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Abstract

Non-autoregressive translation (NAT) significantly accelerates the inference process by predicting
the entire target sequence. However, due to the lack of target dependency modelling in the decoder,
the conditional generation process heavily depends on the cross-attention. In this paper, we reveal a
localness perception problem in NAT cross-attention, for which it is difficult to adequately capture
source context. To alleviate this problem, we propose to enhance signals of neighbour source
tokens into conventional cross-attention. Experimental results on several representative datasets
show that our approach can consistently improve translation quality over strong NAT baselines.
Extensive analyses demonstrate that the enhanced cross-attention achieves better exploitation of
source contexts by leveraging both local and global information.

1 Introduction

Different from autoregressive translation (Bahdanau et al., 2015; Vaswani et al., 2017, AT) models that
generate each target word conditioned on previously generated ones, non-autoregressive translation (Gu et
al., 2018, NAT) models break the autoregressive factorization and produce the target words in parallel.
Given a source sentence x, the probability of generating its target sentence y with length T is defined
by NAT as: p(y|x) = pL(T |x; θ)

∏T
t=1 p(yt|x; θ), where pL(·) is a separate conditional distribution

to predict the length of target sequence. As NAT models can predict all tokens independently and
simultaneously, recent works have fully investigated their superiority on decoding efficiency (Lee et al.,
2018; Ghazvininejad et al., 2019; Gu et al., 2019; Kasai et al., 2020; Sun et al., 2019; Shu et al., 2020;
Ran et al., 2019). However, there still exists a gap between AT and NAT models in terms of effectiveness.

In encoder-decoder frameworks, the cross-attention module dynamically selects relevant source-side
information (key) given a target-side token (query) (Yang et al., 2020; Wang and Tu, 2020). Through
qualitative and quantitative analyses, we found that it is difficult for the NAT decoder to adequately capture
the source context due to the lack of autoregressive factorization. As shown in Table 1, when translating
the Chinese word “交往”, the source context word “女孩” should play a significant role in predicting the
candidate word “dating”. However, the NAT model inappropriately generates “socializing with”, resulting
in lexical choice errors. As seen, the AT model gives relatively higher attention weights to local contexts
on the source side while the NAT model pays less attention on them (0.15 vs 0.04). We make further
statistical analysis in Section 2 to prove the universality of this localness perception problem. Similar
to our findings, Li et al. (2019) showed that distributions of cross-attention in NAT models are more
ambiguous than those in AT ones.

To alleviate this localness perception problem in NAT, we propose a context-aware cross-attention
to model both local and global contexts simultaneously. For local attention, we limit the scope of
cross-attention to adjacent tokens surrounding the source word with the maximum alignment probability.
We then combine the local attention weights with the original global ones by a gating mechanism (in
Section 3).
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Input 弗兰克找到一间公寓，同时在跟一个女孩交交交往往往。

Reference Frank found an apartment and was dating a girl at the same time.
NAT Output Frank found an apartment and was socializing with a girl.

Attention 交往0.68 弗兰克0.18 女孩0.04

AT Output Frank found an apartment and was dating a girl.
Attention 交往0.81 女孩0.15 弗兰克0.03

Ours Output Frank found an apartment and was dating a girl.
Attention 交往0.69 女孩0.11 弗兰克0.09

Table 1: Case study of localness perception problem. “NAT Output” and “AT Output” are generated by
NAT and AT models, respectively. “Attention” shows top-3 cross-attention probabilities when generating
the target word “dating” or other equivalents.

Experiments are conducted on four commonly-cited datasets on translation task (i.e.
WMT16 Romanian⇒English, WAT17 Japanese⇒English, WMT14 English⇒German and WMT17
Chinese⇒English) and show that our approach can consistently improve translation quality by around
0.5 BLEU point over advanced NAT models (in Section 4). Further analyses reveal that our method
can enhance abilities of NAT to learn syntactic and semantic information as well as phrase patterns (in
Section 5).

