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Abstract

In recent years, parsing performance is dramatically improved on in-domain texts thanks to the
rapid progress of deep neural network models. The major challenge for current parsing research
is to improve parsing performance on out-of-domain texts that are very different from the in-
domain training data when there is only a small-scale out-domain labeled data. To deal with
this problem, we propose to improve the contextualized word representations via adversarial
learning and fine-tuning BERT processes. Concretely, we apply adversarial learning to three rep-
resentative semi-supervised domain adaption methods, i.e., direct concatenation (CON), feature
augmentation (FA), and domain embedding (DE) with two useful strategies, i.e., fused target-
domain word representations and orthogonality constraints, thus enabling to model more pure
yet effective domain-specific and domain-invariant representations. Simultaneously, we utilize a
large-scale target-domain unlabeled data to fine-tune BERT with only the language model loss,
thus obtaining reliable contextualized word representations that benefit for the cross-domain de-
pendency parsing. Experiments on a benchmark dataset show that our proposed adversarial ap-
proaches achieve consistent improvements, and fine-tuning BERT further boosts the parsing ac-
curacy by a large margin. Our single model achieves the same state-of-the-art performance as the
top submitted system in the NLPCC-2019 shared task, which uses ensemble models and BERT.

1 Introduction

Dependency parsing aims to capture syntax with a dependency tree and is proven to be helpful for
various natural language processing (NLP) tasks, such as semantic role labeling (Xia et al., 2019), natural
language generation (Park and Kang, 2019), and machine translation (Hadiwinoto and Ng, 2017). Given
an input sentence s = w1w2 . . . wn, a dependency tree, as depicted in Figure 1, is defined as d =
{(h,m, l), 0 ≤ h ≤ n, 1 ≤ m ≤ n, l ∈ L}, where (h,m, l) is a dependency from the head word wh to
the child word wm with the relation label l ∈ L, and w0 is a pseudo word that points to the root word of
the sentence.

In recent years, neural network based approaches have achieved remarkable improvement and outper-
formed the traditional discrete-feature based approaches by a large margin in dependency parsing (Chen
and Manning, 2014; Kiperwasser and Goldberg, 2016; Andor et al., 2016; Dozat and Manning, 2017).
Most remarkably, Dozat and Manning (2017) propose a simple yet effective deep BiAffine parser and
achieve the state-of-the-art accuracy on a variety of datasets and languages.

However, the domain adaptation problem, i.e., how to improve parsing performance on texts that are
very different from the training data, remains a key challenge for the parsing community, especially
when trying to apply the parsing technique to real-life web data. Taking the examples in Figure 1, we
can see that as user-generated texts, the left sentence from the product comment (PC) domain is quite
non-canonical and contains a lot of ellipsis phenomena. In contrast, the right one from the balanced
corpus (BC) domain is a typical sentence from newswire texts and is much more formal. Hence, domain
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$ 特 拉风 ， 好评 好评 好评

$ very cool , praise praise praise

root
adv punc

sasubj
sasubj sasubj

$ 会议 在 北京 举行 。

$ Meeting in Beijing was held .

root
subj

adv

pobj punc

Figure 1: Examples of dependency trees. The left sentence is from the target-domain PC data and the
right one is from the source-domain BC data.

differences can be represented with both sentence and parse tree distribution changes due to new words
and phrases, new expression structures, etc. The key for domain adaptation is how to model differences
and commonalities between different domains.

Most previous works focus on unsupervised cross-domain parsing, assuming there is no target-domain
labeled data. Typical methods include self-training (McClosky and Charniak, 2008; Yu et al., 2015) and
co-training (Sarkar, 2001). However, due to the intrinsic difficulty of domain adaptation, progress in
this direction is very slow. In the past few years, semi-supervised cross-domain parsing attracts more
attention due to the emergence of more labeled data. Particularly, Li et al. (2019b) release large-scale
labeled and unlabeled datasets, and they find that their proposed domain embedding (DE) approach is
more effective than the direct concatenation (CON) method. The feature augmentation (FA) method, as
another typical technique for semi-supervised domain adaptation, is first proposed by Daumé III (2007).
Kim et al. (2016) successfully apply it to a neural model which leverages multiple BiLSTMs to extract
shared and private domain features. To learn the differences and commonalities between source and
target domains, the DE method uses explicit domain indicators as extra inputs, whereas the FA method
employs a shared and two private BiLSTM encoders for the feature separation.

