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Abstract

Cross-lingual Entity alignment is an essential part of building a knowledge graph, which can help
integrate knowledge among different language knowledge graphs. In the real KGs, there exists
an imbalance among the information in the same hierarchy of corresponding entities, which re-
sults in the heterogeneity of neighborhood structure, making this task challenging. To tackle this
problem, we propose a dual attention network for cross-lingual entity alignment (DAEA). Specif-
ically, our dual attention consists of relation-aware graph attention and hierarchical attention. The
relation-aware graph attention aims at selectively aggregating multi-hierarchy neighborhood in-
formation to alleviate the difference of heterogeneity among counterpart entities. The hierarchi-
cal attention adaptively aggregates the low-hierarchy and the high-hierarchy information, which
is beneficial to balance the neighborhood information of counterpart entities and distinguish non-
counterpart entities with similar structures. Finally, we treat cross-lingual entity alignment as a
process of linking prediction. Experimental results on three real-world cross-lingual entity align-
ment datasets have shown the effectiveness of DAEA.

1 Introduction

In recent years, many large-scale knowledge graphs (Bordes et al., 2013; Mahdisoltani et al., 2015; Auer
et al., 2007) are built to represent and organize the explosive information over the Internet. They have
been widely used in many fields, such as dialogue system (Wang et al., 2019), machine translation (Zhao
et al., 2020) and medicine (Yan et al., 2020). However, the KGs are usually incomplete, so it is necessary
to manually track emerging concepts and dynamically update the knowledge bases, making the whole
process quite expensive. Fortunately, KGs of different languages are often complementary, which means
that many components can be shared. To integrate this complementary knowledge, researches begin to
pay attention to cross-lingual entity alignment.

Cross-lingual entity alignment aims at finding entities with the same semantics in KGs of different lan-
guages. Various methods have been explored for cross-lingual entity alignment. Traditional approaches
rely on machine translation or feature engineering (Chen et al., 2013; Mahdisoltani et al., 2015; Otani
et al., 2018; Feng et al., 2016). The effectiveness of these methods depends largely on the quality of the
translation and the nature of the definition. Recently, many embedding approaches based on graph neural
network (GNN) are proposed for cross-lingual entity alignment (Wang et al., 2018; Li et al., 2019; Sun
et al., 2020; Wu et al., 2019a). These methods first represent the entities and relations in low dimensional
spaces and then utilize the powerful encoding ability of graph neural network to learn vector represen-
tations for entity or relation. Finally, a mapping function is used to align the entities from the source
knowledge graph to the target one.

However, due to the incompleteness of knowledge graphs and the diversity of knowledge, the struc-
ture of KGs in different languages is usually quite different. In the entity alignment task, this differ-
ence is mainly reflected in two aspects: the non-isomorphism among the neighborhood structures of
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Figure 1: An illustration of the heterogeneous structures of KGs.

counterpart entities and information imbalance among the same hierarchy of counterpart entities. The
non-isomorphism among the neighborhood structures refers to the neighborhood of the two entities is
inconsistent with each other, especially containing different sets of neighboring entities. Figure 1 (A)
gives a toy example. In (A), entity pairs (a, a′), (b, b′) and (c, c′) denote three pairs of pre-aligned en-
tities. In KG1, entity b is in the one-hop neighbor set of entity a. However, in KG2, entity b′ is in
two-hop neighbors set of entity a′. It suggests that the semantically-related entities can appear at dif-
ferent neighborhood hierarchy, which can easily lead to encoding the same pair of entities into different
representations when encoding entities with GNN. The information imbalance among the hierarchy of
entities means that the degrees are different at the same hierarchy of the corresponding entity. Figure 1
(B) gives a toy example of the degree imbalance. In KG1, the one-hop neighborhood of entity a con-
tains five entities, and the two-hop neighborhood contains four entities. However, in KG2, the one-hop
neighborhood and the two-hop neighborhood of entity a′ each contain only two entities. The reason for
this phenomenon may be that the two KGs focus on different contents when they are constructed or due
to the lack of some knowledge. It may lead to some problems when encoding entities with GNN. For
example, many entities at the center of the knowledge graphs have rich neighbor information, like a, they
can integrate the information of the whole graph after limited updates, which will lead to little difference
in the final representation of these central entities. In entity alignment, this will make it easier for entities
with similar neighborhood structures to match together (Pei et al., 2019).

