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Abstract

Based on an exponentially increasing number of academic articles, discovering and citing com-
prehensive and appropriate resources has become a non-trivial task. Conventional citation rec-
ommender methods suffer from severe information loss. For example, they do not consider the
section of the paper that the user is writing and for which they need to find a citation, the re-
latedness between the words in the local context (the text span that describes a citation), or the
importance on each word from the local context. These shortcomings make such methods insuf-
ficient for recommending adequate citations to academic manuscripts. In this study, we propose a
novel embedding-based neural network called “dual attention model for citation recommendation
(DACR)” to recommend citations during manuscript preparation. Our method adapts embedding
of three semantic information: words in the local context, structural contexts 1, and the section on
which a user is working. A neural network model is designed to maximize the similarity between
the embedding of the three input (local context words, section and structural contexts) and the
target citation appearing in the context. The core of the neural network model is composed of
self-attention and additive attention, where the former aims to capture the relatedness between
the contextual words and structural context, and the latter aims to learn the importance of them.
The experiments on real-world datasets demonstrate the effectiveness of the proposed approach.

1 Introduction

When writing an academic paper, one of the most frequent questions considered is: “Which paper should
I cite at this place?” Based on the massive number of papers being published, it is impossible for a
researcher to read every article that might be relevant to their study. Thus, recommending a handful of
useful citations based on the contents of a working draft can significantly alleviate the burden of writing
a paper. An example of the application scenario is demonstrated in Figure 1.

Currently, many scholars rely on “keyword searches” on search engines, such as Google Scholar 2

and DBLP 3. However, keyword-based systems often generate unsatisfying results, because query words
may not convey adequate information to reflect the context that needs to be supported (Jia and Saule,
2017; Jia and Saule, 2018). Researchers in various fields have proposed various methods to solve this
problem. For example, studies in (McNee et al., 2002; Gori and Pucci, 2006; Caragea et al., 2013;
Küçüktunç et al., 2013; Jia and Saule, 2018) considered recommendations based on a collection of
seed papers, and (Alzoghbi et al., 2015; Li et al., 2018) proposed methods using meta-data, such as
authorship information, titles, abstracts, keyword lists, and publication years. However, when applying
such methods to real-world paper-writing tasks, there is a lack of consideration for the local context of a
citation within a draft, which can potentially lead to suboptimal results. Context-based recommendations
adopt a more practical concept that generates potential citations for an input context (He et al., 2010; He

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Cited papers other than the target citation in a citing paper, which are defined in (Zhang and Ma, 2020) and Definition 2 in
Section 3.1 of this paper.

2https://scholar.google.com/
3https://dblp.uni-trier.de/



Figure 1: Concept of dual attention model for citation recommendation (DACR)

et al., 2011). Based on the context-based methodology, the HyperDoc2Vec (Han et al., 2018) proposed
an embedding framework which further considers embedding with information of citation link between
the local context in a citing paper and the content in a cited paper. Our previous study (Zhang and Ma,
2020) adapted the structural contexts in addition to citation link to further improve the recommendation
performances. Context-based approaches could be potentially applicable in the real-world paper-writing
process.

However, the studies mentioned above still fail to take into consideration a number of essential char-
acteristics of academic papers, which limits their usefulness.

1. Scientific papers tend to follow the established “IMRaD” format (introduction, methods, results
and discussion, and conclusions) (Mack, 2014), where each section of an article has a specific
purpose. For example, the introduction section defines the topic of the paper in a broader context,
the method section includes information on how the results were produced, and the results and
discussion section presents the results. Therefore, citations used in each section should comply
with the specific purpose of that section. For example, citations in the introduction section should
support the main concepts of the paper, citations in the methods section should provide technical
details, and citations in the results and discussion section should aim to compare results to those
of other works. Therefore, recommendations of suitable citations for a given context should also
consider the purpose of the corresponding section.

2. Certain words and cited articles in a paper are much more closely related than other words and
articles in the same paper. Capturing these interactions is essential for understanding a paper. For
example, in Figure 1, the word “recommendation” is closely related to the words “context-based,”
“citations,” and “context,” but has a weak relationship with the words “adopt,” “more,” and “input.”
Additionally, a given word may have strong relatedness with some citations that appear in the paper.
For example, the word “recommendation” has strong relatedness to citations “(Li et al., 2018)” and
“(Han et al., 2018)” because both of these citations focus on recommendation algorithms.

3. Not every word or cited article has the same importance within a given paper. Important words and
cited articles are more informative with respect to the topic of a paper. For example, in Figure 1, the
words “context-based,” “recommendations,” “citations,” and “context” are more informative than



the words “adopt,” “more,” or “generates.” The citation, “(Han et al., 2018),” may be more essential
than “(Jia and Saule, 2018)” because the former is related to context-based recommendations, while
the latter is related to a different approach.