This work proposes to improve the contextualized word representation by adversarial learning and
fine-tuning BERT, thus further modeling more pure yet effective domain-specific and domain-invariant
representations. To alleviate the domain-invariant representations from being contaminated by domain-
specific ones, we apply adversarial learning to enhance three typical semi-supervised approaches, i.e.,
CON, FA, and DE with two useful strategies, i.e., fused target-domain word representations and orthog-
onality constraints. At the same time, we utilize a large-scale target-domain unlabeled data to fine-tune
BERT and obtain more reliable contextualized word representations, leading to a large improvement
over using off-the-shelf BERT representations. Our final single model achieves nearly the same state-of-
the-art performance as the ensemble models with BERT of Li et al. (2019c), which won the first place
in the cross-domain parsing shared task recently organized at the international conference on natural
language processing and Chinese computing (NLPCC-2019). Although we focus on semi-supervised
domain adaptation for dependency parsing, the techniques and findings may be applicable to domain
adaptation for other NLP tasks. All codes are released publicly available for the research purpose 1.

2 Base Model

In this work, we select the state-of-the-art BiAffine parser as our strong baseline model. As shown in the
left part of Figure 2, the parser mainly contains four components: Input layer, BiLSTM encoder, MLP
layer, and BiAffine layer.

Input layer. Given an input sentence s = w0w1 . . . wn, the input layer directly maps it into vector
representations x0x1 . . .xn. Each vector representation xi is the concatenation of its word and POS-tag
embeddings:

xi = embwordwi
⊕ embtagti

(1)

where embwordwi
is the sum of a fixed word2vec representation and a fine-tuned word embedding.

1https://github.com/suda-yingli/COLING2020-adv
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Input Layer: x0x1 . . .xn

BiLSTM Encoder: h0h1 . . .hn

hi hj

xi xj
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Inputs: . . .xi . . .

BiLSTMs

GRL

Domain Classifier

MLPs

Biaffines

Figure 2: The left part is the framework of BiAffine parser, and the right is the framework of adversarial
CON model.

embtagti
is a fine-tuned POS-tag embedding. Additionally, we also enhance model performance by

replacing the word embedding emb word
wi

with its BERT representation repBERTwi
.

BiLSTM encoder. The BiLSTM encoder takes x0x1...xn as inputs and obtains context-aware word
representations h0h1...hn. First, a three-layer BiLSTM is applied to sequentially encode the input words
from forward and backward two directions. Then, the two sequences of hidden states are obtained,
represented as

−→
h 0
−→
h 1...

−→
h n and

←−
h 0
←−
h 1...

←−
h n. Finally, we concatenate

−→
h i and

←−
h i at each step as the

final hidden states hi. We omit the detailed computation of BiLSTM encoder and write it as follows:

h0h1 . . .hn = BiLSTM(x0x1 . . .xn, θBiLSTM) (2)

where the θBiLSTM represents all the parameters of the BiLSTM encoder.
MLP (multi-layer perceptron) layer. The MLP layer takes hi as input and uses two separate MLPs

to get two lower-dimensional representation vectors.

rH
i = MLPH (hi)

rD
i = MLPD (hi)

(3)

where rHi is the representation vector of wi as a head word, and rDi as a dependent, and MLPH/D both
have a single hidden layer with the ReLU activation function.

BiAffine layer. The scores of all dependencies are computed via a BiAffine operation,

score(i← j) =

[
rDi
1

]T
WbrHj (4)

where score(i ← j) is the score of the dependency (j, i) and the matrix Wb is a BiAffine parameter.
The arc-factorization score of a dependency tree is computed with extra MLPs, which can be seen in
Dozat and Manning (2017). After obtaining the scores, the highest-scoring tree can be decoded with the
dynamic programming algorithm known as maximum spanning tree (McDonald et al., 2005).

Parser loss. Assuming wj is the gold-standard head of wi, the BiAffine parser loss for each position
i is

Lparser = − log
escore(i←j)∑

0≤k≤n,k 6=i
escore(i←k)

(5)

The BiAffine parser treats the classification of dependency labels as a separate task after finding the
highest-scoring dependency tree.
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3 Approaches

In this work, we propose to improve contextualized word representations by adversarial learning and
fine-tuning BERT processes to boost the performance of cross-domain dependency parsing. Concretely,
we apply adversarial learning to three typical semi-supervised approaches with two useful strategies,
thus obtaining more pure word representations. Simultaneously, we propose to fine-tune BERT with all
target-domain unlabeled data to obtain more reliable word representations.