To address the issues above, in this paper, we propose a dual attention network for entity alignment
(DAEA). The dual attention consists of the relation-aware graph attention (R-GAT) and hierarchical
attention. In R-GAT, we extend the graph attention network (Veličković et al., 2018) by modeling
relation in graph attention network and incorporate the translational assumption into the self-attention
mechanism that we can model the relationship among head, tail, and relation in the graph attention
network. By selectively aggregating multi-level neighborhood information, R-GAT can alleviate the non-
isomorphic difference between corresponding entities’ neighborhood structures. Inspired by jumping
knowledge network (Xu et al., 2018), in the hierarchical attention module, we use an LSTM network
to learn attention coefficients. It identifies the most useful neighborhood ranges for each entity and
adaptively fuses the information of different hierarchy to balance the neighborhood information of peer
entities and distinguish entities with similar structures. In entity alignment methods, we design a new
entity alignment method, which uses link prediction directly to accomplish entity alignment. We perform
thorough experiments with detailed ablation studies and analyses on three entity alignment datasets,
demonstrating the effectiveness of DAEA.

2 Related Work

2.1 Knowledge Embedding
Various embedding based models have been developed to knowledge representation learning. The mod-
els project the entities and relations into a low-dimensional vector space and define a score function to
measure the plausibility of each triple. The total likelihood of triples is finally maximized to learn the
embeddings of entities and relations. TransE (Bordes et al., 2013) regarded each relation as a translation
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vector between the head entity and the tail entity. Based on the idea of TransE, more advanced models
such as TransH (Wang et al., 2014), RotatE (Sun et al., 2019)have been proposed. There are other em-
beddings based models like RESCAL (Nickel et al., 2011), DistMult (Yang et al., 2014) and ComplEx
(Trouillon et al., 2016), which optimized a bilinear product scoring function between vector embedding
for each head and tail entity and a full rank matrix for each relation.

2.2 Graph Neural Networks

Graph neural networks (GNNs), a connectionist model that captures the dependence of graphs via mes-
sage passing between the nodes of graphs, are useful tools on non-Euclidean structures. There are
various methods proposed trying to improve the model’s capability. Graph Convolutional Networks
(GCNs) (Kipf and Welling, 2017) , an extension of GNNs, are neural networks operating on unlabeled
graphs and inducing features of nodes based on the structures of their neighborhoods. The attention
mechanism has also been successfully used in GNNs. Graph Attention network (GAT) (Veličković et
al., 2018) incorporates the attention mechanism into the propagation step and computes the hidden states
of each node by attending over its neighbors, following a self-attention strategy. Furthermore, R-GCN
(Schlichtkrull et al., 2018) has recently been proposed to model relational data and have been success-
fully exploited in link prediction and entity classification.

2.3 Entity Alignment

The earliest entity alignment approaches rely on machine translation or feature engineering. They are
time-consuming, labor expensive and poor in adaptability, and scalability. Recently, embedding based
methods have been applied to entity alignment. MTransE (Chen et al., 2017), IPTransE (Zhu et al.,
2017), AlignE (Sun et al., 2018), JAPE (Sun et al., 2017) and NAEA (Zhu et al., 2019), rely on TransE
model to learn entity embedding, define some kinds of transformation and learn a linear mapping or
minimize the distance between the embedding of pre-aligned entities. Some works use GNNs for entity
alignment (Wang et al., 2018; Li et al., 2019; Sun et al., 2020; Wu et al., 2019a; Wu et al., 2019b;
Zhu et al., 2019). GCN-Align (Wang et al., 2018) takes advantage of GCN to propagate information
from neighbors, and align entity embeddings enhanced by structural knowledge. It only considers the
connectivity between entities and ignores the relation features in KGs. KECG (Li et al., 2019) introduces
GAT with projection constraint to robustly encode graphs, and employ the nearest neighbor sampling
strategy for KG representation learning towards one-to-one mapping. AliNet (Sun et al., 2020) introduces
distant neighbors to expand the overlap between their neighborhood structures. It employs an attention
mechanism to highlight helpful distant neighbors and reduce noises. AliNet considers the phenomenon
of non-isomorphic neighborhood structures. However, they all ignore information imbalance among the
same hierarchy of entities.