2 Localness Perception Problem

To validate our motivation, we conduct a statistical analysis. Following Tu et al. (2014), we employ the
locality entropy to measure how the cross-attention concentrate around a source word that corresponds
with yt. As shown in Table 1, when generating the target side word “dating”, the concentrated source
word is “交往” according to the maximum probability of attention. And AT’s attention distribution is
obviously concentrated than NAT’s, thereby have a lower entropy. In our case, given a sentence pair
{f1, f2, . . . , fn; e1, e2, . . . , em}, for each decoding position pos ∈ [1,m], we can obtain a probability
distribution Pi

pos = {P i(f1|pos), . . . , P i(fn|pos)} by calculating cross-attention in the i-th decoding
layer. Thus, the locality entropy of one certain sentence is LE = − 1

6m

∑
i∈[1,6]

∑
pos∈[1,m]P

i
poslog2P

i
pos.

Finally, we average all sentence-level LE to get the corpus-level one. The lower LE means the more
concentrated attention on source-side localness and vice versa.

Models En-De Zh-En
LE BLEU LE BLEU

NAT 1.66 27.0 2.65 24.0
+Ours 1.62 27.5 2.51 24.6

AT 1.46 29.2 2.12 25.3

Table 2: The locality entropy LE of NAT and AT
models as well as our proposed method.

We compare the locality entropy of NAT and AT
models on En-De and Zh-En. As shown in Table 2,
the locality entropy “LE” of NAT model is higher
than that of AT, showing that the localness perception
problem in NAT is more severe. With the help of our
method (in Section 3), this problem can be alleviated
(LE↓), leading to better translation quality (BLEU ↑).
This observation confirms the universality and side
effect of localness perception problem in NAT, validating our hypothesis in Section 1.

3 Context-Aware Cross-Attention for NAT

In this section, we introduce the detail of our proposed context-aware cross-attention networks (CCAN),
which perceives the original and local cross-attention simultaneously.

Original Cross-Attention For the target-side query Q, source-side key K and value V . The i-th
original cross-attention ψi can be calculated with dot-product: ψi = QiK

T . The original attention of the
i-th element is the weighted sum of values ATT(ψi, V ) = softmax(ψi)V (in Figure 1(a)).

Our Approach For the i-th position in target side, we propose a locally-sensitive cross-attention
component for NAT to capture the neighbor signals. For simplicity, we adopt a straightforward but has
been proven effective way (Luong et al., 2015; Xu et al., 2019; You et al., 2020): constricting the attention
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(a) Vanilla Non-autoregressive model
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(b) Localness modeling in fixed window

Figure 1: Illustration of our proposed approach, which combines (a) vanilla cross-attention and (b)
localness-aware cross-attention. In (a), the word “交往” is assigned with the maximum attention weight
while the adjacent word (local context) “女孩” is assigned with a low weight. In (b), we guide the model
to perceive the local context.

scope to a nearby window around the aligned j-th element. In practice, we choose the source element
with the highest attention weight as the aligned element, and the local range can be modeled as follows:

L(ψi) =

{
ψi,j i− win 6 j 6 i+ win
−∞ otherwise

(1)

where ψi,j denotes the attention correlation between the i- and j- elements in encoder and decoder
parts, respectively. The win is the hard-coded localness modeling window. Furthermore, we design an
interpolation gating mechanism to wisely combine the original and local cross-attention:

CCAN( Qi︸︷︷︸
Decoder

, K, V︸ ︷︷ ︸
Encoder

) = g · ATT(ψi, V ) + (1− g) · ATT(L(ψi), V ) (2)

where g = σ(WQi) is the interpolation weight conditioned on the decoder side query Qi and σ(·) denotes
the sigmoid function. Note that W is the only additional parameter to estimate the importance of original
cross-attention operation, and we share it for different cross-attention heads.

