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Abstract

Indigenous languages have been very challenging when dealing with NLP tasks and applica-
tions because of multiple reasons. These languages, in linguistic typology, are polysynthetic and
highly inflected with rich morphophonemics and variable dialectal-dependent spellings; which
affected studies on any NLP task in the recent years. Moreover, Indigenous languages have been
considered as low-resource and/or endangered; which poses a great challenge for research re-
lated to Artificial Intelligence and its fields, such as NLP and machine learning. In this paper, we
propose a study on the Inuktitut language through pre-processing and neural machine translation,
in order to revitalize the language which belongs to the Inuit family, a type of polysynthetic lan-
guages spoken in Northern Canada. Our focus is concentrated on: (1) the preprocessing phase,
and (2) applications on specific NLP tasks such as morphological analysis and neural machine
translation, both for Indigenous languages of Canada. Our evaluations in the context of low-
resource Inuktitut-English Neural Machine Translation, showed significant improvements of the
proposed approach compared to the state-of-the-art.

1 Introduction

North America and Canada represent a highly complex linguistic regions, with numerous languages and
great linguistic diversity. Indigenous languages are spoken widely and are official languages in Nunavut
and the Northwest Territories. Indigenous peoples are making efforts to revitalize and sustain their
languages, although they face many difficulties. The case of Inuktitut language in Canada has recently
been a good example to examine. This language belongs to the Inuktut - the term Inuktut is inclusive of
all dialects used in Nunavut - one of the official languages of Nunavut, the largest territory of Canada,
which can be written in syllabics or in roman orthography, and regional variations use different special
characters and spelling conventions (Statistics-Canada, 2017). As Inuktitut is an official language in
Nunavut, there exists some resources that are available in this language at a much larger scale than
most other languages in the same family, notably a parallel corpus with English. The researchers have
shown more interest in Inuktut languages in NLP communities to respond to an increasing demand for
Indigenous language educational materials and technology.

Previous studies have demonstrated that the development of Indigenous language technology faces
many challenges on one hand, due to a high morpheme per word rate and the rich morphophonemics and
variable dialectal-dependent spellings, a complex polysynthesis in linguistic typology, and on the other
hand, due to the lack of orthographic standardization and a large dialect variation. Digital text and voice
data are limited. It poses many greater challenges for NLP to develop applications for all users (Littell et
al., 2018; Mager et al., 2018).

This research paper examines the case of Inuktitut through experiments on the crucial phase as pre-
processing and NLP task, to revitalize the language which belongs to the Inuit languages family - the
polysynthetic languages spoken in Northern Canada. We make our focus on (1) the preprocessing phase
to build (2) NLP applications for Indigenous languages, such as morphological analysis, parsing, Named
Entities Recognition and Machine Translation. This first step towards a multilingual NMT framework
that will involve several endangered Indigenous languages of Canada, is essential, as the only parallel
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corpus freely available for research is the Nunavut-English Hansard corpus (Joanis et al., 2020). The
main contribution of our research is to revitalize these Indigenous languages and help ancestral and other
knowledge transmission vertically from the elders to the youth.

The structure of the paper is described as follows: Section 2 presents the state-of-the-art on MT in-
volving Indigenous languages. In section 3, we describe our proposed approach. Then, in section 4,
we present our experiments and evaluations. Finally, in section 5, we present our conclusions and some
perspectives for future research.

2 Related work

Johnson and Martin (2003) proposed an unsupervised technique with the hubs concept in a finite-state
automaton. Those hubs mark the boundary between root and suffix. Inuktitut words are split into mor-
phemes and merged hubs in a finite-state automaton. In their evaluations, they reported a good per-
formance for English morphological analysis, with the text of Tom Sawyer, with a precision of 92.15%.
However, for Inuktitut morphological analysis, they reported 31.80% precision and a low recall of 8.10%.
They argued that the poor performance for Inuktitut roots was due to the difficulty of identifying word-
internal hubs.

Farley (2012) developed a morphological analyzer for Inuktitut, which makes use of a finite-state
transducer and hand-crafted rules. Nicholson et al. (2012) presented an evaluation about the morpholog-
ical analyzer for Inuktitut, proposed by Farley (2012), and about alignment error rate with the use of the
English-Inuktitut Nunavut Hansard corpus. They reported the best experimental results, in terms of head
approach which, in Inuktitut, corresponds to the first one or two syllables of a token, with 79.70% preci-
sion, 92.20% recall and 17.60% alignment error rate. Inspired by the Uqailaut project of Farley (2012),
Micher (2017) applied a segmental recurrent neural network approach (Kong et al., 2015) from the output
of this morphological analyzer for Inuktitut. The few studies that deal with Machine Translation while
involving Indigenous languages are related to the lack of parallel corpora (Mager et al., 2018).

