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Abstract

This paper extends existing work on terminology integration into Neural Machine Translation, a
common industrial practice to dynamically adapt translation to a specific domain. Our method,
based on the use of placeholders complemented with morphosyntactic annotation, efficiently taps
into the ability of the neural network to deal with symbolic knowledge to surpass the surface gen-
eralization shown by alternative techniques. We compare our approach to state-of-the-art systems
and benchmark them through a well-defined evaluation framework, focusing on actual applica-
tion of terminology and not just on the overall performance. Results indicate the suitability of
our method in the use-case where terminology is used in a system trained on generic data only.

1 Introduction

High out-of-the-box quality for Neural Machine Translation (Bojar et al., 2016) has boosted the adop-
tion of automatic translation by the industry and invigorated the research and development on domain
adaption and integration of technology in human translation workflows. For instance, combination with
translation memories (Bulté and Tezcan, 2019; Xu et al., 2020), terminology handling (Hasler et al.,
2018; Dinu et al., 2019), interactive translation (Peris and Casacuberta, 2019), post-editing modelling
(Chatterjee et al., 2019) or dynamic adaptation (Farajian et al., 2017) are all different techniques to make
machine translation part of real-life localization workflow.

In this work, we focus on integrating terminology as a quick way to dynamically specialize a transla-
tion to a specific domain. Terminology is a key high quality asset maintained by language specialists as
part of a translation project: it is a way to guarantee language consistency, certify translation accuracy
and define constraints to human translation. Terminologists are putting a lot of effort to describe terms,
including their morphology, their syntax, the semantic context in which these terms apply, etc. From a
human perspective, even though presentation and usage of dictionaries have evolved from ontology (as
found in paper dictionary) to corpus-based presentation, looking up terms in a dictionary is the ultimate
point of reference for validating the correct term for a specific domain in a specific context.

Terminology resources with all their sophistication have been the core building bricks and a continuous
challenge to acquire in volume (Senellart et al., 2003) for rule-based engines. At the other extreme,
they have been reduced to corpus or aligned “phrases” (Schwenk et al., 2008) for Statistical Machine
Translation approaches, missing most of their intrinsic linguistic properties. In contrast, Neural Machine
Translation operates on word and sentence representations in a continuous space so, on one hand, has
access to deep actual linguistic knowledge (Conneau et al., 2018) and demonstrates a huge ability to
generalize. But on the other hand, results are more difficult to interpret (Koehn and Knowles, 2017), and
subsequently the translation process is far more complicated to control. Therefore, as for several other
linguistic annotations, the challenge is how terminological information can be “passed” to the model.

In this work, we extend existing work on terminology adaptation, show similarity with translation
memory, and propose a new approach and new benchmark through a well-defined evaluation framework
focusing on actual application of terminology and not just on the overall performance.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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2 Related Work

In recent years there has been significant work proposing methods to integrate such external specialized
terminologies into NMT models. Mainstream techniques to tackle this challenge can be divided into
three broad approaches, each showing different levels of performance when facing terminology injection
issues, mainly inference overhead and generalization power. We illustrate their particularities on a com-
mon scenario using two English-Spanish terminology entries: [precedent ; precedente] (noun) and [to
extend ; ampliar] (verb), in the following translation:

These precedents can be extended.
Se pueden ampliar esos precedentes.

Placeholders incorporate non-terminal tokens into NMT systems, which requires modifying the pre-
and post-processing of the data, and training the system with data that contains the same placeholders
which occur in the test sets (Crego et al., 2016). Following our example, source and translation terms
appearing in the sentence pair are replaced by placeholders1:

These <term#1> can be <term#2> .
Se pueden <term#2> esos <term#1> .

The previous sentence pair is then used to feed the translation network, which learns to produce
the target sentence with the corresponding placeholders. A similar workflow is applied in inference.
Firstly, pre-processing work replaces found source terms and their morphological variants by placehold-
ers (precedents ; <term#1> and extended ; <term#2>). Secondly, post-processing work is applied
over the NMT output, where in turn translation terms replace placeholders (<term#1> ; precedentes
and <term#2> ; ampliar)2. Note that the network loses any possibility to model the tokens in the
terminology, since it has only access to placeholders. The method also lacks flexibility, as the model will
always replace the placeholder with the same phrase irrespective of grammatical context3. In contrast,
no computational overhead is applied at inference time by pre- and post-processing. The approach in-
herits from Luong et al. (2015) where words translated as out-of-vocabulary by the NMT network are
post-processed using a dictionary.

