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Abstract

Dubbing has two shades; synchronisation constraints are applied only when the actor’s mouth is
visible on screen, while the translation is unconstrained for off-screen dubbing. Consequently,
different synchronisation requirements, and therefore translation strategies, are applied depend-
ing on the type of dubbing. In this work, we manually annotate an existing dubbing corpus
(Heroes) for this dichotomy. We show that, even though we did not observe distinctive fea-
tures between on- and off-screen dubbing at the textual level, on-screen dubbing is more difficult
for MT (-4 BLEU points). Moreover, synchronisation constraints dramatically decrease trans-
lation quality for off-screen dubbing. We conclude that, distinguishing between on-screen and
off-screen dubbing is necessary for determining successful strategies for dubbing-customised
Machine Translation.

1 Introduction

Dubbing is a form of audiovisual translation (AVT) which consists in replacing the original audio track
of a film dialogue with another track containing the dialogue translated in a different language. It is the
preferred type of AVT in countries with large film and streaming markets, e.g. Germany, Italy, Spain and
parts of Latin America (Bogucki and Dı́az-Cintas, 2020). Dubbing, as a form of translation, is among the
few where Machine Translation has found no steady ground yet. The first reason is the particularity of
dubbing as a genre. Translation for dubbing is a text written to be spoken, therefore it should bear a close
approximation to orality and reflect oral unlabored dialog (Chaume-Varela, 2006). However, dubbing is
not spontaneous, impromptu speech but rather a carefully-prepared imitation of spoken language. This
prefabricated orality (Baños-Piñero and Chaume, 2009) is what confers dubbing particular linguistic
characteristics.

The second challenge lies in the constraints affecting the translation. The most distinctive character-
istic of dubbing is the need for synchronisation when an actor’s mouth appears on screen. Isochrony
requires that the duration of the source and target utterance is equal, in order for the translated dialogue
to exactly fit the time during which the actor speaks. At a second level, lip-sync consists in adapting the
translation to match the articulatory mouth movements of the actor, mainly matching open vowels and
bilabials.1 For example, the sentence “I get strong off other people’s fear” is translated as “El miedo de
los demás me da fuerzas”, instead of a more literal translation “Me fortalezco con el miedo de otras per-
sonas”, in order to match the duration of the source utterance and the overlap of f between fear-fuerzas.
From the above, it becomes evident that there is a clear dichotomy in dubbing strategies when an actor’s

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1A third type of synchronisation is kinesic isochrony (synchronisation with body movements) which would require a multi-
modal analysis of the actions of the characters on screen and is therefore outside the scope of this paper.
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mouth is visible on screen or not (off screen). While on-screen dubbing is bound by synchronisation
constraints, off-screen dubbing should simply be representative of orality.

Very few works have attempted to automatise dubbing through Neural Machine Translation (NMT).
Saboo and Baumann (2019) attempt to integrate the constraint of isochrony by selecting the translation
which has a similar number of syllables to the source. Öktem et al. (2019) use the NMT attention
mechanism to segment the translation into prosodic phrases in order to improve a Text-to-Speech system
for dubbing. Federico et al. (2020) adapt an NMT system to generate translations of the same length
as the source, although in terms of characters, which does not necessarily reflect duration of utterance.
However, none of these works has taken into consideration the on/off-screen dichotomy.

In this work, we address, to our knowledge for the first time, the dichotomy between on-screen and
off-screen dubbing in NMT. As a first contribution, we manually annotate the Heroes corpus (Öktem et
al., 2018) by explicitly marking whether the actor’s mouth appears on screen or not. This annotation2 is
the first of its kind and will provide an invaluable resource for the study of dubbing and a benchmark for
systems’ evaluation. Second, we show that synchronisation is hardly discernible at the textual level, since
distinctive text features to tell apart on/off-screen dubbing are particularly hard to find. Despite this, we
demonstrate that an NMT system tuned to the dubbing domain achieves significantly worse results for
on-screen compared to off-screen dubbing, and that applying isochrony constraints to off-screen dubbing
is detrimental for NMT quality. Our findings suggest that using a single NMT system for all “shades” of
dubbing is not optimal, but viable solutions for dubbing-customised NMT should take into account the
on/off dichotomy.

2 Data, Annotation and Analysis

Data: The Heroes corpus (Öktem et al., 2018) is the only freely available dubbing corpus and is based on
the drama television series Heroes. It contains 7,000 single-speaker English utterance segments and their
translations into Spanish, as well as time-alignments that allow for re-aligning the text with the video.
Before starting the annotation, we verified that synchronisation is actually present in Heroes by watching
the dubbed videos. We found that dubbing is convincing and that synchronisation is indeed present, with
a stronger emphasis on preserving isochrony.