3 Our Proposed Approach

Inspired by the work of Farley (2012), on the creation of the first Inuktitut morphological analyzer
based on the Finite-State Transducer method, we built a deep learning-based word segmentation tool for
Inuktitut. With the emergence of deep learning and the high computation of technology, neural network-
based approaches have shown their effectiveness when applied on word segmentation and enhanced with
large-scale raw texts to pretrain embeddings. The neural network-based model, with these additional
linguistic factors, can be able to deal with data sparseness or language ambiguity (Kann et al., 2018).

Following our previous research (Le and Sadat, 2020), we propose a two phases framework to build
: (1) a bidirectional LSTM word segmentation for Inuktitut; and (2) an Inuktitut-English NMT system
(Figure 1). In the first phase, the word segmentation task, considered as a sequence labeling task, is
formally formulated as follows:

Given an input sequence, W and C represent all the word-based (bi-)character-based pretrained em-
beddings. In the input representation layer, the input sequence is vectorized based on word embeddings
W . This vectorized sequence is concatenated with (bi)character-based pretrained embedding C, with
the state 〈W,C〉. Then it is fed into a bidirectional LSTM (Long-Short Term Memory) (Hochreiter and
Schmidhuber, 1997). A hidden feature layer h merges all input features XW , XC into a single vector
with a k-dimension.

The activation function, as an output function, is calculated in the output layer o, e.g. softmax.

h = tanh(WhW ·XW +WhC ·XC) (1)

o = softmax(Wo · h+ bo) (2)

The second phase consists of building a NMT for Inuktitut-English. Here, we use the Transformer-
based encoder-decoder architecture (Vaswani et al., 2017). We apply our method to preprocess the
Inuktitut source language within an Inuktitut-English NMT system.
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Figure 1: Architecture of our framework: (1) Building a bi-LSTM word segmentation for Inuktitut
Indigenous language, (2) Building an Inuktitut-English neural machine translation system based on
Transformer-based encoder-decoder architecture

The Masked Language Modeling
Methods of BERT-based pretraining (Devlin et al., 2018) for NMT are time and resource consuming
because they need to pretrain large models from scratch using large-scale data. Instead of pre-training
a BERT model for Inuktitut and English, we have intend to use the output of BERT as context-aware
embeddings of the NMT encoder. Due to the lack of resources of Inuktitut, we apply only the Masked
Language Model (MLM) concept (Lample and Conneau, 2019) to train our own monolingual BERT-like
model for Inuktitut. For English, we will use pretrained models from Huggingface1. The main goal aims
to use pretrained BERT-like model as embeddings in order to initialize the encoder of NMT model.

The BERT architecture can deal with two kinds of objective functions, namely, masked language
modeling and next sentence prediction. In our context, we consider the masked language modeling
objective of (Devlin et al., 2018). In the training step, 15% words in a sentence are randomly masked
and the MLM model is trained to predict them with their surrounding words.

In other words, the MLM aims to reconstruct the original sentence sequence from noisy input because
some words are masked with special tokens such as [MASK] or [s] or [/s] for the beginning and the end
of a sequence. For example, if the original sentence is “[/s] take a seat [/s]” and “[/s] [MASK] a seat
[MASK]” is given as the input word sequence, then the system predicts that the original word for the first
[MASK] was ”take” and the second [MASK] was ”[/s]”(Figure 2).

Figure 2: Structure of the Masked Language Model (MLM) objective, similar to the one of (Devlin et
al., 2018). Source: (Lample and Conneau, 2019).

1pretrained BERT models fromhttps://github.com/huggingface/transformers
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4 Experiments

4.1 Data Preparation
In our evaluations, we train our NMT model by using the Nunavut Hansard for Inuktitut-English (third
edition) (Joanis et al., 2020). The statistics of the training corpus are described in Table 1.