3.1 The Adversarial CON Method
The CON method is the most common technique for semi-supervised cross-domain dependency parsing,
which ignores domain differences and directly trains the BiAffine parser with all source- and target-
domain labeled data. To capture the domain-invariant information that is not special to a particular
domain as much as possible, we employ an adversarial network on BiAffine parser, which is shown in
the right of Figure 2.

Following Ganin and Lempitsky (2015), we use a Gradient Reversal Layer (GRL) for adversarial
learning to prevent the domain classifier from making an accurate prediction about the domain types of
the word. First, the inputs from different domains are parameterized by the same BiLSTM, and its output
hi is used for adversarial learning and dependency parsing. For adversarial learning, the GRL takes hi
as its input, and the forward and backward propagations of the GRL are defined as follows:

GRLλ(hi) = hi

dGRLλ(hi)
d(hi)

= −λI
(6)

where λ is a hyper-parameter. Over the GRL, the domain classifier utilizes an MLP to compute the
domain scores and a softmax to obtain the probabilities of domain distribution for each word wi,

zi = softmax (W2ReLU(W1hi + b1) + b2) (7)

where θd = {W1,W2, b1, b2} denotes the parameters of domain classifier. The adversarial network is
trained to minimise the cross-entropy of the predicted and true distributions,

Ladv =
n∑
i=0

m∑
j=1

ẑi log (z
j
i ) (8)

where ẑi is the gold domain of word wi, z
j
i represents the predicted probability of word wi belonging to

domain j, n is the word number of one sentence, and m is the domain number. Finally, the adversarial
CON model is jointly trained with parser and adversary losses, where α is a hyper-parameter to balance
the parsing and adversarial learning tasks.

L∗con = Lparser + αLadv (9)

3.2 The Adversarial FA Method
The FA method is another popular technique for domain adaptation, which applies a shared and m
private BiLSTMs to learn domain-invariant and domain-specific features (Kim et al., 2016). To alleviate
the shared and private latent feature spaces from interfering with each other, we apply the adversarial
learning to the FA model with two useful strategies, i.e., fused target-domain word representations and
orthogonality constraints.

As shown in the left of Figure 3, we employ a shared and two private BiLSTM encoders for feature
separation. First, the input xi is fed into a shared BiLSTM and its corresponding private BiLSTM, thus
obtaining domain-invariant representation hinvi and domain-specific one hspei . Then, we employ two
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Inputs: . . .xi . . .

BiLSTMs (inv) BiLSTMs (tgt/src)

GRL

Domain Classifier

MLPs

Biaffines

Inputs: . . .xi . . . . . .xi ⊕ embdom
i . . .

BiLSTMs (inv) BiLSTMs (spe)

GRL

Domain Classifier

MLPs

Biaffines

Figure 3: The left is the framework of adversarial FA model, and the right is the adversarial DE model.

useful strategies to prevent the domain-invariant representations from being contaminated by domain-
specific features.

Fused target-domain word representations. Due to the lack of target-domain labeled data, the
parameters of the target-domain private BiLSTM encoder may not be fully optimized. Hence, we employ
the fused BiLSTM outputs as the final domain-specific representations hspei when the input word is from
the target domain. Otherwise, we keep the raw private BiLSTM outputs as hspei .

hspei =

{
γhsrci + (1− γ)htgti , if wi ∈ {target domain}
hsrci , if wi ∈ {source domain}

(10)

where hsrci and htgti are the outputs of source- and target-domain private BiLSTMs.
Orthogonality constraints. Following Bousmalis et al. (2016), we encourage the domain-specific

features to be mutually exclusive with the shared features by imposing the orthogonality constraints. The
loss of orthogonality constraints is computed as follows:

Lort =
n∑
i=0

∥∥(hinvi )Thspei

∥∥ (11)

We then use the combination of hinvi and hspei as final contextualized word representations h
′
i for the

dependency parsing, while hinvi is used for adversarial learning to make the shared space more pure.
Finally, our adversarial FA model is jointly trained with the total loss L∗fa, which is defined as follows:

L∗fa = Lparser + αLadv + βLort (12)

where α and β are hyper-parameters.