Learning to apply constraints tackles the same problem by learning a copy behaviour of terminol-
ogy at training time (Song et al., 2019; Dinu et al., 2019). The NMT model is trained to incorporate
terminology translations when they are provided as additional input in the source sentence. Terminology
translations are inserted as inline annotations, expecting the model to learn that additional words must
be copied in the target hypothesis. The authors insert terminology translations in the source sentence
either by appending the target term to its source version, or by directly replacing the original term with
the target one. Both alternatives obtain similar translation accuracy results. An additional input stream
is also used to signal the switch between source text and target terminology to be copied. Additional
factors contain three values: 0 for source words, 1 for source terms, and 2 for target terms4:

These0 precedents1 precedentes2 can0 be0 extended1 ampliar2 .0
Se pueden ampliar esos precedentes .

This approach uses a generic NMT architecture which learns to use an external terminology provided
at run-time, thus, showing no inference overhead. However, similarly to the preceding approach, it lacks
generalization power as it simply ”copies” the term found in the terminology base in the source sentence,
irrespective of the target hypothesis context. Dinu et al. (2019) argue that in some cases the approach
exhibits the ability to inflect translation terms.

Recently, Bulté and Tezcan (2019) and Xu et al. (2020) followed a similar methodology where source
sentences are augmented with entire translation sentences retrieved from translation memories, using

1Source and translation terms are usually required to be aligned to each other in the sentence pair.
2Unique placeholder indices are used to allow a correct placeholder identification in post-processing.
3In our example, we could assume that a plural noun was to be translated by a plural noun, but without sentence analysis,

we could not have guessed that a past participle was to be translated by an infinitive form.
4The example illustrates the append alternative presented in Dinu et al. (2019).
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fuzzy matching. Results show that the model acquires the ability to reuse the appended translations
when producing its own hypotheses. The authors show impressive translation accuracy improvements
when sufficiently large fuzzy matches exist in translation memories.

Constrained decoding enforces translation terms as decoding constraints applied at inference. Among
others, Hokamp and Liu (2017) introduced grid beam search (GBS), an algorithm which employs a
separate beam for each lexical constraint (translation term) aiming at ensuring the apparition of each
given constraint in the translation hypothesis. The algorithm explores all possible constraints at each
time-step, making sure not to generate a constraint that has already been generated in previous time-
steps. The approach generates all the constraints in the final output. Other works (Hasler et al., 2018;
Post and Vilar, 2018; Susanto et al., 2020) attempt to reduce the computational problem caused by
using multiple beams in the inference, a well known weakness of this approach. Similar to the previous
approach, constrained decoding does not consider target context when inserting translation terms, as
it sets the target form and then produces a target context that fits this constraint. However, in a more
realistic scenario, a source term may have multiple translation term inflections among which the MT
engine should on-the-fly select the best one depending on the source and target context.

Previously, Chatterjee et al. (2017) proposed a guide mechanism to enhance an NMT network with the
ability to prioritize translation options presented in the form of XML annotations of source words. The
mechanism is applied at every inference time-step, where the beam search is influenced with external
suggestions coming from the attention model. Similarly, Zhang et al. (2018) exploit a search engine to
retrieve sentence pairs whose source sides are similar with the input sentence, from which they collect
translation pieces. Then, the NMT model is modified to give an additional bonus to output sentences that
contain the collected translation pieces.

Our contribution In this article, we compare several methods for domain terminology integration,
seen as dynamic adaptation of a model trained on generic data to a specialized domain through terminol-
ogy only. While results are expected to be lower than those obtained through fine-tuning (training more
iterations with specialized parallel corpus), specializing with terminology only is a very frequent use case
in industry, given that maintaining terminology lists make sense for experts to factorize the knowledge
of frequently translated terms. We do not evaluate constrained decoding since comparison in Dinu et al.
(2019) underlined that it did not outperform in-line terminology neither in BLEU nor in term usage rate,
and its substantially increased decoding speed does not suit production environments.

3 Terminology Injection

This work builds on the placeholder method presented above. We extend the approach and adapt it to
cover a wider variety of cases, and to control morphology to allow generalization power. To represent
terminology we use several placeholders indicating part-of-speech (POS) and morphological informa-
tion, both in source and target sides.5 For each source-target term pair, we encode all possible inflections
of the source and target word labelled with inflection type. Not only does this analysis enable to lexically
match any inflected form of the source term, but it can also produce any inflected form of the transla-
tion term, ensuring full flexibility in the inflection choice made by the neural network. The model can
then learn to translate a sequence of dedicated placeholders in source by a corresponding sequence of
placeholders in target, this way providing the post-process with enough information to choose the right
form among the multiple ones available for each translation term, thus ensuring the correct grammatical
inflection in inference. Consider the previous example with extended placeholder annotations:

These <noun or adj#1> <plural masculine> can be <verb#2> <past participle> .
Se pueden <verb#2> <infinitive> esos <noun#1> <plural> .