Dataset #tokens #train #dev #test
Inuktitut 20,657,477 1,293,348 5,433 6,139
English 10,962,904 1,293,348 5,433 6,139

Table 1: Statistics of Nunavut Hansard for Inuktitut-English

In order to pre-train the embeddings for Inuktitut, we used the word2vec toolkit (Mikolov et al., 2013)
with option CBOW (Continuous Bag-Of-Words). To train our rich word segmenter, we annotated 11K
sentences, 250 sentences, 250 sentences for training, development and testing, respectively. We used the
Uqailaut toolkit (Farley, 2012) to annotate the training data. We observe there are only 97,785 unique
terms for word-based vocabulary, 102 unique terms for character-based vocabulary and 1,406 unique
terms for bi-character-based vocabulary.

4.2 Training Configuration
The word segmentation model is composed of 2-layer bi-directional Long Short-term Memory (LSTM),
with the hidden layer of 200 neurons. We performed two experiments: with only word-based pretrained
embedding (EXP1) and with all (bi)character-based and word-based pretrained embeddings (EXP2).

In the preprocessing step, we used the Moses (Koehn et al., 2007) tokenizer in all experiments. In
the BPE subword segmentation, we used the subword-nmt (Sennrich et al., 2016) toolkit to create a 30k
BPE joint source-target vocabulary. Then to train our Transformer-based NMT models, we used the
Marian-nmt toolkit (Junczys-Dowmunt et al., 2018) with the following hyper-parameters settings (Table
2).

Architecture Type: Transformer
Number of layers: 6-layer depth for both encoder and decoder
Number of heads: 8-layer mulit-heads
Hidden layers: 2,048 units in the feed-forward networks
Optimization: Adam
Embedding size: 512
Learning rate : 0.0003
Batch-size: 32
Number of epochs: 50 iterations
Early stop: cross-entropy scores
Validation updates: 5,000

Table 2: Hyper-parameters settings for our NMT framework

Our experiments on NMT using the Transformer-based architecture (Vaswani et al., 2017) are de-
scribed as follows:

(1) System 1 as Baseline, with only BPE-preprocessed data: We choose the same configuration as
described in (Joanis et al., 2020).

(2) System 2 with our proposed Inuktitut word segmentation.

(3) System 3 that combines both BPE-segmentation and our proposed word segmentation.
In the System 3, the training data are segmented by using our Inuktitut word segmentation. Then
these preprocessed training data are split in subwords units with the BPE-based method.

(4) System 4 using BERT as embeddings in the encoder, with Transformer-based architecture.
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4.3 Evaluations
For word segmentation, we used the automatic metrics: Recall, Accuracy and F-measure. We observed
an improvement of +3.12% in terms of F-measure when using all (bi)character-based and word-based
pretrained embeddings. The recall of EXP2 is better than one of EXP1, with a gain of +6.23% on the
test set. The model is able to recognize more complex morphemes given a sentence word. However, the
accuracy of EXP2 is lower than one of EXP1, with a loss of -1.49% on the test set.

Recall Accuracy F-measure
EXP1 dev 74.52 87.68 80.57

test 64.34 82.28 72.21
EXP2 dev 68.94 80.82 74.41

test 70.57 80.79 75.33

Table 3: Evaluations of the word segmentation models for Inuktitut

Experiment dev set test set
System 1 - Baseline (Joanis et al., 2020) (BPE) 41.40 35.00

System 2 (our Inuktitut WS) 49.12 39.53
System 3 (our Inuktitut WS+BPE) 52.30 42.09
System 4 (BERT as embeddings) 53.93 43.40

Table 4: Performances on Inuktitut-English NMT in terms of lowercase word BLEU score

We conducted additional evaluations on NMT using the BLEU metric (Papineni et al., 2002), with
lowercase and v13a tokenization, similar to Joanis et al. (2020). We observed a significant improvement
of the performance with gains up to +4.53% for System 2, +7.09% for System 3, and +8.40% for System
4 in terms of BLEU score, compared to the System 1 as Baseline, on the test set (Table 4). We noticed
that the word segmentation helped to solve the complexity of Inuktitut morphology. Our proposed NMT
system showed better performance than the state-of-the-art, as presented in Joanis et al. (2020) with only
BPE-preprocessed training data, thanks to the rich word segmenter.

5 Conclusion and Perspective

In this paper, we have presented how to leverage Inuktitut-English Neural Machine Translation with
morphological word segmentation. We intend to apply our proposed approach in other Indigenous lan-
guage families, especially related to the Inuit language family, to deal with NLP tasks. With the valuable
collaboration of Indigenous communities, we will be able to collect reliable data from the speakers of
these Indigenous languages. Moreover, our NLP applications could help preserve ancestral knowledge
and revitalize Indigenous languages, heritage and culture with the transfer of knowledge from elders to
the youth.
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