101A Expression of Pronominal Subjects
51A Position of Case Affixes 102A Verbal Person Marking
52A Comitatives and Instrumentals 103A Third Person Zero of Verbal Person Marking
53A Ordinal Numerals 104A Order of Person Markers on the Verb
64A Nominal and Verbal Conjunction 105A Ditransitive Constructions: The Verb ‘Give’
69A Position of Tense-Aspect Affixes 107A Passive Constructions
70A The Morphological Imperative 112A Negative Morphemes
71A The Prohibitive 115A Negative Indefinite Pronouns and Predicate Nega-

tion
72A Imperative-Hortative Systems 116A Polar Questions
74A Situational Possibility 129A Hand and Arm
75A Epistemic Possibility 130A Finger and Hand
76A Overlap between Situational and Epistemic Modal

Marking
138A Tea

80A Verbal Number and Suppletion 143A Order of Negative Morpheme and Verb
81A Order of Subject, Object and Verb 143E Preverbal Negative Morphemes
82A Order of Subject and Verb 143F Postverbal Negative Morphemes
83A Order of Object and Verb 143G Minor morphological means of signaling negation
84A Order of Object, Oblique, and Verb 144A Position of Negative Word With Respect to Sub-

ject, Object, and Verb
85A Order of Adposition and Noun Phrase

Table 10: WALS typological features considered in cross-lingual comparisons.
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