3.3 The Adversarial DE Method
The DE method is recently proposed by Li et al. (2019b), which trains the BiAffine parser by concate-
nating the primary input vector xi and a fine-tuned domain embedding embdomdi

as the new input x
′
i.

x
′
i = xi ⊕ embdomdi

(13)

Since embdomdi
enables to explicitly represent which domain the input comes from and the adversarial

learning is helpful to detect domain-invariant knowledge, we propose a novel adversarial DE method for
effective feature separation.

As shown in the right of Figure 3, we employ two independent BiLSTM encoders to capture domain-
specific and domain-invariant features by the utilization of domain embedding and adversarial learning.
Concretely, a BiLSTM takes xi as the input and its output hinvi is fed into the GRL for the adver-
sarial learning. Simultaneously, the other BiLSTM uses x

′
i as the input and obtains the output hspei .
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Dataset BC PC PB ZX
train 16,339 6,885 5,129 1,645
dev 997 1,300 1,300 500
test 1,992 2,600 2,600 1,100

unlabeled - 349,922 291,481 33,792

Table 1: Data statistics in sentence number

Then, we concatenate hinvi and hspei as the final contextualized word representation h
′
i, which is used

for dependency parsing by shared MLP and biaffine operations. In addition, the orthogonality loss is
used to divergent the domain-specific and domain-invariant representations. Finally, the entire model is
optimized by a joint loss, which is the same defined as L∗fa.

3.4 Fine-tuning BERT with All Target-domain Unlabeled Data
Recently proposed contextualized word representations, such as ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2018) can further improve parsing performance by a large margin (Clark et al., 2018; Li
et al., 2019a). Remarkably, BERT has been proven effective on a variety of natural language processing
tasks (Devlin et al., 2019). Recently, researchers pay more attention to updating BERT representations
with additional corpus and achieve great progress on BERT applications (Gururangan et al., 2020). Mo-
tivated by the successful utilization of BERT and BERT’s strong capability of word representations, we
propose to fine-tune BERT model parameters with all unlabeled data to obtain more reliable representa-
tions.

First, we use the released Chinese BERT-Based model as the original BERT model.2 Then, we fine-
tune BERT on the unlabeled data using the parameters in the original BERT model as the starting point.
To save computational resource, we merge all train/unlabeled data of all domains as one unlabeled dataset
for fine-tuning BERT once. Thus, the same fine-tuned BERT model is used for all three-target domains.
Since the product comment (PC) and product blog (PB) data are user-generated independent sentences
without context information, we remove the next sentence loss and tune the BERT model parameters
with only language model loss. Following Li et al. (2019a), we train all BERT-enhanced models by
replacing the pre-trained word embedding embwordwi

with the fixed BERT representation repBERTwi
. For

repBERTwi
, we first compute the mean value of the 4-top layer BERT outputs, and then a linear map is used

to reduce the high dimensional outputs into a low dimensional vector.

4 Experiments

Datasets. We use the Chinese multi-domain dependency parsing datasets released at the NLPCC-2019
shared task3, containing four domains: one source domain which is a balanced corpus (BC) from news-
wire, three target domains which are the product comments (PC) data from Taobao, the product blog (PB)
data from Taobao headline, and a web fiction data named “ZhuXian” (ZX). The detailed data statistics
are shown in Table 1.

Evaluation. We use unlabeled attachment score (UAS) and labeled attachment score (LAS) to evalu-
ate the dependency parsing accuracy. Each parser is trained for at most 1000 iterations, and the perfor-
mance is evaluated on the dev data after each iteration for model selection. We stop the training if the
peak performance does not increase in 100 consecutive iterations.

Hyper-parameters. We follow the hyper-parameter settings of Dozat and Manning (2017), such as
learning rate and dropout ratios. The loss weights α and β are set to 0.001. The GRL hyper-parameter λ
is 10−5. For pre-trained word embeddings, we train word2vec embeddings on Chinese Gigaword Third
Edition (Mikolov et al., 2013), consisting of about 1.2 million sentences.