Class Utt.s Tokens-en Tokens-es

ON 4,163 29,338 25,159
OFF 1,200 8,238 7,293
MIXED 1,614 18,792 16,086
MIXED-on 10,976 -
MIXED-off 7,816 -

All 6,977 56,368 48,538

Table 1: Corpus statistics in utterances and source/target tokens for the three classes.

Annotation: A first annotator watched all videos and annotated the source side of the corpus on the
word-level, specifying whether speech is on-screen (mouth visible on screen) or off. Consequently, each
utterance can be fully on-screen, fully off-screen, or mixed (if the actor’s mouth is visible only for some
words). To validate the reliability of the annotation, a second annotator worked on 700 randomly selected
utterances (10 % of the corpus). This yielded an inter-annotator agreement (Cohen’s Kappa) of κ = .73
on the word level and .73 on the utterance level.3 We conclude that annotation as on/off/mixed is possible
with a substantial agreement across annotators. During annotation, we fixed several transcription errors
and identified non-English source utterances, resulting in a total of 6,977 segments. Table 1 presents the
annotation statistics.4 As can be seen, the majority of tokens appears on-screen (71 %; for utterances:
60 %). This imbalance is to be expected given the nature of drama television series, where the action
focuses on dialogues among characters.

2The annotation is publicly available at https://ict.fbk.eu/heroes-on-off/
3Some deviation is expected, given that words can be very short and audio-video alignment is never perfect.
4Since annotation is performed only on the source, it is not possible to report Spanish tokens for the mixed category.
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Ratio ON OFF MIXED

Character 1.10 (0.27) 1.10 (0.38) 1.13 (0.29)
Syllable 0.90 (0.26) 0.90 (0.36) 0.93 (0.27)
Vowel 0.92 (0.28) 0.93 (0.38) 0.94 (0.29)
Consonant 1.27 (0.41) 1.28 (0.56) 1.27 (0.39)
Duration 1.04 (0.31) 1.07 (0.36) 1.04 (0.24)

Table 2: Mean and standard deviation on the
source/target ratio of different units (char-
acters, syllables, vowels vs. consonants and
utterance duration in seconds).

classifier input words utt.s

English only .549 .640
Spanish only .641
English+Spanish .634

Table 3: Area under ROC curve results for classifying
words as on/off (only for English input), or utterances
as on/off/mixed (for all inputs).

Analysis: We investigate characteristics that may differentiate on-screen from off-screen dubbing, focus-
ing here only at the textual level (Table 2). We first look at relative length of translations, expressed by
character and syllable ratios between source and target. We find very little differences between the mean
of these ratios among the ON/OFF/MIXED classes. The same holds for the ratio between consonants and
vowels, as well as for the duration of the utterances. However, a larger standard deviation of ratios for
OFF suggests that there is more freedom both in terms of length and word choice when no synchronisa-
tion is needed. In order to identify possible latent characteristics (such as character sequence patterns),
we also built a character-based neural sequence classifier that determines the class based on English,
Spanish, or both texts.5 Given that classes are unbalanced, we choose Area Under ROC curve as perfor-
mance metric: an ideal classifier would cover an area of 1.0, random classification yields .5. Although
we find some limited success in identifying mixed utterances, our overall classification results are rather
poor, as shown in Table 3. We therefore conclude that, in this dataset, there are no clear distinctive text-
level features (neither direct, nor latent features that could be used by a neural network classifier) that
differentiate on-screen from off-screen dubbing, i.e., that possible traces of synchronisation are hardly
discernible in the textual form.

3 Neural Machine Translation for On- and Off-screen Dubbing

We now work on the hypothesis that, if there is no difference between on/off-screen dubbing, as sug-
gested from the ratios and classification results in Section 2, an MT system should achieve comparable
performance across the different classes. If this is not the case, there should be different dubbing strate-
gies mirrored in the translation, possibly due to synchronisation constraints. To validate this hypothesis,
we test the performance of an NMT model on on/off-screen dubbing.
Data: We create a test set by randomly selecting 400 sentences from each class, paying attention to avoid
data leakage in the training set. From the remaining sentences, 10% from each class is sampled to form
the development set. Since the number of sentences among the classes is unbalanced, we over-sample
the two smaller classes (OFF and MIXED) until they reach the size of the ON class, resulting in a training
corpus of 9,500 sentences. In order to obtain reliable results, we perform three rounds of cross-validation
and report the mean and standard deviation of BLEU scores.
Base model: We pretrain an NMT model on a total of 67M parallel sentences from the OPUS project,6

