
Proceedings of the 28th International Conference on Computational Linguistics, pages 3558–3568
Barcelona, Spain (Online), December 8-13, 2020

3558

Automatic Discovery of Heterogeneous Machine Learning Pipelines:
An Application to Natural Language Processing

Suilan Estevez-Velarde1, Yoan Gutiérrez2,3,
Andrés Montoyo2,3, and Yudivián Almeida-Cruz1

1School of Math and Computer Science, University of Havana, Cuba
{sestevez,yudy}@matcom.uh.cu

2University Institute for Computing Research (IUII), University of Alicante, Spain
3Department of Languages and Computing Systems, University of Alicante, Spain

{ygutierrez,montoyo}@dlsi.ua.es

Abstract

This paper presents AutoGOAL, a system for automatic machine learning (AutoML) that uses
heterogeneous techniques. In contrast with existing AutoML approaches, our contribution can
automatically build machine learning pipelines that combine techniques and algorithms from
different frameworks, including shallow classifiers, natural language processing tools, and neural
networks. We define the heterogeneous AutoML optimization problem as the search for the best
sequence of algorithms that transforms specific input data into the desired output. This provides a
novel theoretical and practical approach to AutoML. Our proposal is experimentally evaluated
in diverse machine learning problems and compared with alternative approaches, showing that
it is competitive with other AutoML alternatives in standard benchmarks. Furthermore, it can
be applied to novel scenarios, such as several NLP tasks, where existing alternatives cannot be
directly deployed. The system is freely available and includes in-built compatibility with a large
number of popular machine learning frameworks, which makes our approach useful for solving
practical problems with relative ease and effort.

1 Introduction

The continued development of new machine learning algorithms and techniques, and the widely available
tools and datasets have brought new opportunities and challenges for researchers and practitioners in
both academia and industry. Selecting the best possible strategy to solve a machine learning problem is
increasingly difficult partly because it requires long experimentation times and deep technical knowledge.
In this scenario, Automatic Machine Learning (AutoML) has risen to prominence as it provides tools
based on specific technologies to efficiently search large spaces of machine learning pipelines, such
as Auto-Weka (Thornton et al., 2013), Auto-Sklearn (Feurer et al., 2015) and Auto-Keras (Jin et al.,
2018). However, practical problems often require combining and comparing heterogeneous algorithms
implemented with different underlying technologies. Natural language processing is one scenario where
the space of possible techniques to apply varies widely between different tasks, from preprocessing to
representation and actual classification. Performing AutoML in an heterogeneous scenario like this is
complex because the necessary solution could comprise non-compatible tools and libraries. This would
require all algorithms to agree on a common protocol that enables the output of an algorithm to be shared
as inputs to any other.

Table 1 contrasts several existing AutoML systems with the system proposed in this research in terms
of their capabilities of dealing with heterogeneous scenarios. This evaluation does not attempt to compare
AutoML systems in terms of their overall performance, capacity or applicability, but rather with respect to
the specific issue of dealing with multiple, heterogeneous algorithms directly. Several popular AutoML
systems are based on specific machine learning libraries, such as Auto-Sklearn (Feurer et al., 2015),
Auto-Weka (Thornton et al., 2013) and Auto-Keras (Jin et al., 2018), which restrict their use to the
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1 Supports multiple libraries ≈ X X ≈ X X
2 Models different ML problems X X X X X
3 Probabilistic space description X X X X X
4 Automatically extensible by design X X X X X
5 Automatic pipeline discovery X

6 Year 2015 2013 2017 2018 2016 2018 2014 2019 2020

Table 1: Comparison of several existing AutoML systems with our proposal (AutoGOAL) in terms of their
capabilities of dealing with heterogeneous machine learning problems. Entries marked with ≈ indicate
that the system’s design enables the given capability but it is not implemented.

scenarios for which the underlying libraries are designed (e.g., supervised learning in the case of Auto-
Sklearn). Other approaches such as RECIPE (de Sá et al., 2017) and Hyperopt (Komer et al., 2014) have
extensible designs, which in principle allow them to include any machine learning library, but their current
implementations are based on specific technologies. On the other hand, systems like TPOT (Olson and
Moore, 2016), ML-Plan (Mohr et al., 2018) and HML-Opt (Estévez-Velarde et al., 2020) do provide
concrete implementations of machine learning pipelines spanning more than one machine learning library.