4.1 Single-domain Training
Table 2 presents the parsing accuracy on dev data when each parser is trained on a single-domain training
data. First, although PC-train is much smaller than BC-train, the PC-trained parser outperforms the BC-

2https://github.com/google-research/bert
3http://hlt.suda.edu.cn/index.php/Nlpcc-2019-shared-task
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Trained on BC PC PB ZX
BC-train 75.16 28.16 60.95 64.93
PC-train 48.79 58.21 54.82 43.37
PB-train 60.32 31.22 72.41 51.58
ZX-train 56.33 20.44 49.82 69.74

Table 2: Performance (LAS) on dev data of each parser trained on a single-domain training data.

PC PB ZX AVG
UAS LAS UAS LAS UAS LAS UAS LAS

Non-adversarial Models
CON 68.54 60.22 79.55 74.60 80.92 76.15 76.34 70.32
FA 68.58 60.46 78.86 73.34 79.72 75.15 75.72 69.65
DE 68.12 59.83 79.81 74.89 80.84 75.95 76.26 70.22

Adversarial Models
CON 68.37 59.85 79.96 74.94 80.52 76.19 76.28 70.33
FA 69.18 61.11 80.28 74.96 81.24 76.59 76.90 70.88
w/o Ort 69.01 60.98 79.24 74.09 79.40 74.59 75.88 69.89
w/o Fused 69.04 60.72 79.47 74.33 79.56 74.51 76.02 69.85
w/o Fused & Ort 69.10 60.79 78.86 73.34 78.36 73.79 75.44 69.31
DE 69.35 60.37 80.31 75.21 81.12 76.71 76.93 70.76
w/o Ort 68.74 60.00 79.93 75.03 80.68 75.95 76.45 70.33

Table 3: Results of non-adversarial and adversarial models on dev data. The “w/o Fused” indicates
the adversarial model removing the fused target-domain feature representations and “w/o Ort” means
training the adversarial models without the orthogonality constraint loss.

trained parser by about 30%, indicating that the target-domain labeled data is useful and important to
train a parser specially when there is a large divergence between two domains. Second, the gap between
PB-trained and BC-trained parsers is about 11% while the scale of PB-train and PC-train is very close,
demonstrating that PB-train is much similar with BC-train. Third, the accuracy of ZX-trained parser
is about 5% higher than the BC-trained one. The reason may be that the BC-train data are from the
newswire which may contain novels. Overall, the results clearly demonstrate that the model easily
achieves good performance when the training and testing data are from the same domain.

4.2 Combining Two Training Datasets

We first train the three representative non-adversarial models with the combination of source- and target-
domain data. Then, we conduct detailed ablation study on adversarial models to gain in-depth insight
about the effect of different model components.

Results of non-adversarial models. As shown in the top block of Table 3, we can see that CON
obviously outperforms FA on PB and ZX domains, but underperforms on the PC domain, demonstrating
that the FA approach performs well only when there is a large difference between source and target do-
mains. In addition, we find that the DE model achieves nearly the same accuracy as the CON, indicating
that both domain-invariant features in the CON model and domain-specific features in the DE model are
equally important for cross-domain dependency parsing.

Results of adversarial models. The results of comparison experiments on adversarial approaches
are shown in the bottom block of Table 3. First, we can see that directly applying adversarial network
on non-adversarial models even slightly reduces the model performance specially on the CON and FA.
The reason may be that the target-domain related parameters are trained inadequately with only a small-
scale labeled data. Second, the utilization of the fused word representation and orthogonality constraints
enables to obviously enhance the performance of the vallina adversarial models, indicating that the two
strategies are helpful for feature separation representations. Finally, we find that our proposed adversarial
models consistently outperform the non-adversarial ones, demonstrating that pure word representation is
an effective knowledge to improve the accuracy of cross-domain dependency parsing.
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PC PB ZX AVG PC PB ZX AVG
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Non-adversarial Models with BERT Adversarial Models with BERT

CON 73.75 66.40 84.40 80.29 86.13 82.08 81.43 76.26 73.65 66.60 84.46 80.66 86.33 82.29 81.48 76.52
FA 72.77 65.03 83.66 79.50 84.45 80.44 80.29 74.99 74.20 66.86 84.64 80.40 86.05 82.08 81.63 76.45
DE 73.66 66.01 84.38 80.31 86.45 82.20 81.50 76.17 73.51 66.27 84.85 80.81 86.97 83.13 81.78 76.74

Non-adversarial Models with Fine-tuned BERT Adversarial Models with Fine-tuned BERT

CON 74.98 67.20 84.78 80.79 86.57 82.89 82.11 76.96 74.88 67.38 84.96 81.10 87.01 83.12 82.28 77.20
FA 74.01 66.94 83.98 79.73 85.53 81.72 81.17 76.13 74.90 68.16 85.20 81.00 86.65 82.91 82.25 77.36
DE 74.94 67.64 84.90 80.93 87.05 83.25 82.30 77.27 75.63 68.68 85.05 81.12 87.50 83.81 82.73 77.87

Table 4: Results of different models on dev data regarding the utilization of BERT.