Adequate recommendations of citations for a manuscript should capture the relatedness and impor-
tance of words and cited articles in the context which needs citations, as well as the purpose of the
section on which the writer is currently working. To this end, we propose a novel embedding-based neu-
ral network called dual attention model for citation recommendation (DACR) that is designed to capture
the relatedness and importance of words in the context which needs citations and structural contexts in
the manuscript, as well as the section for which the user is working. The core of the proposed neural net-
work is composed of two attention mechanisms, namely self-attention and additive attention. The former
captures the relatedness between contextual words and structural contexts, and the latter learns the im-
portance of contextual words and structural contexts. Additionally, the proposed model embeds sections
into an embedding space and utilizes the embedded sections as additional features for recommendation
tasks.

2 Related Work

2.1 Document Embedding

Document embedding refers to the representation of words and documents as continuous vectors.
Word2Vec (Mikolov et al., 2013a) was proposed as a shallow neural network for learning word vec-
tors from texts while preserving word similarities. Doc2Vec (Le and Mikolov, 2014) is an extension of
Word2Vec for embedding documents with content words. However, these two methods generally treat
documents as “plain texts,” meaning that when they are applied to scholarly articles. This can lead to
some essential information being lost (for example, citations and metadata in scientific papers), which
in turn can lead to suboptimal recommendation results. Some more recent studies have attempted to
remedy this issue. HyperDoc2Vec (Han et al., 2018) is a fine-tuning model for embedding additional
citation relations. DocCit2Vec (Zhang and Ma, 2020) proposed by our previous work considers both
structural contexts and citation relations. Regardless, some vital information is still not considered, such
as the semantic of section headers and the relatedness and importance of word in the context requiring
support of citations, which are included in this study.

2.2 Citation Recommendation

Citation recommendation refers to the task of finding relevant documents based on an input query. The
query could be a collection of seed papers (McNee et al., 2002; Gori and Pucci, 2006; Caragea et al.,
2013; Küçüktunç et al., 2013; Jia and Saule, 2017), and the recommendations are then generated via
collaborative filtering (McNee et al., 2002; Caragea et al., 2013) or PageRank-based methods (Gori and
Pucci, 2006; Küçüktunç et al., 2013; Jia and Saule, 2017). Some studies (Alzoghbi et al., 2015; Li et al.,
2018) have proposed using meta-data, such as titles, abstracts, keyword lists, and publication years as
query information. However, in real-world applications, when providing support for writing manuscripts,
these techniques lack practicability. Context-based methods (He et al., 2010; He et al., 2011; Han et al.,
2018; Zhang and Ma, 2020) use a passage requiring support as a query to determine the most relevant
papers, which can potentially enhance the paper-writing process. However, such methods may suffer
from information loss because they do not consider sections within papers or the relative importance and
relatedness of local context words.

2.3 Attention Mechanisms

Attention mechanism is commonly applied in the field of computer vision (Tang et al., 2014) and detects
important parts of an image to improve prediction accuracy. This mechanism has also been adopted in
the recent researches in text mining. For example, (Ling et al., 2015) extended Word2Vec with a simple
attention mechanism to improve word classification performance. Google’s BERT algorithm (Devlin
et al., 2019) uses multi-head attention and provides excellent performance for several natural language



Figure 2: Architecture of DACR

processing tasks. The method introduced in (Wu et al., 2019) uses self-attention and additive attention to
improve recommendation accuracy for news sources.

3 Preliminary

3.1 Notations and Definitions

Academic papers can be treated as a type of hyper-document, in which citations are equivalent to hyper-
links. Based on paper modeling with citations (Han et al., 2018) and modeling of citations with structural
contexts (Zhang and Ma, 2020), we introduce a novel modeling with citations, structural contexts, and
sections.

Definition 1 (Academic Paper). Let w ∈ W represent a word from a vocabulary, W , where s ∈ S
represents a section from a section header collection, S , and d ∈ D represents a document ID (paper
DOI) from an ID collection, D . The textual information of a paper, H , is represented as a sequence of
words, sections, and IDs of cited documents (i.e., Ŵ ∪ Ŝ ∪ D̂ , where Ŵ ⊆W , Ŝ ⊆ S , and D̂ ⊆ D).

Definition 2 (Citation Relationships). The citation relationships, C, (see Figure 2) in a paper, H , are
expressed by a tuple, 〈s, dt ,Dn ,C 〉, where dt ∈ D̂ represents a target citation, D̂ represents the id of all
the cited documents from H , C ⊆ Ŵ is the local context surrounding dt , and s ∈ Ŝ is the title of the
section in which the contextual words appear. If other citations exist within the same manuscript, then
they are defined as “structural contexts” and denoted by Dn , where {dn |dn ∈ D̂ , dn 6= dt}.