Besides supporting multiple libraries, several AutoML systems can be extended to deal with more
than one type of machine learning problem, given suitable evaluation metrics. As an example, Hyperot
is a general-purpose hyperparameter tuning system which provides low-level building blocks that can
be tailored to any machine learning pipeline. However, most of the systems that provide this level of
flexibility require a large degree of customization and do not support an automatic discovery of the relevant
pipelines for a given problem. This flexibility also comes with a price in terms of extensibility. Systems
such as Auto-Sklearn and Auto-Keras benefit from a unified underlying API. This allows researchers to
extend the capabilities of the AutoML system simply by extending the underlying API, without actually
dealing with implementation details of the AutoML system itself. In contrast, more flexible systems like
RECIPE and HML-Opt, both based on context-free grammars to describe the space of possible pipelines,
require that researchers modify their internal grammars to add new algorithms.

Another interesting feature for this research is the use of probabilistic models for describing the space
of possible pipelines. AutoML systems based on bayesian optimization (e.g., Auto-Sklearn, Auto-Weka)
or probabilistic evolutionary optimization (e.g., HML-Opt) construct an internal representation of the
pipeline space that can be interpreted as assigning a probability distribution to every pipeline. These
systems do not necessarily allow their internal models to be easily accessed. However, this feature could
be useful in itself as a description of the pipeline space for researchers to gather additional insights by
analyzing which regions of this space have higher o lower probabilities.

Based on the previous considerations, this research focuses on the design of an AutoML system that
allows a large degree of extensibility, incorporating algorithms from any underlying machine learning
library. At the same time, the system defines a unified protocol that enables automatic pipeline discovery
without requiring user intervention.

Concretely, we propose AutoGOAL, a system for heterogeneous AutoML in which the user describes
the input and output of a specific machine problem as well as a performance metric, and the system
automatically finds the best (or close to best) pipeline of algorithms that solves the problem. This system
can deal with different machine learning problems by concatenating and composing algorithms from
several libraries, such as Scikit-learn, NLTK, Keras, and Gensim. It is also flexible, allowing the
user to introduce new algorithms that seamlessly and automatically integrate within the existing pipelines.
This is achieved by defining a schema that involves a set of semantic data types and a common protocol
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that all algorithms implement, allowing their intercommunication.
The most important contributions of this research are:

• We describe a system for Automatic Machine Learning (AutoML) that seamlessly combines hetero-
geneous technologies and can be applied to a wide variety of machine learning scenarios.

• We propose an extensible and modular design, based on type annotations, that allows the valid
pipelines for a given problem to be automatically discovered by providing only the desired input and
output types.

• Our approach is competitive with state-of-the-art AutoML systems in standard benchmarks, and can
be deployed in novel scenarios that cannot be dealt with by alternative approaches unless considerable
customization is implemented, specifically regarding natural language processing tasks.

• AutoGOAL is available as a Python library with pre-packaged implementations of over 100 algo-
rithms from popular machine learning frameworks1.

This rest of the paper is organized as follows. Section 2 presents a formal definition of the heterogeneous
AutoML problem that this paper addresses. Section 3 presents our main contribution, highlighting the
key design decisions and important technical details. In Section 4, we present three experimental case
studies in diverse machine learning problems to illustrate the flexibility of our system when dealing with
heterogeneous scenarios. Finally, Section 5 discusses the most relevant insights and Section 6 presents the
main conclusions of the research.

2 Problem Statement

In this section, we formally define the problem of Heterogeneous AutoML that this paper addresses. Our
definition includes not only supervised learning problems, but more general scenarios including paradigms
such as unsupervised learning, information retrieval, etc.