PC PB ZX AVG
UAS LAS UAS LAS UAS LAS UAS LAS

Yu et al. (2019)* 72.18 64.12 82.57 77.83 80.53 75.84 78.43 72.60
Peng et al. (2019)E 73.16 64.33 83.05 78.57 82.09 77.08 79.43 73.33
Li et al. (2019)*B 75.25 67.77 85.53 81.51 86.14 81.65 82.30 76.98

Non-adversarial models
CON 68.93 60.25 79.02 74.24 78.32 73.25 75.42 69.25
FA 69.33 60.66 78.93 73.96 77.93 72.90 75.40 69.17
DE 69.39 61.08 79.04 74.26 78.54 73.71 75.66 69.68
DEB 73.92 66.20 84.43 80.38 85.02 81.03 81.12 75.87
DEFB 75.08 67.04 84.87 80.85 85.60 81.45 81.85 76.45

Adversarial models
CON 69.57 61.04 79.12 74.25 78.70 73.55 75.80 69.61
FA 70.74 62.33 79.26 74.46 79.01 74.32 76.34 70.37
DE 70.31 61.45 79.26 74.34 79.11 74.46 76.23 70.08
DEB 74.58 66.86 84.77 80.62 85.22 80.98 81.52 76.15
DEFB 75.93 68.34 85.07 80.99 85.94 81.45 82.31 76.93

Table 5: Final results on test data. With the limited length of the page, we use “*” to denote “ensemble
models”, “E” to denote “model with ELMo”, “B” to denote “model with BERT”, and “FB” to denote
“model with fine-tuning BERT”.

4.3 Utilization of Unlabeled Dataset

In order to obtain more reliable domain-related word representations that benefit for cross-domain de-
pendency parsing, we exploit the large-scale target-domain unlabeled data to fine-tune BERT model
parameters. Detailed comparative experiments are conducted to verify the effectiveness of fine-tuned
BERT representations, and the results are shown in Table 4. First, we find that BERT as deep and con-
textualized word representation has a strong representational capacity and achieve higher performances
among all models. Second, we can see that fine-tuning BERT with unlabeled data can significantly im-
prove the performances of both adversarial and non-adversarial models, demonstrating that BERT can
learn domain-related knowledge and produce more reliable contextualized word representations by fine-
tuning operation. Third, the performance gaps between all BERT-enhanced models reduces sharply, but
the adversarial models still consistently improve the accuracy of non-adversarial ones, indicating adver-
sarial learning and fine-tuning BERT are complementary for word representations that can benefit from
each other. Overall, we find that fine-tuning BERT is an effective method to leverage unlabeled data and
the adversarial learning is still useful on BERT-enhanced models.

4.4 Final Results

Table 5 shows the final results and makes a comparison with previous works on test data. We report
the parsing accuracy of our baseline models in the second block and our proposed adversarial models
in the last block. First, comparing the results on the two blocks, we can clearly see that all adversarial
models outperform the non-adversarial ones, indicating that adversarial learning is helpful to detect pure
yet effective domain-invariant and domain-specific representations. Second, the utilization of BERT can
improve the accuracy of both non-adversarial and adversarial models by a large margin, and the fine-
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tuned BERT enables to further enhance parsing performances. The reason may be that fine-tuning BERT
with a large-scale target-domain unlabeled data is extremely useful to learn more reliable word represen-
tations. Finally and foremost, although the baseline becomes much stronger with fine-tuned BERT, our
proposed adversarial approach still achieves higher performance, demonstrating the adversarial learning
and fine-tuning BERT are complementary and mutual benefit for word representations.