3 Problem Formulation

Formally, knowledge graphs consist of a set of entities and a set of relations. Knowledge facts are
stored as a collection of triples (head, relation, tail). We define a KG as G = (E,R, T ), where E
and R represent the sets of entities and relations respectively, T is the set of relational triples. Let
G1 = (E1, R1, T1) and G2 = (E2, R2, T2) be two different KGs. P = {(ei1, ei2)|ei1 ∈ E1, ei2 ∈ E2}
is the set of pre-aligned entity pairs between G1 and G2. The task of cross-lingual entity alignment aims
to find new aligned entity pairs based on the pre-aligned seeds.

4 Our Approaches

The model DAEA proposed for entity alignment combines knowledge embedding and graph neural net-
works. It consists of three modules: the relation-aware graph attention network module, the LSTM-based
hierarchical attention module, and the knowledge embedding module. Our model framework is shown
in Figure 2.
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Figure 2: The framework of DAEA. (emi1 , emi2) is pre-aligned entity pair. In emi1 , i, 1 andm represent entity
i and knowledge graphs 1 and m-th update of entity representation, respectively. ami1 is the weight of the
different update layers.

4.1 Relation-aware Graph Attention Module
This module is designed to mitigate the difference of non-isomorphism among counterpart entities by
aggregating multi-hierarchy neighborhood information with different weights. Compared to GAT ignor-
ing relation information, in R-GAT, we fuse relation-level information, which is vital to representation
learning of entity to graph attention module. Meanwhile, to speed up the flow of information, we add
inverse triples to KGs, which have been proved to be effective in knowledge graphs completion (Bordes
et al., 2013; Neelakantan et al., 2015). The module R-GAT takes as input an tail entity et with its neigh-
borhood set Net = {(e1, r1), (e2, r2), ..., (en, rn)}, where et ∈ {E1, E2} . In NAEA, the author only
considers a fixed number of entities, which can lead to information loss. Here, just like the original GAT,
we consider all neighbor entities.

In R-GAT, we first calculate attention coefficients between entity et and neighborhood information. We
use two weight matrices W1 and W2 to transform the entity and relation, respectively. Here we merge
the translational assumption from TransE into attention coefficients. For each triple, the self-attention
coefficients can be calculated as follows:

cmij = aT [Wm
1 (emj + rmij ),W

m
2 emi ] (1)

where at ∈ R2d is the learnable parameter, emi and emj are the hidden states of tail entity ei and head
entity ej , rmij is the embedding of rij which is between ei and ej . m is the number of layers. [,] indicate
the concatenation operation. Note that in Figure 2, the neighborhood set of entity ei1 contains the self-
loop, so we need to add a relation vector to relation set to represent self-loop relation. Then we calculate
the weight by applying a non-linear activation function.

wij =
exp(LeakyReLU(cmij ))∑

ek∈Nei∪{ei}
exp(LeakyReLU(cmik))

(2)

where LeakyReLU is a nonlinear function (Veličković et al., 2018). To obtain the final output of the
entity, we calculate a linear combination with different weights. Here we employ multi-head attention in
the same way as GAT.

em+1
i = ReLU(

1

K

K∑
k=1

n∑
j=1

wk
ij(e

m
j + rmij )) (3)
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where K is the number of head, n is the number of neighbors of entity ei, wk
ij are the attention coef-

ficients computed by the k-th attention head. In the first iteration, e1i aggregates the information of e0j .
Meanwhile, e1j also aggregates the information of e0k, where ek is the neighborhood head entity of ej .
In the second iteration, e2i aggregates the information of e1j , here, e1j already contains the information of
e0k. Therefore, e2i contains two-hop information, e1j and e0k. After m iterations, entity e can aggregate all
neighborhood information between one-hop and m-hop.