A challenging case concerns homographs like the word precedents above. Source-side annotations
indicate the homograph that can occur as a noun or an adjective, inflected in plural form. We also find
it useful to convey in the source some information about the target word, namely that it is masculine,

5Linguistic annotations are obtained by an in-house toolkit.
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for the model to better integrate it in translation (article, agreement,...). The second term extended is
unambiguously a verb in past participle. Target-side annotations indicate that in the context of this
example, the homograph precedents translates into Spanish as a noun in plural while the second term
extended translates into a verb in infinitive tense. Annotations vary according to the language pair. For
example, to control inflections in English-Spanish, we annotate the following properties of each POS
category:

in English (source) in Spanish (target)

no
un - number: s/p - number: s/p

- gender of the Spanish noun: m/f - gender for some nouns like careers : m/f

ad
j - whether the Spanish adjective - number: s/p

precedes the noun (+LEFTADJ)6 - gender: m/f

ve
rb

- tense: infinitive (W), present (P), ... - tense: infinitive (W), present (P), past part. (K), ...
- person: 3 - person: 1/2/3
- number: s7 - number: s/p

Homograph terms require morphological information for all possible POS categories. This is further
illustrated here with the homograph close, for which the model, after seeing enough examples, will
learn to disambiguate between [close ; final] (noun), [close ; próximo] (adjective) and [close ;

cerrar] (verb). The table below illustrates three English-Spanish translation examples with the word
close assigned to a different POS category. Each example shows: the English sentence (a); after pre-
processing, with source terms replaced by source-side placeholders (b); the Spanish translation with
target-side placeholders (c) and the Spanish translation (d).

no
un

(a) after close of business
(b) after <NNP A V#1> <s m> <+LEFTADJ> <W> of business
(c) tras el <N#1> <s> de actividades
(d) tras el final de actividades

ad
j

(a) values close to the level observed
(b) values <NNP A V#1> <s m> <+LEFTADJ> <W> to the level observed
(c) valores muy <A#1> <mp> a los observados
(d) valores muy próximos a los observados

ve
rb

(a) close all pages
(b) <NNP A V#1> <s m> <+LEFTADJ> <W> all pages
(c) <V#1> <P3s> todas las páginas
(d) cierra todas las páginas

Note that our approach does not require performing any linguistic annotation in inference. All an-
notations are already compiled in the terminology base acquired from specialized data. Following with
the example, the word close triggers the use of the terminology placeholders: close ; <NNP A V#1>
<s m> <+LEFTADJ> <W>, indicating that close is considered in our specialized terminology either
as a noun, a verb or an adjective (b). The NMT network then produces the target hypothesis solving the
ambiguity in translation (c), and post-processing converts remaining placeholders8 into word forms by
means of a set of rules (d).

A potential disadvantage of this approach is that actual instances of injected terminology are com-
pletely hidden to the neural network, that only handles placeholders, whereas this information can be
valuable, with the exceptions of rare words or OOVs. We thus propose a second alternative where the
source term is left in the source sentence surrounded by placeholders:

These <NNP A#1> precedents <plural masculine> can be <V#2> extended <past participle> .
Se pueden <V#2> <infinitive> esos <N#1> <plural> .

6See el próximo año/el año próximo ’the following year’ while most adjectives can only succeed to the noun el año escolar
’the scholar year’.

7Only 3rd person singular is discriminant in English conjugation.
8Consistency checks ensure an equal number of placeholders in source and target.
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4 Experimental Framework

4.1 Corpora
Detailed statistics of the corpora used in this work are provided in Appendix B. Mainly, we use data
coming from generic domains for both training and inference: Parallel Paragraphs crawled from the
web (COMM); Proceedings of the European Parliament (EPPS); Legislative texts of the European Union
(JRC); News Commentaries (NEWS). We use data from specialized domains for inference only: Doc-
umentation from the European Central Bank (ECB); Documents from the European Medicines Agency
(EMEA); Localisation files (KDE4). All data is preprocessed using onmt-tokenize-text9.