We consider A as the space of all “atomic” machine learning algorithms, i.e., specific techniques such
as logistic regression, k-means, or tf-idf representation, which can intervene in any machine learning
process. An algorithm a ∈ A is represented for this purpose as a function a : Tin → Tout that maps
inputs x ∈ Tin to corresponding outputs in Tout. Ti are all the possible types of data that machine learning
algorithms deal with, e.g., natural language text, embedding vectors, categories, word stems, etc. For
example, tokenization algorithms can be seen as any a : Tin → Tout ∈ A such that Tin is Sentence
and Tout is List[Word], where these names have a semantic interpretation that corresponds to their
usual usage in machine learning.

We define S as the space of all possible “pipelines”, i.e., sequences of algorithms from A. A pipeline
p =< a1, . . . , an >∈ S can thus be seen as a special case of algorithm that applies each a(i) sequentially
to the output of the previous algorithm, or formally as the composition of the corresponding algorithms,
i.e., p(x) = an(an−1(. . . a1(x) . . .)). It follows that p has input T 1

in and output Tn
out. Not all possible

algorithms can be combined sequentially, but only those ai y aj such that their corresponding output and
input types are compatible, e.g., T i

out = T j
in. In general we can define a partial ordering function Ti ≤ Tj

that captures the notion of “compatible” types. Let S′ be the space of all “valid” pipelines in the previous
sense.

To select the best pipeline we require a metric ϕ(p) : p ∈ S′ that can evaluate each pipeline and allows
the comparison of any two valid pipelines. Finally, we define the problem of Heterogeneous AutoML
as the optimization problem of finding the best pipeline (given an arbitrary ϕ) that transforms a specific
input x ∈ T ∗in to a desired y ∈ T ∗out. Formally:

argmax {ϕ(p) | p ∈ S′ }
s.t: p : T ∗in → T ∗out

1https://autogoal.github.io
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Figure 1: The automatic pipeline discovery process, given specific (example) inputs and outputs. Algo-
rithms and type names are only for illustrative purposes. The current version of AutoGOAL contains 133
algorithm wrappers from 7 different machine learning frameworks, and 26 semantic data type definitions.

This definition applies directly to supervised and unsupervised learning scenarios. In supervised
learning, the input will consist of some data in feature space (e.g., documents, images, numerical features)
plus a prediction target (e.g., a vector of classes or values to perform regression). In unsupervised learning
only the features data is assumed as input. In both cases, the output consists of some prediction target,
e.g., classes for supervised learning and cluster labels for unsupervised learning.

3 Computational Implementation

The Heterogeneous AutoML problem can be computationally represented as a graph GA where all
known algorithms ai are nodes, and edges exist between all pairs ai, aj such that T i

out ≤ T
j
in, i.e., their

corresponding output and input types are compatible. To solve the optimization problem, we insert two
nodes in this graph, Input and Output, connected correspondingly to all algorithms compatible with the
specific input T ∗in and all algorithms that output the desired T ∗out. A pipeline that solves our problem is
any path in GA between Input and Output.

A suitable computational implementation of this process requires solving the following problems:

• Defining each algorithm, and their respective input and output, such that it is computationally feasible
to determine if two algorithms can be connected, and constructing the graph.

• Designing an optimization strategy that can effectively search in the space of all pipelines, algorithms
and their hyperparameters, given restricted computational resources.

This research proposes a theoretical solution to the aforementioned problems, and a concrete com-
putational implementation in the Python programming language, i.e., the AutoGOAL library. Figure 1
illustrates one key design idea of AutoGOAL, i.e., the automatic discovery of machine learning pipelines
in a graph of heterogeneous algorithms.

3.1 Component Definition
As explained in Section 2, an algorithm is represented as a function that transforms a given input of type
Tin to an output of type Tout. The computational representation of the possible data types consists of a
class hierarchy in which object inheritance directly represents the ≤ relation for type compatibility. The
data types have a semantic interpretation beyond their underlying computational structure. For example, a
string in computational terms can either be a Document, a Sentence or a Word. At the moment
of writing, 26 distinct semantic data types are defined, including several types for natural language data,
such as tokens and word stems, and several types that represent tensorial data with different semantic
interpretations2. These semantic data types power the mechanism for automatic pipeline discovery.