containing OpenSubtitles (Lison and Tiedemann, 2016), Europarl (Koehn, 2005), GlobalVoices7, MuST-
C (Di Gangi et al., 2019), WIT3 (Cettolo et al., 2012). All data are segmented into subword units using
SentencePiece (Kudo and Richardson, 2018) with a 40K joint vocabulary. The model is based on the
Transformer (big) architecture (Vaswani et al., 2017) of the fairseq toolkit (Ott et al., 2019). It is trained
with label smoothed cross-entropy and 0.1 label smoothing. For optimisation, we use Adam (Kingma
and Ba, 2015) with an initial learning rate of 1x10−7, which increases linearly up to 0.005 for 4000
warm-up steps, and then decreases with the inverse square root of the training step. Dropout is set to 0.3

5Implementation details as well as the code can be found at https://github.com/timobaumann/
visualHeroesAnnotations/tree/master/text-classifier

6http://opus.nlpl.eu/
7http://opus.nlpl.eu/GlobalVoices-v2017q3.php
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for all layers except for the attention layer, where dropout is set to 0.1. The base model achieves a BLEU
score of 31.47 on the WMT’13 English→Spanish test set (Bojar et al., 2013).
Proposed models: We customise the base NMT model to the dubbing domain by fine-tuning on the
Heroes data. Given the scarcity of training material, we concatenate data from all classes and follow
two different strategies: 1) simply fine-tuning on all the dubbing data (ft-heroes) and 2) fine-tuning with
target forcing, as in multilingual translation (Johnson et al., 2017). This technique has been shown to be
beneficial not only for mixing data from different languages, but also to achieve style transfer (Niu et al.,
2017) and to control attributes of the target text, such as politeness (Sennrich et al., 2016). Since the third
class (MIXED) is essentially a mix of ON and OFF, we experiment with two tagging strategies for target
forcing: a) we distinguish the 3 classes with the tags <ON>, <OFF> and <MIX> (ft-3tags), and b)
we use only the <ON> and <OFF> tags, by annotating the ranges for on/off-screen text in the MIXED

class (ft-2tags). The second strategy is inspired by the use of dubbing symbols in the actual dialogue lists
(Chaume, 2012), therefore it explores the possibility of a direct application in the dubbing industry.

Additionally, we apply the previous work attempting to integrate dubbing constraints in NMT (Saboo
and Baumann, 2019) to our ft-2tags model (syll-rescore). We use a beam search of 20 and select the
hypothesis with the closest source/target syllable ratio8 to the target syllable ratio observed in our data
(0.9). Compared to previous work, we use a smaller beam (20 instead of 50) because we found that, in
90% of the sentences, at least one candidate matching the target ratio was found among the hypotheses.

4 Results

The BLEU scores for the models described above are shown in Table 4.
On/Off-screen dubbing: Fine-tuning on the Heroes data (ft-heroes) gives an increase from 21.30 to
25.89 BLEU for ON (+19%), from 20.07 to 24.95 for MIXED (+19%) and from 24.04 to 30.40 for OFF

(+24%). The score for the OFF class is higher under all conditions, showing that off-screen dubbing is
less challenging for NMT. Fine-tuning on in-domain data is in general expected to bring performance
gains. Based on the evidence shown, we cannot establish whether the model is simply fine-tuned to
the style and vocabulary of the Heroes TV series, or to the dubbing task. Hypothetically, if we could
fine-tune on another dubbing dataset, we would still likely see performance gains. This would be an
indication that, even though the base model is trained on corpora of the spoken domain, dubbing is a
particular sub-domain with its own particularities in terms of style and orality.
Tagging: Target forcing gives a ∼ 1 BLEU point increase, showing that it helps the NMT system adapt
to different styles and particularities even inside this sub-domain. For the ON class, the increase comes
only when the MIXED data are separated in ON and OFF (ft-2tags), since this is the only condition when
NMT receives more ON data. In this condition, there is a slight drop in BLEU for the MIXED class,
possibly because the mix of tags increases the complexity of the source sentence.
Syllablic rescoring: When applying isochrony constraints to select the translation candidate with the
most similar number of syllables to the source, the translation performance is compromised. This drop
is in line with Saboo and Baumann (2019) who attempted to balance the trade-off between isochrony
and translation quality, but without making any on/off-screen distinction. Our results show an interest-
ing tendency; while the drop for ON and MIXED when applying synchronisation constraints is 3 BLEU
points, for OFF the score drops by 7 points. As a result, the translation performance for all the classes
is flattened to ∼23-24 BLEU points. This finding suggests that for off-screen dubbing, applying syn-
chronisation constraints is not required but rather detrimental. On the other hand, the compromise for
the classes containing on-screen dubbing is smaller, which advocates for the presence of some isochrony
constraint for ON and MIXED. Still, the drop in translation performance indicates that isochrony is not
the only constraint affecting the translation, but the need for adaptation to the articulatory movements
(lip-sync) at the level of phonemes should be further explored in NMT for dubbing.