4.2 Terminology Bases
Terminology databases are automatically extracted from the training sections of each corpus used in this
work (see Appendix B). Parallel data is first word aligned with fast align10 before extracting phrase
pairs11. Pairs are kept as terminology entries when they follow a set of pre-defined POS patterns (see
details in Appendix B) and only when pairs appear in the testset. Part-of-speech tagging is performed on
both sides by TreeTagger12. Lemmatisation is carried out by an in-house linguistic analysis tool and
frequency filtering is performed to select only the most relevant translation for each term in the domain.
Interestingly enough, we observe that the same term is present in several terminologies with different
translations according to the domain as can be seen in the next examples:

accordance (noun) move (verb) move (noun)
ECB/NEWS: conformidad (noun) COMM: migrar (verb) JRC: decisión (noun)
EMEA: acuerdo (noun) ECB: pasar (verb) KDE4: movimiento (noun)
EPPS/JRC: arreglo (noun) KDE4: mover (verb) NEWS: maniobra (noun)

NEWS: ascender (verb)

4.3 Neural Machine Translation
Our NMT models follow the state-of-the-art Transformer architecture described in Vaswani et al. (2017)
implemented in the OpenNMT-tf13 toolkit. Before learning, we train a 32K joint byte-pair encod-
ing (Sennrich et al., 2016) not applying on introduced placeholders. Note that all models are learnt using
a joint source and target vocabulary and shared word embeddings to allow the injection of target words
in the source stream. This is only required by one configuration but it enables a fair comparison and does
not harm the rest of models. Additional details of our translation networks are given in Appendix A.

4.4 Experiments
We evaluate the following configurations:

• app: the target inflected term is appended to the source term. We use an additional parallel stream
(factor) to indicate if each word is a term to inject and its respective belonging to source or target.
Word embeddings are built after concatenating both factor embeddings (Dinu et al., 2019):

These0 precedents1 precedentes2 can0 be0 extended1 ampliar2 .0
Se pueden ampliar esos precedentes .

• mrk: source and target inflected terms are analysed and replaced by marks representing their POS
and morphological information:

These <NNP A#1> <p m> can be <V#2> <K> .
Se pueden <V#2> <W> esos <N#1> <p> .

9https://github.com/OpenNMT/Tokenizer
10 (Dyer et al., 2013) https://github.com/clab/fast_align
11https://github.com/moses-smt/mosesdecoder/tree/master/phrase-extract
12https://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger
13 (Klein et al., 2017) https://github.com/OpenNMT/OpenNMT-tf

https://github.com/OpenNMT/Tokenizer
https://github.com/clab/fast_align
https://github.com/moses-smt/mosesdecoder/tree/master/phrase-extract
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
https://github.com/OpenNMT/OpenNMT-tf
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• mrk+: source and target inflected term are similarly analysed and annotated by marks, with the
source term still present in the sentence:

These <NNP A#1> precedents <p m> can be <V#2> extended <K> .
Se pueden <V#2> <W> esos <N#1> <p> .

It is worth mentioning that all models are trained from the same data and injected the same terminol-
ogy, respectively at train and test time. For every testset, we evaluate each model under four different
annotation conditions:

• NONE: no injection of terms, to control for the performance of models trained with annotations
when no annotation is injected in inference.

• MANY: injection of a large quantity of terms, to evaluate the ability of each configuration to handle
multiple terms in a single sentence.

• ALREADY: injection of a reasonable quantity of terms already well translated in the baseline.

• IMPROVE: injection of a reasonable quantity of terms not already well translated in the baseline.

We evaluate each terminology injection configuration in equal and separable conditions, to better
understand how each term of customer terminology, usually a mix of already well translated terms and
terms benefiting from specialized translation, can contribute to translation improvement. To be able to
evaluate terminology injection and influence on BLEU score for existing corpora, we place ourselves in a
setting where injected terms are necessarily present in the reference. While we acknowledge that it does
not fully reproduce a real scenario where there is usually no guarantee about the coverage of customer
specialized terminology in the content to translate, however this experimental setting is, compared to the
situation evaluated in Dinu et al. (2019):

• closer to applied use cases by evaluating generic models on technical testsets and terminologies,

• more controlled in the term match as it uses morphological analysis instead of approximate match,
necessary to match forms such as sigue ‘follows’ from the verb seguir ‘to follow’ and

• more complete as our terminologies cover not only fully inflected nouns, adjectives and verbs, but
also noun phrases, verb phrases and homographs, recognizing the role of all these categories to
specialize translation.

5 Results

Results in terms of BLEU score (Papineni et al., 2002) computed by multi-bleu.perl14 are reported
in Table 1. The NONE condition checks that, when no term is injected and trained for the same number of
iterations, all three models trained with annotations (app, mrk, mrk+) reach a performance only slightly
lower than the baseline (tok). In the case of mrk and mrk+, we hypothesize that they actually use less
rich data during training since the placeholders are not lexicalized.

In the MANY condition, when we inject a high number of terms, the app score makes a significant
jump in specialized domains only, while scores of the models based on morphological marking (mrk,
mrk+) suffer a substantial decrease in both generic and specialized domains, of higher importance for
mrk and specialized domains. When we inject a ”reasonable” quantity of terms, results highly depend
on the nature of the injected terms. In the ALREADY condition, when terms are already well produced
by the baseline, terminology injection creates a small drop for all models compared to the baseline, a
drop that gets more important for mrk and specialized domains. These results indicate that models using
morphological marking suffer from not having access to lexical instances, in particular when too many
terms are injected, reflecting the limits of these models.