4 Experiments

4.1 Setup

Data Experiments are conducted on four widely-used translation datasets, including the small-scale
WMT16 Romanian-English (Ro-En, Gu et al. (2018)), the medium-scale WMT14 English-German (En-
De, Vaswani et al. (2017)), the large-scale WMT17 Chinese-English (Zh-En, Hassan et al. (2018)), and
word-order-divergent WAT17 Japanese-English (Ja-En, Morishita et al. (2017)), which consist of 0.6M,
4.5M, 20M and 2M sentence pairs, respectively. We preprocessed data via BPE (Sennrich et al., 2016)
with 32K merge operations. We used BLEU (Papineni et al., 2002) as metric with statistical significance
test (Collins et al., 2005).

Models We follow Gu et al. (2018) to apply sequence-level knowledge distillation (Kim and Rush, 2016)
to simplify the training data. About AT Teachers, we train both BASE and BIG Transformer (Vaswani et al.,
2017) models with corresponding training data. In BIG model, we adopt large batch strategy (458K tokens
per batch) to optimize the performance. The main results employ Transformer-BIG for all directions
except Ro-En, which is distilled by BASE. Our approach can be applied to different NAT architectures. In
this paper, we mainly implement it on conditional masked language models (Ghazvininejad et al., 2019,
CMLMs) and leave further investigation to future work. The model contains 6-layer encoder and 6-layer
decoder, where the decoder trained with conditional mask language model fashion. The model dimension
is 512 on 8 heads, with 2048 feed forward dimensions. We follow the common practices (Ghazvininejad
et al., 2019; Kasai et al., 2020) to average the top three checkpoints to avoid stochasticity.

4.2 Ablation Study

In order to make best use of our proposed component for NAT, we conducted extensive ablation studies.
All models are trained and validated on WMT14 En-De training and validation sets.
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# Models BLEU ∆

1 BASE 26.5 –
2 OURS + win 3 26.8 + 0.3
3 + win 5 26.8 + 0.3
4 + win 7 26.7 + 0.2
5 + win 9 26.9 + 0.4
6 + win 11 26.7 + 0.2

# Models BLEU ∆

1 BASE 26.5 –
2 WIN 9 + [1] 26.6 + 0.1
3 + [1-3] 26.7 + 0.2
4 + [6] 26.8 + 0.3
5 + [4-6] 26.8 + 0.3
6 + [1-6] 26.9 + 0.4

Table 3: Effects of localness range (left) and decoder layers (right) on translation quality.

# Models Iteration Ro-En En-De Zh-En Ja-En
Autoregressive

1 Transformer-BASE n/a 34.1 27.3 24.4 29.2
2 Transformer-BIG n/a n/a 29.2 25.3 29.8

Non-Autoregressive
3 NAT (Gu et al., 2018) 1 31.4 19.2 n/a n/a
4 Iterative NAT (Lee et al., 2018) 10 30.2 21.6 n/a n/a
5 DisCo (Kasai et al., 2020) 4.8 33.3 26.8 n/a n/a
6 Levenshtein (Gu et al., 2019) 2.5 33.3 27.3 n/a n/a
7 CMLMs (Ghazvininejad et al., 2019) 10 33.3 27.0 23.2 n/a

Our Implementation
8 CMLMs

10
33.3 27.0 24.0 28.9

9 +CCAN 33.7 27.5† 24.6† 29.4†

Table 4: Results of proposed method and comparison with previous work on WMT16 Ro-En, WMT14
En-De and WMT17 Zh-En datasets. “†” indicates statistically significant difference (p < 0.05) from the
CMLM model.

Effects of Localness Range We investigate the localness window size within [3,5,7,9,11] and report
the translation performance in Table 3 (left). As seen, our context-aware cross-attention with the window
size of 9 achieves the best BLEU, which is therefore used as the default setting.