Each algorithm is implemented as a class with a run(input:Tin) -> Tout method that performs
the corresponding processing, potentially wrapping an underlying implementation from a machine learning

2See https://autogoal.github.io/guide/datatypes.png
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library. The class constructor has arguments with annotations that provide valid ranges from which a
random sampling process can guarantee to create an instance of the algorithm with valid hyperparameters.

Solving a specific machine learning problem with out approach requires the user to define desired
input and output types (respectively T ∗in and T ∗out) as instances of the semantic data types available in the
system (see Figure 3 for an example). The graphGA of all possible algorithms is constructed automatically
via source code introspection. All class definitions that contain a run() method with suitable annotations
are considered nodes of the graph. Edges are automatically added between all nodes (i.e., algorithms)
ai, aj such that the corresponding annotations are compatible, i.e., T (i)

out ≤ T
(j)
in . Two “virtual” nodes

are inserted in the graph, Input and Output, connected correspondingly to all algorithms compatible
with the specific input T ∗in and all algorithms that output the desired T ∗out. Once the graph is defined,
two depth-first walks are performed one starting at the Input node, and the other at the Output but
taking edges in reverse order. Any algorithm reached in both walks is part of a possible pipeline, and the
remaining algorithms are discarded. After this process is completed, any random path between T ∗in and
T ∗out is guaranteed to produce a valid pipeline that meets the user requirements.

At the moment of writing, the computational prototype includes a total of 133 algorithms with suitable
annotations3. The source code for these algorithms has been semi-automatically generated via code
introspection from popular machine learning frameworks such as Scikit-learn (Pedregosa et al.,
2011), keras (Chollet and others, 2015), NLTK (Loper and Bird, 2002), Gensim (Khosrovian et al.,
2008), and Pytorch (Paszke et al., 2019), and some manual implementations, such as searching terms in
knowledge bases like Wikipedia and WordNet (Miller, 1995). Type annotations enable the seamless
and automatic discovery of pipelines that, for example, use NLTK for tokenization, Gensim to convert
tokens to word embeddings, Scikit-learn for dimensionality reduction and then a Keras-based
neural network for classification (see Figure 1).

3.2 Sampling and Optimization Process

Given graph GA built as described in Section 3.1 for a specific machine problem, our proposal can
potentially discover all valid pipelines that solve the problem via random sampling.

3.2.1 Sampling
The first step in the sampling process consists of sampling a random path in GA. Sampling starts in the
Input node, selecting a random neighbor node that has not been already added to the pipeline, until
Output is reached. Since by construction, every node in GA belongs to some path between Input and
Output, if all edges have non-zero probability of being traversed, it is guaranteed that this process will
eventually end in Output.

A random path sampled from GA is, computationally speaking, a sequence of class definitions, one for
each algorithm that will compose the pipeline under construction. Afterwards, from each class an instance
is sampled by a process guided by the annotations in the corresponding constructor. For this purpose,
a probabilistic context free grammar is inferred for each class. This grammar contains productions
for each of the possible hyperparameters (i.e., arguments in the class constructor). Hyperparameters
annotated as basic types (discrete, continuous, categorical and boolean) yield productions that simply
produce a random value from a suitable distribution. Hyperparameters annotated as other classes will
recursively build a corresponding grammar, taking care of correctly solving recursive direct and indirect
dependencies (e.g., class A has parameters of type A or a type that recursively depends on type A). This
mechanism enables a rich definition of algorithms, beyond simple valued hyperparameters. For example,
a sentence vectorization algorithm depends on a tokenization algorithm and a stopword removal algorithm,
each of which can recursively depend upon simpler building blocks. From the software design point of
view, GA can be considered as a graph where nodes are Factory Methods (Gamma et al., 1993) that will
automatically construct instances of the corresponding algorithms.