8Computed with the Pyphen package: https://pyphen.org/



4331

Model Total ON OFF MIXED

base 21.32 (0.61) 21.30 (0.5) 24.04 (0.44) 20.07 (1.22)

ft-heroes 26.54 (3.09) 25.89 (2.6) 30.40 (4.2) 24.95 (3.09)

ft-3tags 27.45 (3.1) 25.82 (2.23) 31.11 (4.01) 27.01 (3.01)

ft-2tags 27.50 (3.09) 26.63 (2.47) 30.84 (4.3) 26.33 (3.76)

syll-rescore 22.80 23.31 23.71 24.11

Table 4: BLEU scores for different systems for the
entire test set (Total) and the three classes. Mean and
StDev (in parentheses) of 3 cross-validation rounds.

Model ON OFF MIXED

Human 347 363 398
ft-2tags 304 339 348
syll-rescore 335 370 374

Table 5: Perplexity on a general Spanish lan-
guage model for human dubbing and two MT
outputs.

5 Analysis

The BLEU scores and the improvements from fine-tuning are higher for the OFF class. Our first hypothe-
sis was that this difference is due to different contents/styles in the on/off test sets; for example, off-screen
contains more narratives that are easier to translate, whereas on-screen more informal language. How-
ever, the majority of segments come from dialogues between characters, and narratives account only
for around 10 segments in the whole corpus. Since the styles of the source segments are comparable,
the lower BLEU scores for the ON and MIXED class suggest that (partially and fully) on-screen dub-
bing is highly constrained translation, which depends not only on semantics, but on factors to which the
NMT model does not have access, such as phonetics and visemics. Therefore, this difference should be
investigated in the interplay between the source and target in terms of translation solutions.

To account for the difference in BLEU, we compute perplexity of the human dubbing and NMT out-
puts on a 5-gram language model (Heafield et al., 2013) trained on a corpus of general Spanish lan-
guage (Cardellino, 2019) (Table 5). A lower perplexity and lower BLEU score for ON suggests that
there is increased naturalness for on-screen human dubbing, imposed by the need to create realistic di-
alogues, in line with the factors above. This results in creative translations that rely less on the lexical
choice, structure and word order of the source text; NMT systems normally lack this creativity. Indeed,
for human dubbing the conformity to the target language norms has been claimed to be more important
than following the source text structure or generating a perfect lip-sync (Chaume, 2012; Pavesi, 2008).
On the other hand, a higher BLEU and higher perplexity for OFF indicate less creative solutions, closer to
the source, and therefore more predictable for the NMT system. With a low BLEU and high perplexity,
MIXED seems to be the most particular class, where the mix of dubbing strategies creates a linguistic
hybrid.9 This tendency is copied in the NMT outputs, which however are less surprising under all con-
ditions, suggesting that they are more plausible as general language, but they do not reflect the orality of
dubbed texts. The high perplexity for OFF under syll-rescore is another indication that syllabic rescoring
is harmful, since it leads to translations that are erroneous or not plausible in the target language.

6 Conclusions and future work

We have explored for the first time the characteristics of on/off-screen dubbing from a computational
perspective. To this end, we annotated the Heroes corpus, distinguishing between the two shades of
dubbing. Our annotation is an important starting point towards fulfilling the multimodal requirements
necessary for fully functional dubbing engines which will incorporate detection of visuals for identifying
the shade and deciding whether to apply synchronisation (Nayak et al., 2020). Despite the lack of
distinctive features at the textual level in our dataset, NMT seems to suffer from a (still) elusive difference
between on/off-screen dubbing, as witnessed by lower BLEU scores for ON and MIXED. We have
further shown that isochrony constraints significantly hurt NMT performance for off-screen dubbing.
Understanding the language of dubbing is still an open problem. We hope that our findings will set a
first cornerstone towards the successful integration of NMT in dubbing. In the future, we will investigate
isochrony and especially lip-sync from a phonetic perspective.

9On a language model of English, no difference in perplexity was found between ON and OFF, (0.1 points) while perplexity
was higher for MIXED (10 points).
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