14https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.
perl

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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However, in the IMPROVE condition, when injected terms where not already present in the baseline,
terminology injection induces a considerable gain, in particular for specialized domains: for app (+0.38
in generic domains, +1.25 in specialized domains in average), and of larger magnitude for mrk (+0.50
generic, +2.15 specialized) and mrk+ (+0.71 generic, +2.08 specialized).

NONE MANY ALREADY IMPROVE

tok app mrk mrk+ app mrk mrk+ app mrk mrk+ app mrk mrk+

G
en

er
ic

COMM 38.28 38.31 38.46 38.40 38.47 37.84 38.06 38.23 38.32 38.18 38.57 38.77 38.78
EPPS 44.08 44.14 43.98 44.20 44.66 41.90 43.31 44.06 43.67 43.99 44.83 44.64 44.88
JRC 53.85 53.59 53.69 53.56 53.49 49.57 51.19 53.25 53.11 53.20 53.91 54.01 54.13
NEWS 44.73 44.27 44.70 45.01 44.84 42.43 43.75 44.25 44.25 44.64 45.12 45.50 45.96
Avg 45.23 45.08 45.21 45.29 45.37 42.94 44.08 44.95 44.84 45.00 45.61 45.73 45.94

Sp
ec

ia
liz

ed ECB 40.89 40.48 40.82 40.80 40.79 33.82 36.86 39.92 39.18 39.60 41.41 41.74 41.97
EMEA 37.98 37.13 37.60 37.58 38.39 37.14 36.26 36.96 36.65 36.94 39.47 41.46 41.10
KDE4 37.25 36.82 37.14 36.96 40.90 33.42 35.31 36.69 35.81 36.12 39.00 39.37 39.28
Avg 38.71 38.14 38.52 38.45 40.03 34.79 36.14 37.86 37.21 37.55 39.96 40.86 40.78

Table 1: BLEU results of different model configurations over generic (up) and specialized (down) test
sets and according to different terminology conditions.

5.1 In-depth Evaluation
In parallel to translation quality scores measured by BLEU, we now examine the correct term use rate,
as well as the distribution of the different types of errors concerning term integration in the hypothesis,
illustrated in Table 2.

Error Type Source Reference Translation
Case As can be seen from Chart 4 ,

[...]
Como se desprende del gráfico 4
, [...]

Como se puede ver en el Gráfico
4 , [...]

Inflection In addition , spot transactions
which have been contracted but
which have not yet been settled
should be included in the data .

Deben declararse , además , las
operaciones al contado perfec-
cionadas pero aún no liquidadas
.

Además , las operaciones pun-
tuales que se hayan contraı́do pero
que aún no se hayan liquidado
deben incluirse en los datos .

Homography Driving and using machines
Ciprofloxacin Kabi can reduce
your attention .

Conducción y uso de máquinas
Ciprofloxacino Kabi puede dis-
minuir su atención .

Conducir y usar máquinas
Ciprofloxacino Kabi puede
reducir su atención .

Absence Mixtard 10 NovoLet 100 IU /
ml suspension for injection in a
pre-filled pen .

Mixtard 10 NovoLet , 100 UI /
ml suspensión inyectable en una
pluma precargada

Mezcla 10 NovoLet 100 IU / ml
de suspensión para inyección en
un prellenado bolı́grafo .

Table 2: Examples of error types for terminology injection.

We identify the following types of error:

• Case: the term is integrated with a different casing (gráfico Vs. Gráfico) than in the reference.

• Inflection: the term is integrated with a different inflection than in the reference (includes number,
gender and verb form errors). Note that the sentence stays perfectly grammatical as the model
integrates the chosen term with a different but correct inflection (liquidadas Vs. liquidado).

• Homography: the integrated term is not the one in the reference, but corresponds to an homograph
in source. This error does not necessarily make the sentence nonsensical, in the example translating
a gerund driving by an infinitive verb conducir instead of a noun conducción.