The above sampling process is guided by a probabilistic model σ that attaches specific parameters to the
distributions used in every step. Every algorithm ai in GA is assigned an un-normalized weight wi, which

3See https://autogoal.github.io/guide/predefined/#bundled-algorithms
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is used to select a random neighbor during path sampling following a multinomial Bernoulli distribution.
Every production in each of the classes’ grammars is also assigned a set of parameters according to
the distribution used (e.g., mean and variance for numerical values, normalized weights for categorical
values, etc.). These sampling parameters are indexed by the class-hyperparameter name, which means
that any instance of the same algorithm in a given pipeline shares the same sampling parameters for a
given hyperparameter (e.g., the mean and variance of the regularization factor of all logistic regressions
instances is shared). Figure 2 illustrates the sampling process.

<TfIdf>         := TfIdf (ngram=<TfIdf_ngram>, 
                          use_idf=<TfIdf_use_idf>)
<TfIdf_ngram>   := discrete (min=1, max=3)
<TfIdf_use_idf> := boolean ()

Probabilistic Model
<LR>            : 6
<LR_penalty>    : [0.3, 0.7]
<LR_reg>        : (0.5, 0.1)
<TfIdf>         : 4
<TfIdf_ngram>   : (2, 1)
<TfIdf_use_idf> : 0.75
...

<LR>         := LR (penalty=<LR_penalty>, 
                    reg=<LR_reg>)
<LR_penalty> := categorical (options=['l1', 'l2'])
<LR_reg>     := continuous (min=0.1, max=10)

LR (penalty='l2', reg=0.4)

TfIdf (ngram=2, use_idf=True)...

Sample a path in GA by a
random walk weighted
by a probabilistic model

Every node in the graph 
has an associated CFG

* Potentially a parameter could be an algorithm class,
   which involves doing the same sampling process recursively

Sample each algorithm parameter
by following the grammar and
consulting the probabilistic model

1

2

3

Figure 2: Illustrative representation of the sampling process for one pipeline from the algorithm graph GA

using a probabilistic model and a context-free grammar defined for each algorithm.

3.2.2 Optimization Strategy
For optimization purposes, the probabilistic model σ is initialized with neutral parameters for all distri-
bution, e.g., uniform weights for categorical distribution, centered mean and maximum variance for all
continuous distributions, p = 0.5 for binomial distributions, etc. A probabilistic grammatical evolution
strategy (O’Neill and Ryan, 2001) is used to incrementally adjust σ so as to maximize the probabil-
ity of producing the best pipeline. This optimization procedure is adapted from the strategy used in
HML-Opt (Estevez-Velarde et al., 2019) to optimize pipelines based on context-free grammars, and
extended to also allow optimization over graph structures. This process involves a cycle of: random
generation of n pipelines; evaluating each in the machine learning problem at hand (using the fitness
function ϕ(p) provided by the user, see Section 2); and, selecting the k < n best pipeline. To avoid
overfitting the optimization process in the training set, a small number M of cross-validation evaluations
is recommended (e.g., M ∈ [1, 5]]). In any case, once optimization is finished, the best pipeline found
must be evaluated on an independent test set for fair comparisons. We define ϕ(p) = 0 whenever p results
in a runtime error, memory overflow or timeout. This makes the optimization process gradually penalize
pipelines that produce runtime errors, eventually generating only pipelines that perform within predefined
memory and time constraints.

In each cycle, from the selection of the k best pipelines, a marginal probabilistic model σ∗ is constructed
by taking the sample values of the actual hyperparameter values generated. The marginal model σ∗ and
the original model σ are merged using an interpolation factor α ∈ [0, 1] which provides a balance between
exploration and exploitation. The best pipeline sampled in every cycle is compared with the global best
and updated accordingly. This cycle is repeated until a desired number of iterations is reached, or a given
timeout is passed, or after a number of iterations where no improvement is found. In every iteration, the
probabilistic model σ slowly converges to a saturated model that maximizes the probability of producing
the best pipeline. When the optimization process is completed, the best pipeline found is returned as the
potentially best solution for the machine learning problem at hand.
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The aforementioned process optimizes pipelines at several levels. First, it converges towards selecting
the sequences of algorithms in graphGA that result in higher fitness. Furthermore, each of these algorithms’
hyperparameters are incrementally adjusted. This is recursively performed for any internal algorithm
they use. Since all the sampling parameters are stored in a shared probabilistic model, examining this
model provides high-level insights for the entire AutoML process. Besides obtaining the best performing
pipeline, the probabilistic model σ enables a comparison of the average benefit of any given algorithm. It
is possible to detect that certain types of algorithms are better on average for a given problem, such as
linear classifiers or neural networks. This information can be used to design better optimization strategies,
for example, by initializing a probabilistic model not uniformly but according to probabilities learned
from past experiments. This strategy will be explored in future research.