Compared with AliNet which explicitly fuses the information of multiple hop neighborhood, R-GAT
can merge the information of i-hop selectively into the current entity representation during the update of
i-th layer, without explicit modeling, which is an essential feature of the graph neural networks.

4.2 LSTM-based Hierarchical Attention Module
Given the relation-aware graph attention module, now we discuss the LSTM-based hierarchical attention
module. Like the example in Figure 1 (B), dense entities tend to be more consistently represented.
To learn the low-level and the high-level information better adaptively and balance the neighborhood
information of counterpart entities, we design the LSTM-based hierarchical attention module.

The input of the module is (e1i , e
2
i , ..., e

m
i ) which is the output for each iteration in R-GAT. The LSTM-

based hierarchical attention module can be described as follows:

hj
i , c

j
i = LSTM(eji , [h

j−1
i , cj−1i ]) (4)

aji = softmax(W3h
j
i ) (5)

eouti =
m∑
j=1

ajie
j
i (6)

where hj−1
i and cj−1i is the hidden state and cell state, respectively. W3 ∈ Rd×1 are parameters to

be learned. The LSTM-based hierarchical attention can learn the weight of different levels of entities,
which can indirectly balance the information of the same level of counterpart entities through supervised
learning.

4.3 Knowledge Embedding Module
Previous works have shown that knowledge embedding, which models inner-graph relationships, making
entities more distinguishable, is effective for entity alignment (Li et al., 2019). Another reason to
leverage knowledge embedding here is that it is necessary for the novel entity alignment method. It will
be described later. Here we use TransE, which regards relation as a translation vector between entities,
as our knowledge embedding module.

Formally, for a triple (eh, r, et), we define the score function f(eh, r, et) = ||eh + r− et|| to measure
the possibility of the triple. we use a margin-based ranking loss function as the training the knowledge
embedding model. the loss function is defined as follows:

Lk =
∑

(eh,r,et)∈T

∑
(e

′
h,r,e

′
t)∈T

′

[f(eh, r, et) + γ1 − f(e
′
h, r, e

′
t)]+ (7)

where [·]+ = max(0, ·), T is the set of the total relations in two KGs and T
′

is the set of negative
samples generated by corrupting T . γ1 is a positive margin hyper-parameter separating positive and
negative triplets.

4.4 Training and Inference
We use a margin-based loss function as the training objective to let the embedding of aligned entities
have a very small distance while those of unaligned entities have a large distance:

Lc =
∑

(ei1,ei2)∈P

∑
(e′i1,e′i2)∈P ′

[
dist (ei1, ei2) + γ2 − dist

(
e′i1, e

′
i2

)]
+

(8)
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Figure 3: The framework of the completion-based method.

where dist(ei1, ei2) = ||ei1 − ei2||2 is the L2 distance, γ2 is a positive margin hyper-parameter. P is
the set of pre-aligned entity pair (ei1, ei2), and P

′
is the set of negative samples generated by nearest

neighbor negative sampling.
We define the loss function of DAEA corresponding to the above two parts (Li et al., 2019; Sun et al.,

2020):
L = Lc + Lk (9)

It is worth noting that we can set different weights for Lc and Lk. Here, we set the same weight for them
to treat both kinds of loss functions equally in experiments (Li et al., 2019).

In inference, we adopt two methods to align entity in this paper, distance-based method and
completion-based method.

4.4.1 Distance-based Method
In distance-based methods, we can align the entity based on the nearest neighbor search among entity
embedding by simply calculating the distance between two entities between different KGs.

dist(e1, e2) = ||e1 − e2||2 (10)

4.4.2 Completion-based Method
In this part, we design a novel entity alignment method based on link prediction following the knowledge
graph completion task. Before training the model, we need to add a relation type to KGs in order
to establish links between pre-trained entity pairs. For each entity pair (ei1, ei2) ∈ P , we add the
symmetry relation ‘Is same’ between entity ei1 and ei2 , so we obtain triples (ei1, Is same, ei2) and
(ei2, Is same, ei1). Then we add them to KGs for training. In the testing, we align the entities directly
according to the link prediction method. The framework of the completion-based method is shown in
Figure 3.