• Absence: the term does not appear in the translation, with any difference of case, inflection or a form
corresponding to an homograph, which means that the model has chosen to ignore the annotation to
build its translation.
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Table 3 summarizes statistics of the error types observed in test sets. In MANY and ALREADY condi-
tions, for both generic and specialized domains, app presents the highest term use rate, higher than the
baseline and the mrk models. However, a closer look indicates that the errors made by mrk models are
mostly due to case (around 6%) and inflection (10%), errors that may not necessarily make the transla-
tion worse for the human evaluator (see examples [1] and [2] in Table 4), while most errors of app come
from its non-injection of the desired term (5%). We also verify that in the MANY condition, introducing
too many terms does not help the models to generate consistent translations as it blurs the sequence of
words in the sentence [3].

tok app mrk mrk+ tok app mrk mrk+ tok app mrk mrk+
MANY (4963 TERMS) ALREADY (546 TERMS) IMPROVE (575 TERMS)

G
en

er
ic

BLEU gain +0.13 -2.30 -1.15 -0.28 -0.39 -0.23 +0.38 +0.50 +0.71
Correct use 83 92 83 85 93 96 86 87 3 64 80 80

Case 1 1 7 7 1 1 5 5 0 1 4 3
Inflection 4 2 9 7 5 2 9 8 0 2 14 13

Homography 0 0 0 0 0 0 0 0 1 0 1 1
Absence 12 5 1 1 1 1 0 0 96 33 1 3

MANY (27744 TERMS) ALREADY (5194 TERMS) IMPROVE (5127 TERMS)

Sp
ec

ia
liz

ed

BLEU gain +1.32 -3.91 -2.56 -0.85 -1.49 -1.15 +1.25 +2.15 +2.08
Correct use 72 87 78 81 87 93 83 84 2 62 75 76

Case 3 1 6 6 3 1 5 5 0 1 9 8
Inflection 6 3 12 10 8 3 11 10 0 2 13 12

Homography 0 0 1 0 0 0 0 0 1 0 2 1
Absence 19 9 3 2 1 3 0 1 96 35 2 2

Table 3: BLEU gain and linguistic analysis of injected terms in translation (distribution in %).

Coming to the IMPROVE condition, case and inflection errors persist at a similar rate for mrk models,
but the rate of absent terms for app is growing to reach a noticeable level (34%): in all these cases, app
prefers to ignore the information about the terminology it has been given to favor its own translation [4],
sometimes identical to the baseline tok. Critically, this freedom leads app to fail injecting an irregular
verb form, making the sentence ungrammatical [5], and complete drug names, making the translation
much less secure to use [6,7]. With respect to mrk and mrk+ models, they have comparably high term
injection rates but mrk offers slightly higher BLEU in specialized domains, and more control over the
injected term: in particular for multiple-word terms, we have observed that mrk+ could erroneously
repeat part of a compound [7], but mrk, that is blind to the injected terms being single or multiple words,
can integrate both seamlessly.

6 Conclusion

Our major finding is that, in a context where the terminology introduces specialized terms that were not
already well translated by the baseline, the app model – appending terminology as inline annotations in
the source text – fails to inject terms at 34% and therefore does not guarantee the presence of expected
terms in translations. This can be highly critical in a real setting when the user wants terminology to
enforce the use of certified brands, product names, acronyms, but also business concepts, such as noun
phrases and verbs. With the constraints that ones need to curate highly detailed linguistic resources and
that the quantity of injected terms needs to be limited, the mrk models – representing expected terms by
their morphological analysis – offer further guarantee of term injection with an absence rate of only 2%:
when the exact term cannot be injected, the model usually injects a case or inflection variation that fits
the translation. Additionally, the model can handle intricate patterns that are part of a vast majority of
languages such as irregular forms, complex noun or verbal phrases, as well as multi-part and contextual
entries. In contrast with the app model, that simply learns a copy behaviour from source to target
agnostic to the context, the mrk models leverage the inner language knowledge of the neural network to
perform morphological and syntactic analysis of the source, and more seamlessly generate the target.
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[1] mrk models restore source case, different from reference
src Tacrolimus may prolong the QT interval but at this time lacks substantial evidence ...
ref Tacrolimus puede prolongar el intervalo QT , sin embargo en este momento falta evidencia sustancial ...
tok Tacrolimus puede prolongar el intervalo de QT , pero en este momento carece de pruebas sustanciales ...
app Tacrolimus puede prolongar el intervalo QT pero en este momento carece de pruebas sustanciales ...
mrk Tacrolimus puede prolongar el Intervalo QT , pero en este momento carece de pruebas sustanciales ...
mrk+ Tacrolimus puede prolongar el Intervalo QT , pero en este momento carece de pruebas sustanciales ...

[2] source term is ambiguous, no model manages to get it correct
src Tunnel device is missing , creating it has failed : stop .
ref Falta el dispositivo de túnel , falló la creación : detenido .
tok El dispositivo de túnel no está , lo que lo ha creado ha fallado : parada .
app El dispositivo de túnel no está presente , lo que lo ha fallado : la detención .
mrk Faltan dispositivos de túnel , lo que la ha fallado : detenga .
mrk+ El dispositivo de túnel falta , lo que lo ha fallado : detener .