4 Results and Discussion

In this section, we evaluate the adaptability and performance of AutoGOAL in dealing with heterogeneous
machine learning problems. For this purpose, we select three distinct problems with increasing levels of
complexity, respectively: classic supervised benchmarks, Section 4.1; text classification, Section 4.2; and,
named entity recognition, Section 4.3.

Regarding the first group in Section 4.1, our system is evaluated for seven classic supervised learning
benchmarks in the AutoML literature. The purpose of this experimentation is to show that AutoGOAL is
competitive with other AutoML systems. Nevertheless, our purpose is not to supersede other AutoML
tools, but rather to provide solutions in novel problem settings where existing systems cannot be directly
deployed. For this reason, Sections 4.2 and 4.3 deal with more challenging problems in natural language
processing tasks. In these more complex scenarios, AutoGOAL will be compared with state-of-the-art
solutions that are carefully crafted by domain experts, since existing AutoML tools cannot be directly
applied in these scenarios.

Source code and data to reproduce these experimental results is available online4. In terms of code, the
three experiments follow the same logic, as exemplified in Figure 3.

# import library, datasets, etc.
from autogoal.ml import AutoML

automl = AutoML(
# problem-specific input and output
input=List(Sentences()),
output=CategoricalVector()

)

# load problem-specific dataset
X, y = dataset.load()
automl.fit(X, y)

Figure 3: Example source code for running AutoGOAL on a specific dataset. For clarity, only key aspects
are included. Extra code such as irrelevant imports, logging, time and memory constraints, etc., are not
shown. The input and output types used in this example are specific for supervised NLP problems
and must be adapted to the problem definition.

4.1 Comparison with Alternative AutoML Systems
This section compares AutoGOAL with other AutoML systems for the purpose of demonstrating that it
achieves a similar performance in a set of seven classic benchmarks in the AutoML literature, taken from
the UCI repository (Dua and Graff, 2017). This experimental setup is based on the results reported by
ML-Plan (Mohr et al., 2018): the mean error across 20 independent executions is measured in each dataset,
with a random 70% of the data for optimization and the remaining 30% as a hold-out test set, where
the final error is measured. Each execution has a timeout of one hour or 10, 000 iterations (whichever

4https://autogoal.github.io/examples/
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is reached first), and performs M = 3 Monte Carlo cross-validation evaluations (70%/30%) for each
pipeline. In all cases, the population size is 100 with a selection of the best 20 and a learning rate of 0.05.

Table 2 shows the average result obtained by each AutoML system in the corresponding dataset. In
all datasets, we obtain a result that is not statistically different to the other systems, according to a t-test
between our results and the best and worst result in each dataset (p-value < 0.05). The main takeaway
from these results is that our proposal performs comparably to other systems in these datasets.
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ML-Plan (Weka) 1.27 + 0.56 25.54 + 1.28 73.72 + 1.23 0.01 + 0.01 39.37 + 2.54 6.49 + 1.23 2.92 + 0.27
Auto-WEKA 0.66 + 0.38 26.50 + 2.32 73.46 + 1.08 0.12 + 0.06 39.72 + 2.29 - 3.90 + 0.40
ML-Plan (Sklearn) 0.34 + 0.51 24.56 + 2.53 73.77 + 1.11 0.02 + 0.01 39.52 + 2.56 8.69 + 1.54 2.76 + 0.36
Auto-Sklearn-v 1.38 + 0.67 25.95 + 1.89 82.92 + 8.38 0.02 + 0.01 40.51 + 2.17 6.32 + 1.16 2.56 + 0.36
Auto-Sklearn-we 1.26 + 0.53 25.39 + 0.88 80.59 + 8.32 0.02 + 0.01 38.99 + 2.28 6.02 + 1.01 2.24 + 0.33
TPOT 0.37 + 0.33 23.91 + 2.22 73.14 + 1.02 0.02 + 0.02 38.47 + 2.36 - -