Effects of Decoder Layers As shown in Table 3 (right), deploying CCAN on the top-layer slightly
outperforms deploying on the bottom-layer (“[6]”>“[1]”). In NAT, multiple decoding layers can be cast
as the refiner, and the source central word chosen by the bottom-layer cross-attention is not as accurate
as of the top-layer one. Our method, highly conditioned on the predicted central words, thus can gain
a better effect on the top-layer compared to the bottom layer. In the end, modelling all layers (“[1-6]”)
achieves the best performance and we thus use this setting in the following experiments.

4.3 Main Results
Table 4 lists main results and comparison with previous NAT models on WMT16 Ro-En, WMT14 En-De,
WMT17 Zh-En and WAT17 Ja-En datasets. We mainly implemented our approach on top of the advanced
CMLMs model. As seen, our approach (Row 9) consistently improves translation performance (BLEU↑)
over CMLMs on four language pairs. Note that our approaches only modify the cross-attention module
and introduce fewer extra parameters, leading to negligible loss on latency. Encouragingly, our approach
even slightly outperforms its AT teachers (Transformer-BASE) on three tasks.

5 Analysis

In this section, we conduct extensive analyses on WMT14 En-De to better understand how our method
contribute to performance gains.

Importance of Localness The importance of localness should be different over layers. We explore it
through gating (in Equation 2) analyzing. Specifically, we cast the weighting scalar of local cross-attention
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Figure 2: Analyses on localness and phrasal patterns.

Model Surface Syntactic Semantic
SeLen WC TrDep ToCo BShif Tense SubNm ObjNm SoMo CoIn

CMLMs 93.2 79.4 45.8 79.4 73.5 88.9 87.5 85.4 52.7 63.1
+CCAN 92.8 78.1 46.5 79.7 74.1 88.3 88.1 85.7 52.9 62.5

Table 5: Results of probing tasks. We evaluate linguistic properties learned by sentence encoder.

as its importance degree and calculate the importance of localness for each decoder layer. As shown in
Figure 2(a), during information flow evolving from bottom to top layers, the importance of localness
continues to decline till the penultimate layer, and then increases. The possible reason for the increase in
the last two layers is that the top layer followed by softmax, requiring more source-side context to choose
lexicons.

Phrasal Patterns Our approach is expected to pay more attention to the most relevant source token
and its neighbours, such that the phrasal translation can be improved. To evaluate the accuracy of phrase
translations, we calculate the improvement on n-gram tokens in Figure 2(b), where the golden dashed line
indicates that the window size is 9. As seen, CCAN consistently outperforms the baseline (∆Accuracy>0),
indicating that our method can enhance the ability of NAT model on capturing the phrasal information,
which is similar with Yang et al. (2018)’s findings.

Linguistic Properties Intuitively, our proposed cross-attention component brings context-aware repre-
sentation, may affecting the linguistic properties learned by the encoder. We quantitatively investigate it
from linguistic perspectives with probing tasks (Conneau et al., 2018). These tasks can be categorized into
three types: “Surface” focuses on the simple surface properties learned from the sentence embedding;
“Syntactic” quantifies the syntactic reservation ability; and “Semantic” assesses the deeper semantic
representation ability. To evaluate the representation ability of CCAN equipped NAT model, we compare
the pre-trained vanilla NAT and CCAN equipped NAT encoders, followed by a MLP classifier. Specifically,
the mean of the top encoding layer, as sentence representation, will be passed to the classifier. We can see
from Table 5, the CCAN equipped NAT encoder preserves rich syntactic and semantic information.

6 Conclusion and Future Work

We reveal a localness perception problem in NAT. To alleviate it, we propose the context-aware approach
to make the cross-attention pay more attention to source-side local words, which in turn improves the
translation performance over several benchmarks. In future work, we will investigate selectively choosing
the context (Geng et al., 2020; Yang et al., 2019) rather than the fixed window size. Besides, it is
interesting to enhance NAT model with extra signals, such as cross-lingual position embedding (Ding et
al., 2020), larger context (Wang et al., 2017) and pre-trained initialization (Liu et al., 2020).
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