[3] translations can become inconsistent when injected too many terms
src Increase in cholesterol and triglyceride levels , hyponatremia
ref Aumento de las concentraciones de colesterol y de triglicéridos , hiponatremia
tok Aumento de los niveles de colesterol y triglicéridos , hipoponatremia
app Aumento del colesterol y de los niveles de ataque , hiponatremia
mrk Aumento en los niveles de colesterol y de la férula , hiponatremia
mrk+ Aumentar en los niveles de colesterol y de los sistemas de retención , hiponatremia

[4] app fails to inject the correct term contrary to mrk models (but jeringa is in vocabulary)
src Keep the syringe in the outer carton in order to protect from light .
ref Mantener la jeringa en el embalaje exterior para protegerla de la luz .
tok Mantenga la aguja en el cartón exterior para protegerse de la luz .
app Mantenga la munición en el cartón exterior para proteger de la luz .
mrk Mantenga la jeringa en el cartón exterior para proteger de la luz .
mrk+ Mantenga la jeringa en el cartón exterior para proteger de la luz .

[5] app fails to correctly inflect an irregular verb (indujo is OOV)
src Tenecteplase induced total litter deaths during the mid-embryonal period .
ref La tenecteplasa indujo la muerte total de la descendencia durante el periodo embrionario medio .
tok La Tenecteplasa indució la muerte total de la basura durante el perı́odo embrionario medio .
app La Tenecteplasa indució las muertes totales de despojos durante el perı́odo de mitad embrional .
mrk La tenecteplase indujo la muerte total de la camada durante el periodo medio embrionario .
mrk+ La tenecteplasa indujo la muerte total de la camada durante el periodo de la mitad de embriones .

[6] app fails to inject a drug name (TYSABRI is OOV)
src Use of TYSABRI has been associated with an increased risk of PML .
ref El uso de TYSABRI se ha asociado a un incremento del riesgo de LMP .
tok El uso de TYSABIRON ha sido asociado con un mayor riesgo de PML .
app El uso de la TYSALine se ha asociado con un mayor riesgo de PML .
mrk El uso de TYSABRI se ha asociado con un mayor riesgo de PML .
mrk+ El uso de TYSABRI se ha asociado con un mayor riesgo de PML .

[7] app fails to inject a multi-word drug name, mrk+ repeats part of it
src - tell you when you may need to use a higher or lower dose of Insuman Infusat ,
ref - le indicará cuándo puede necesitar inyectarse una dosis más alta o más baja de Insuman Infusat .
tok - decirle cuándo puede necesitar utilizar una dosis más alta o más baja de Infusat ,
app - le indique cuándo puede necesitar utilizar una dosis mayor o menor de Infusat de Seguro ,
mrk - le informarán cuando necesite utilizar una dosis superior o inferior de Insuman Infusat ,
mrk+ - indicarle cuándo puede necesitar utilizar una dosis mayor o menor de Insuman Infusat Infusat ,

Table 4: Examples of translations with terminology injection (in bold source, in blue expected terms; in
red injection errors: case [1], inflection [2], word choice [4-7] ; in green bad translations [3, 5]).
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Bram Bulté and Arda Tezcan. 2019. Neural fuzzy repair: Integrating fuzzy matches into neural machine trans-
lation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
1800–1809, Florence, Italy, July. Association for Computational Linguistics.

Rajen Chatterjee, Matteo Negri, Marco Turchi, Marcello Federico, Lucia Specia, and Frédéric Blain. 2017. Guid-
ing neural machine translation decoding with external knowledge. In Proceedings of the Second Conference
on Machine Translation, pages 157–168, Copenhagen, Denmark, September. Association for Computational
Linguistics.

Rajen Chatterjee, Christian Federmann, Matteo Negri, and Marco Turchi. 2019. Findings of the wmt 2019 shared
task on automatic post-editing. In Proceedings of the Fourth Conference on Machine Translation (Volume 3:
Shared Task Papers, Day 2), pages 11–28.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loı̈c Barrault, and Marco Baroni. 2018. What you
can cram into a single $&!#* vector: Probing sentence embeddings for linguistic properties. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
2126–2136, Melbourne, Australia, July. Association for Computational Linguistics.

Josep Crego, Jungi Kim, Guillaume Klein, Anabel Rebollo, Kathy Yang, Jean Senellart, Egor Akhanov, Patrice
Brunelle, Aurelien Coquard, Yongchao Deng, Satoshi Enoue, Chiyo Geiss, Joshua Johanson, Ardas Khalsa,
Raoum Khiari, Byeongil Ko, Catherine Kobus, Jean Lorieux, Leidiana Martins, Dang-Chuan Nguyen, Alexan-
dra Priori, Thomas Riccardi, Natalia Segal, Christophe Servan, Cyril Tiquet, Bo Wang, Jin Yang, Dakun Zhang,
Jing Zhou, and Peter Zoldan. 2016. Systran’s pure neural machine translation systems. CoRR, abs/1610.05540.