AutoGOAL 0.60 + 0.68 27.01 + 3.64 74.33 + 0.76 0.11 + 0.04 39.94 + 2.67 5.97 + 1.07 2.25 + 0.30

Table 2: Comparison of our proposal (AutoGOAL) and other Auto-ML systems for seven classic machine
learning datasets in terms of mean 0/1 loss and its standard deviation. Values for other systems were
obtained from ML-Plan (Mohr et al., 2018).

4.2 Evaluation in the HAHA Challenge

This section compares our approach with human-designed pipelines in the HAHA (Humor Analysis based
on Human Annotation) challenge (Chiruzzo et al., 2019). This is a text classification problem presented at
IberLEF 2019, with the objective of classifying Spanish-language tweets as humorous or not. The results
of this task are measured in terms of F1 of the humorous class. The corpus contains 30, 000 manually
classified tweets of which 24, 000 are for training and 6, 000 for testing.

The results are summarized in Table 3 and compared with official results from the HAHA challenge.
Given the complexity of this problem, it is harder for an AutoML system to optimize in this space.
AutoGOAL was executed on this dataset for a total of 115 iterations (approximately 20 hours total time)
after which it was manually stopped. Each pipeline evaluation is relatively slow (around 10 minutes) and
thus convergence is slower. However, despite using no problem-specific strategies (other than defining
the input as List[Sentence] and the output as CategoricalVector), our system manages to
outperform 14 of the 18 participants in the challenge (∼ 78%). The best pipeline automatically found
is composed of two steps: a pre-processing strategy using a BERT transformer (Devlin et al., 2019);

Competitors F1 Competitors F1

adilism 82.1 LaSTUS/TALN 75.9
Kevin-Hiromi 81.6 Taha 75.7
bfarzin 81.0 LadyHeidy 72.5
jamestjw 79.8 Aspie96 71.1
INGEOTEC 78.8 OFAI–UKP 66.0
BLAIR GMU 78.4 acattle 64.0
UO UPV2 77.3 jmeaney 63.6
vaduvabogdan 77.2 garain 59.3
UTMN 76.0 Amrita CEN 49.5

AutoGOAL 78.9

Table 3: Comparison of our proposal (AutoGOAL) with the official results of the HAHA corpus.
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and a neural network with 2 recurrent nodes (one BiLSTM layer and one LSTM layer) followed by 2
time-distributed dense layers, with a total of 12, 915, 169 trainable parameters.

4.3 Evaluation in the MEDDOCAN Challenge

This section compares our approach with human-designed pipelines in the MEDDOCAN (Medical Docu-
ment Anonymity) challenge (Lara-Clares and Garcia-Serrano, 2019). This is a novel entity recognition
problem presented at IberLEF 2019, with the objective of detecting privacy-sensitive elements in Spanish-
language medical documents. The corpus is composed of 1, 000 clinical case studies, where 750 are used
for training and 250 for testing. The results of this task are measured in terms of a micro-averaged F1

across all entity classes.

Competitors F1 Competitors F1

lukas.lange 96.96 ccolon 93.22
Fadi 96.32 sohrab 93.11
nperez 96.01 Jordi 91.84
FSL 95.95 plubeda 90.38
mhjabreel 95.83 m.domrachev 90.00
lsi uned 94.33 lsi2 uned 89.97
jiangdehuan 94.01 vcotik 89.67
jimblair 93.75 VSP 86.00

AutoGOAL 96.01

Table 4: Comparison of our proposal (AutoGOAL) with the official results of the MEDDOCAN corpus.

The results of this experiment are summarized in Table 4 and compared with official results from
the MEDDOCAN challenge. Similar to the previous experiment, since each pipeline evaluation is
considerably slow, a total runtime of 48 hours was allocated for this experiment. The complexity of this
challenge is higher than the previous experiments, since it involves token-level instead of sentence-level
classification. However, in this scenario, the best pipeline found also uses a BERT transformer and a neural
network with a Bi-LSTM and time-distributed dense layers. Despite its simplicity, this pipeline is highly
competitive with hand-crafted solutions that contain several domain-specific heuristics, outperforming 13
out of 16 state-of-the-art approaches.