5 Experiments and Results Analysis

5.1 Datasets

Dataset #Ent #Rel #Tri

DBP15KZH−EN
ZH 66,469 2,830 153,929
EN 98,125 2,317 237,674

DBP15KJA−EN
JA 65,744 2,043 164,373
EN 95,680 2,096 233,319

DBP15KFR−EN
FR 66,858 1,379 192,191
EN 105,889 2,209 278,590

Table 1: Statistics of datasets used in experiments. ‘Ent’ denotes the number of entities and ‘Rel’ denotes
the number of all relations. ‘Tri’ denotes the number of triples.
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Figure 4: Statistics of degrees on DBP15KZH−EN .

We evaluate DAEA on the DBP15K datasets. DBP15K contains three cross-lingual datasets built
from DBpedia, denoted by DBP15KZH−EN (Chinese-to-English), DBP15KJA−EN (Japanese-to-
English) and DBP15KFR−EN (French-to-English). Each dataset contains 15, 000 reference alignment
links with popular entities from English to Chinese, Japanese and French respectively. The statistics of
datasets are shown in Table 1.

Figure 4 shows the statistics of degrees of 20 randomly selected pre-aligned entities at different levels
from DBP15KZH−EN . Here, the degree of an entity refers to the number of all triplets associated with
that entity. From Figure 4(A) and (B), we can see that the degree imbalance of one-hop neighborhood
exists only in a few entity pairs. However, the imbalance is obvious in the two-hop neighborhood set.
For example, in entity pair Z14 , the degree difference between two-hop neighborhood entities is more
than 1000. Figure 4 (D) shows that the distribution of degree difference in the two-hop neighborhood
roughly follows the long tail distribution.

5.2 Experimental Setting

In DAEA, we set the dimension of entity (relation) embeddings to 128 and the learning rate to 0.001,
For each positive triplet, we select 25 negative triples for graph model training and 2 negative triples for
knowledge embedding model training. the margin γ1 and γ2 both set to 3 (Li et al., 2019). In R-GAT, we
use a 2-layer R-GAT as the encoder. We used 30% of the gold standards as seed alignment while left the
remaining as testing data. We compare DAEA with the following entity alignment methods: MTransE
(Chen et al., 2017), IPTransE (Zhu et al., 2017), JAPE (Sun et al., 2017), AlignE (Sun et al., 2018),
GCN-Align (Wang et al., 2018), SEA (Pei et al., 2019), MuGCN (Cao et al., 2019), KECG (Li et al.,
2019) and AliNet (Sun et al., 2020). Some models, like GMNN (Xu et al., 2019) and RDGCN (Wu
et al., 2019a), merge the literal information of the entities into their representations. Since our model
relies only on structural information, we do not take these models into comparison. In order to verify the
different alignment methods, we also select two KG embedding models TransH and RotatE which are
usually evaluated on the task of link prediction as baselines. We report the Hits@1, Hits@10 and MRR
results to evaluate entity alignment performance. Meanwhile, we conducted three ablation experiments:
DAEA (w/o LSTM & rel.) means that does not LSTM-based attention and relation-aware. DAEA
(w/o rel.) and (DAEA w/o LSTM) represent that does not relation-aware and LSTM-based attention,
respectively.
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Methods
DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR
MtansE (Chen et al., 2017) 30.83 61.41 0.364 27.86 57.45 0.349 24.41 55.55 0.335
IPTtransE (Zhu et al., 2017) 40.60 73.50 0.516 36.70 69.30 0.474 33.30 68.50 0.451
JAPE (Sun et al., 2017) 41.18 74.46 0.490 36.25 68.50 0.476 32.39 66.68 0.430
AlignE (Sun et al., 2018) 47.18 79.19 0.581 44.76 78.89 0.563 48.12 82.43 0.599
GCN-Align (Wang et al., 2018) 41.25 74.38 0.549 39.91 74.46 0.546 37.29 74.49 0.532
SEA (Pei et al., 2019) 42.40 79.60 0.548 38.5 78.30 0.518 40.00 79.70 0.533
KECG (Li et al., 2019) 47.77 83.50 0.598 48.97 84.40 0.610 48.64 85.06 0.610
MuGCN (Cao et al., 2019) 49.45 84.45 0.611 50.15 85.75 0.621 49.55 87.75 0.621
AliNet (Sun et al., 2020) 53.95 82.65 0.628 54.95 83.15 0.645 55.25 85.25 0.657
DAEA(w/o LSTM & rel.) 46.17 83.55 0.589 48.30 86.63 0.609 47.78 86.74 0.611
DAEA(w/o rel.) 48.40 83.31 0.604 50.40 85.36 0.621 50.61 86.96 0.630
DAEA(w/o LSTM ) 53.50 87.46 0.654 54.82 88.11 0.664 53.49 89.24 0.660
DAEA 56.76 88.30 0.677 57.59 89.23 0.683 58.04 91.16 0.695