We also give the main results newly submitted at NLPCC-2019 shared task in the top block of Table
5. Yu et al. (2019) attempt to combine the power of self-training and ensemble models to improve the
model performance. Peng et al. (2019) re-implement the DE method to learn explicit domain informa-
tion and further improve the parsing accuracy with ELMo. Li et al. (2019c) directly update the BERT
representations by the parsing loss, and tri-training is used to augment the target domain training data.
Our final single model achieves nearly the same performance as the top submitted system at the shared
task (Li et al., 2019c) without the complex model ensemble process.

5 Related Work

Domain adaptation has been a long-standing yet challenging research topic. Here we try to briefly
summarize the representative approaches for both unsupervised and semi-supervised domain adaptation.

5.1 Unsupervised Domain Adaptation

Due to the lack of target-domain labeled data, previous researches mostly focus on the unsupervised
domain adaptation. Self-training is a simple method to incorporate unlabeled data into the new model,
which first annotates the unlabeled data with the existing model, and then train a new model with the
combination of newly generated data and actual labeled data (Yarowsky, 1995). As a typical unsuper-
vised approach, self-training has proven effective on cross-domain constituency parsing (McClosky et al.,
2006) and dependency parsing (Yu et al., 2015), but there are also many failed works. Charniak (1997)
reports either minor improvements or significant damage for parsing by using self-training. Clark et
al. (2003) show the same findings on POS-tagging task. Co-training is another way to utilize the un-
labeled data (Blum and Mitchell, 1998). It leverages multiple learners to annotate the unlabeled data
respectively, and then arguments the training data with the newly labeled data when multiple learners
agree on the annotation labels. Sarkar (2001) and Steedman et al. (2003) demonstrate that co-training is
helpful for unsupervised cross-domain parsing. However, it still is a challenge to select the appropriate
labeled data for self-training and co-training.

5.2 Semi-supervised Domain Adaptation

Semi-supervised domain adaptation assumes the model is trained with all source- and target-domain
labeled data. Most recently, Li et al. (2019c) and Yu et al. (2019) reveal that newly generated target-
domain data by self-training or tri-training and model ensemble can improve the cross-domain parsing
performance significantly. The model ensemble method is a commonly used strategy to integrate different
parsing models in dependency parsing (Nivre and McDonald, 2008). However, all these approaches
require to retrain parser repeatedly, making them difficult for practical applications.

Daumé III (2007) for the first time proposes the FA method on sequence labeling task, which dis-
tinguishes domain-specific and domain-invariant with different feature extractors. Kim et al. (2016)
successfully employ the FA technique on neural network, which uses a shared and m private BiLSTM
encoders for feature separation. As another direction, Li et al. (2019b) propose to utilize an extra domain
embedding to indicate the domain information of the input word, and they find that the parsing accuracy
of the DE model is obviously higher than other semi-supervised approaches.

The adversarial learning is a commonly used strategy to extract pure domain-invariant representations
that does not belong to a particular domain as much as possible (Goodfellow et al., 2014; Bousmalis et
al., 2016; Kim et al., 2017; Britz et al., 2017; Cao et al., 2018; Guo et al., 2018; Zeng et al., 2018;
Adams et al., 2019). Most relevantly, Sato et al. (2017) employ adversarial network to the FA and CON
methods, finding that there is little gains and even damage the performance, specially when the scale of
target-domain labeled training data is small. Motivated by these works, we apply adversarial learning on



3815

three typical semi-supervised domain adaptation, i.e., CON, FA, and DE with two useful strategies, i.e.,
fused target-domain word representation and orthogonality constraints to detect more pure yet effective
word representations, thus further boosting the performance of cross-domain dependency parsing.

6 Conclusions

This work successfully exploits adversarial learning and fine-tuning BERT to model pure yet effective
word representations that benefit for the cross-domain dependency parsing. We have demonstrated the
effectiveness of adversarial learning and fine-tuning BERT by applying them to three representative semi-
supervised approaches. Experimental results show that our proposed adversarial approaches achieve
consistent improvement, and fine-tuning BERT further boosts parsing accuracy by a large margin. The
detailed comparison experiments demonstrate that both the fused target-domain word representation and
orthogonality loss are useful for adversarial models to alleviate the domain-invariant representations
from being contaminated by domain-specific ones. The analysis on the utilization of BERT indicates
that the fine-tuning BERT with the target-domain unlabeled data encourages BERT to learn more reliable
contextualized word representations, leading to a large improvement over using off-the-shelf BERT on
both non-adversarial and adversarial models.
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