4.4 Experimental Resources and Computational Cost

The experimental comparisons in Section 4 were performed in a computational infrastructure consisting
of a 16-core Intel i9-9900K CPU with a clock speed of 3.60GHz, 128 GB of total RAM memory and two
NVIDIA Titan RTX GPUs with 48 GB of combined graphics memory.

In terms of the computational cost that AutoGOAL adds to the intrinsic cost of training and evaluating
an arbitrary algorithm, we need to consider three stages in the pipeline optimization process. First, there
is an initial setup cost associated with building the algorithm graph GA and the corresponding grammars.
There is an additional cost associated to every pipeline evaluated, for sampling and bookkeeping purposes.
Finally, there is a cost at the end of each generation in the optimization algorithm (i.e., after every batch
of n pipeline evaluations) for updating the probabilistic model.

Formally, the cost of building the algorithm graph GA is determined by the number N of algorithms
and the total number of inter-connections (i.e., nodes and edges). At most, this cost is O(N2) if all
algorithms are used in a specific problem, which is never the case. In practice, for the current number
of algorithms available, this process takes approximately 10 seconds on commodity hardware. The cost
of training and evaluating each algorithm is determined by the intrinsic cost of executing the algorithm
in the underlying library. The associated cost of invoking the library and feeding the training data is
negligible. The cost of sampling a new pipeline is proportional to its length, which is also negligible
compared to the actual training cost. Finally, the cost associated to updating the probabilistic model in
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each generation is proportional to the total number of hyperparameters under optimization, i.e., the total
number of productions involved in all the algorithm grammars, which currently takes less than 1 second
on commodity hardware. In general, the overhead cost of executing AutoGOAL is minimal compared to
the inherent cost of training and evaluating each algorithm.

5 Discussion

Regarding the experimental results, it is important to note that our system is deployed using the same
code in all the experiments (see Figure 3), varying only the definition of the input and output types.
For example, setting up HAHA and MEDDOCAN challenges took approximately one and four hours
respectively, fundamentally devoted to preparing the corpora in a suitable format. The total running time
in our approach is considerably higher than running a single hand-crafted pipeline, since several different
pipelines are trained and tested (e.g., 20 total hours on the HAHA dataset). However, the time necessary
for setting up on a novel problem is considerably smaller than coding a hand-crafted solution from scratch,
since several pre-made components are provided. Hence, there is a trade-off between computational cost
and human cost, which allows researchers to focus more on the conceptualization and modeling, i.e.,
deciding what is the space of possible pipelines to evaluate, and less on actually implementing those
pipelines.

AutoGOAL enables researchers and practitioners to quickly develop strong baselines in diverse machine
learning problems. In some scenarios, the solution provided by ours and other AutoML systems could
already be good enough. However, AutoML systems should not attempt only to replace human experts,
but rather to serve as complementary tools that allow researchers to quickly obtain better baselines and
insights on the most promising strategies. We envision a future in which humans and computers work
together to solve the most challenging and complex problems in Artificial Intelligence, each bringing their
core competences. Much like compilers brought a significant improvement in the efficiency of software
development, we think AutoML opens the door to revolutionizing the way machine learning research and
practice is performed.

6 Conclusions

This paper presents AutoGOAL, a system for Automatic Machine Learning (AutoML) that seamlessly
combines heterogeneous technologies and can be applied to a wide variety of machine learning scenarios.
Our proposal is competitive with other AutoML frameworks on standard benchmarks, and it can be applied
to novel scenarios for which several existing AutoML tools are not directly applicable. An experimental
evaluation in two different NLP problems shows that this system can obtain competitive results with
human-designed pipelines, without any domain or problem-specific considerations. A computational
prototype of this system with pre-packaged implementations of over 100 algorithms from popular machine
learning frameworks is made available for the research community.
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