Table 2: The overall alignment performance for all models on the DBP15K datasets.

5.3 Results and Discussion

5.3.1 Main Results
We present the entity alignment results in Table 2. Note that we adopt the completion-based method
in DAEA. We can see that DAEA is significantly more effective than the baseline models. On
DBP15KFR−EN , DAEA improves Hit@1 by a margin of 0.171, Hit@10 by a margin of 0.039 and
MRR by a margin of 0.119 against MuGNN. For DBP15KZH−EN , comparing KECG, our DAEA
improves Hit@1 by a margin of 0.18, Hit@10 by a margin of 0.057 and MRR by a margin of 0.132.
Comparing AliNet, DAEA achieves a gain of 0.048 by Hit@1, 0.073 by Hit@10 and 0.059 by MRR on
DBP15KJA−EN . These results can demonstrate the superiority of the DAEA.

It is not surprising that DAEA outperforms the most basic GNN-based alignment model, i.e. KECG,
AliNet, and GCN-Align. By performing relation-aware graph attention over entity’s neighbors, R-GAT
not only extends the relation to GAT, but also integrates translation hypothesis into the self-attention
mechanism, which can model the relationship among heads, tails and relations. Meanwhile, DAEA
introduces an LSTM-based hierarchical attention module to identify the most useful neighborhood ranges
for each entity and learn low-level information and high-level information adaptively.

5.3.2 Ablation Studies
In the ablation study, we can see that both the relation-aware graph attention and LSTM-based hierarchi-
cal attention play essential roles in our model. Among them, the module with the most significant gain
is the relation-aware graph attention module. It can improve Hit@1 by a margin of 0.173 and Hit@10
by a margin of 0.06 on DBP15ZH−EN . The LSTM-based hierarchical attention module also improves
the performance of entity alignment based on the relation-aware graph attention module. The improve-
ment of the LSTM-based attention module alone is not apparent. DAEA (w/o LSTM & rel.) is similar
to KECG. Ablation studies show that the good performance of DAEA is largely attributed to the in-
formation fusion capability of R-GAT module, which incorporates the neighborhood entity and relation
information of KGs with different weights for entity alignment.

5.4 Analysis

5.4.1 Effectiveness on alignment methods
Table 3 lists the results of different alignment methods on DBP15KZH−EN . Here we ignore the graph
encoding part to quickly compare the performance of alignment methods. In TransE, the completion-
based method is significantly more effective than the distance method. Note that the score func-
tion is fc = ||ei1 + Is same − ei2|| in the completion method. In the distance method, the score
function is fd = ||ei1 − ei2|| for entity pair (ei1, ei2). The embedding of Is same is immutable
during alignment. It indicates that the improvement of the completion-based module comes from
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DBP15KZH−EN
TransE RotatE TransH

comp. dist. comp. dist. comp. dist. dist.(Is same)
Hit@1 49.04 48.32 33.39 35.14 40.12 38.67 38.74
Hit@5 71.05 70.16 53.73 60.26 64.00 61.21 61.11
Hit@10 77.74 77.23 59.88 65.98 72.03 69.25 69.30
MRR 0.588 0.581 0.412 0.441 0.508 0.492 0.493