Georgiana Dinu, Prashant Mathur, Marcello Federico, and Yaser Al-Onaizan. 2019. Training neural machine
translation to apply terminology constraints. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3063–3068, Florence, Italy, July. Association for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. 2013. A simple, fast, and effective reparameterization of IBM
model 2. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 644–648, Atlanta, Georgia, June. Association for
Computational Linguistics.

M. Amin Farajian, Marco Turchi, Matteo Negri, and Marcello Federico. 2017. Multi-domain neural machine
translation through unsupervised adaptation. In Proceedings of the Second Conference on Machine Translation,
pages 127–137, Copenhagen, Denmark, September. Association for Computational Linguistics.
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A NMT Configuration

The next table gives details of the network configuration used in our experiments:

N d dff h V batch Optimization Updates beam

6 512 2,018 8 32,000 2,048 lazy Adam 300,000 5

where N is the number of layers; d is the size of both word embeddings and hidden layers; dff is the
size of inner feed forward layer; h is the number of heads; V is the length of the joint vocabulary used;
batch is the learning batch size (in number of tokens) and beam indicates the inference beam size. For
Adam (Kingma and Ba, 2015) optimization we set warm-up steps to 4, 000 and update learning rate for
every 8 iterations. For training and inference we use a single NVIDIA P100 GPU.

B Corpora Statistics

Tables 5 and 6 respectively illustrate statistics of the different corpora used in this work15 and the number
of injected terms according to POS patterns.

Corpora are randomly split, keeping 500 sentences for validation, 2, 000 (or 8, 000) for testing and the
rest for training.

Corpora
Generic Specialized

COMM EPPS JRC NEWS ECB EMEA KDE4
Train sets (K)

Sentences 1,158 723 847 273

Words
en 21,437 14,805 19,620 6,033
es 22,889 15,283 22,125 7,107

Vocab
en 717 155 293 184
es 821 216 313 215

Test sets
Sentences 2,000 2,000 2,000 2,000 8,000 8,000 8,000

Words
en 36,557 40,731 45,267 44,619 191,316 125,843 69,752
es 39,038 42,039 50,663 52,447 214,411 141,871 78,773

Vocab
en 11,543 7,580 8,770 11,560 17,380 18,247 12,505
es 12,499 8,897 9,834 12,220 21,058 20,654 13,322

OOV
en 642 103 305 402 4,553 9,860 2,420
es 788 134 298 456 4,687 10,036 2,351

Table 5: Statistics over train/test corpora after splitting-off punctuation. Training figures are given in
thousands (K), en and es stand for English and Spanish respectively. Out-of-vocabulary words (OOV)
are computed over all Generic train corpora.

15Freely available from http://opus.nlpl.eu (Tiedemann, 2012)

http://opus.nlpl.eu
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Term type
Generic Specialized

COMM EPPS JRC NEWS ECB EMEA KDE4
Train sets

A 37,161 30,553 32,922 18,409
A-V 2,225 2,276 1,294 855
N 209,537 148,315 217,981 68,785
NNP-A 3,631 4,092 3,361 1,497
NNP-V 6,264 5,002 4,369 2,175
NP 3,561 1,808 2,176 1,452
V 31,214 19,354 16,694 9,000

Test sets (IMPROVE)
A 19 48 13 49 316 232 218
A-V - 1 - - 12 20 8
N 164 250 302 393 3,889 4,813 2,704
NNP-A 2 - 1 1 13 15 8
NNP-V - 12 2 14 373 122 239
NP 6 6 3 15 118 179 32
V 25 69 45 103 373 597 1,088

Test sets (ALREADY)
A 23 38 11 45 249 257 177
A-V - 2 - 2 9 9 17
N 154 282 276 361 4,043 4,594 2,762
NNP-A - - 3 - 71 11 12
NNP-V 1 3 - 4 181 108 250
NP 13 27 8 55 148 302 20
V 27 47 19 79 559 765 1,032

Test sets (MANY)
A 120 383 182 425 1,730 1,232 952
A-V - 20 - 3 62 43 69
N 883 2,349 3,349 3,372 25,671 21,242 14,320
NNP-A 2 - 14 4 333 59 45
NNP-V 3 32 14 63 1,265 562 1,276
NP 78 127 59 414 883 1,119 141
V 159 386 217 682 3,522 3,219 5,431

Table 6: Terminology statistics (English) according to POS patterns and data sets annotated on the
English-side of the corpora.
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