Table 3: Comparison on different alignment methods. ‘comp.’ denotes the completion-based method
and ‘dist.’ denotes the distance-based method

Methods
DBPZH−EN DBPJA−EN DBPFR−EN

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR
DAEA(concat) 41.50 77.4 0.530 42.91 78.43 0.543 43.17 80.69 0.561
DAEA(MaxPooling) 53.39 87.83 0.652 54.71 87.78 0.661 55.21 89.94 0.671
DAEA(mean) 56.84 88.16 0.678 57.31 88.95 0.682 58.18 91.04 0.696
DAEA(LSTM) 56.76 88.30 0.677 57.59 89.23 0.683 58.04 91.16 0.695

Table 4: Comparison on different hierarchical aggregate methods.

added triples (ei1, Is same, ei2). So in TransH, we add an experiment, dist.(Is same), where triples
(ei1, Is same, ei2) are added to the training data in the distance-based alignment method. After elimi-
nating differences in data, we can see that the completion-based alignment method works better than the
distance-based alignment.

However, in RotatE, the performance of the completion-based method is poorer than that of the dis-
tance method. We also utilize KGs embedding models ComplEx to alignment entity. However, the
completion method based on ComplEx also has poor performance. It indicates that the scoring function
affects the performance of the completion-based method. The scoring function based on the translation
hypothesis contains distance metric, and it can also model the spatial transformation of different lan-
guage entity pairs through the connection of the Is same. In RotatE and ComplEx, distance supervision
is not apparent, which requires a large amount of training data. However, in entity alignment, the prior
alignment usually accounts for only a small proportion, which would prevent these approaches from
learning accurate embeddings for entities. In general, the advantage of the distance-based method is fast
convergence and high robustness. Nevertheless, it lacks the ability to model spatial transformation be-
tween entity pairs. The completion-based method can model this transformation; however, it is sensitive
to the scoring function and relies on a large number of the prior alignment entity pairs.

5.4.2 Effectiveness on hierarchical aggregate methods

We design three additional hierarchical aggregation methods, the mean-based method, the concat-based
method, and the MaxPooling-based method. In mean-based methods, we average all R-GAT layers
eouti,mean = 1

H

∑m
j=1 e

j
i . In concat-based method, we concatenate all R-GAT layers and then trans-

form the dimensions through the full connection layer eouti,concat = g([e1i , e
2
i , ..., e

m
i ]), where g(·) is a

full connection layer. In MaxPooling-based method, we maximize all R-GAT layers eouti,MaxPooling =

max(e1i , e
2
i , ..., e

m
i ), where max(·) is element-wise. The results are shown in Table 4. We observe

that nonlinear aggregation methods such as concat-based and MaxPooling-based methods do not show
promising performance. Compared with nonlinear aggregation methods, the LSTM-based method is
more effective than the others on Hit@10. On DBP15KZH−EN and DBP15KFR−EN , the mean-
based method achieves the best performance on Hit@1 and MRR. Look carefully, the mean-based is a
special form of the LSTM-based methods, which indicates that the linear aggregation methods are more
effective for balancing the neighborhood information of corresponding entities.
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6 Conclusion

In this paper, we introduce a dual attention mechanism entity alignment model DAEA, which contains the
relation-aware graph attention module and LSTM-based hierarchical attention module. In the relation-
aware graph attention module, we model relation into graph attention network and integrate translation
hypothesis into the self-attention mechanism, which can mitigate the non-isomorphic difference among
the neighborhood structures of counterpart entities. In the hierarchical attention module, we use the
LSTM attention mechanism to learn the weight of each output layer of the relation-aware graph at-
tention module, which can balance the neighborhood information of peer entities and distinguish non-
counterpart entities with similar structures by learning low-level information and high-level information
adaptively. We also design a new alignment method based on link prediction. Our experiments on three
datasets demonstrate the effectiveness of DAEA. In future work, we will integrate the semantic informa-
tion into the model and design the appropriate model based on the completion-based method.
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Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In International Conference on Machine Learning, pages 2071–2080.
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