3.2 Problem Definition

Embedding matrices are denoted as D ∈ Rk×|D| for documents, W ∈ Rk×|W | for words, and
S ∈ Rk×|S| for sections. The i-th column of D, denoted by di, is a k -dimensional vector represent-
ing document di . Additionally, the j-th column of W is a k-dimensional vector for word wj , and the s-th
column of S is a k-dimensional vector for section s .

The proposed model initializes two embedding matrices (IN and OUT) for documents (i.e., DI and
DO), a word embedding matrix, WI, and a section embedding matrix, SI. A column vector from DI

represents the role of a document as a structural context and a column vector from DO represents the
role of a document as a citation (the implementation details of the experiment in Section 5.4 explain this
in more detail). The word embedding matrix, WI, and section embedding matrix, SI, are initialized for
all words of the word vocabulary and all sections of the section header collection.



The goal of this model is to optimize the following objective function:

max
DI,DO,WI,SI

1

|C|
∑

〈s,dt ,Dn ,C 〉∈C

logP (dt |s,Dn ,C ). (1)

4 Dual Attention Model for Citation Recommendation

An overview of the proposed DACR approach is presented in Figure 2. DACR is composed of two main
components: a context encoder (Section 4.1) for encoding contextual words, sections, and structural
contexts into a fixed-length vector and a citation encoder (Section 4.2) for predicting the probability of a
target citation.

4.1 Context Encoder
The context encoder takes three inputs, namely, context words, sections, and structural contexts, from
citation relationships. The encoder contains three layers: an embedding layer for converting words
and documents (structural contexts) into vectors, a self-attention layer with an Add&Norm sub-layer
(Vaswani et al., 2017) for capturing the relatedness between words and structural contexts, and an addi-
tive attention layer (Wu et al., 2019) for recognizing the importance of each word and structural context.

4.1.1 IN Embedding, Add and Concatenation layer
The IN embedding layer initially generates three embedding matrices DI, WI, and SI for the document
collection, word vocabulary and the section header collection. For a given citation relationship, the one-
hot vectors of structural contexts, context words, and sections are projected with the three embedding
matrices, denoted as DI

{Dn}, W
I
{C}, and SI

s. The projected section vectors are then added to the word
vectors (each word vector is added to a section vector), and the resultant matrix is denoted as W′. W′

and DI
{Dn} are then concatenated column-wise and form one matrix, i.e., [w′1, ...,w

′
m,dI

1, ...,d
I
n], and

denoted as E, where m is the number of input context words and n is the number of input structural
contexts.

4.1.2 Self-attention Mechanism with Add&Norm
Self-attention (Vaswani et al., 2017) is utilized to capture the relatedness between input context words
and structural contexts. It applies scaled dot-product attention in parallel for a number of heads, to allow
the model to jointly consider interactions from different representation sub-spaces at different positions.

The k-dimensional embedding matrix, E, from the last layer is first transposed and projected with
three linear projections (AQ

i ,AK
i , and AV

i ) to a dh dimensional space, where dh = k/h, i ∈ {1...h},
and h denotes the number of heads. The E matrix is projected h times, and each projection is called a
“head”. At each projection (i.e., within a “head”), the dot products of the first two projected versions of
E with AQ

i and AK
i are computed, and divided by

√
dh. Subsequently, softmax is applied to obtain the

resulting weight matrix with dimensions of (m+ n) ∗ (m+ n), i.e., softmax(
ETAQ

i ·(E
TAK

i )T√
dh

) , where
(m+n) is the total number of input context words and structural contexts. This weight matrix represents
the relatedness between the input words and articles. The dot product of the weight matrix and the third
projected version of E, i.e., ETAV

i , is computed as the output matrix of the head, denoted as headi.
The h numbers of the output head matrices are concatenated column-wise and projected again with AO

to yield the final output matrix. The computation procedure is represented as follows:

SelfAttention(E) = Concat(head1, ...,headh)A
O, (2)

headi = softmax(
ETAQ

i · (ETAK
i )T√

dh
) · (ETAV

i ), (3)

where AO ∈ Rk×k, AQ
i ∈ Rk×dh , AK

i ∈ Rk×dh , and AV
i ∈ Rk×dh are projection parameters. dh is the

embedding dimension of the heads, h is the number of heads, and k = dh×h, where k is the dimension of
the embedding vectors. The output matrix of the self-attention mechanism is then transposed and added



to the original E matrix. Next, dropout is applied (Hinton et al., 2012) to avoid over-fitting, and applied
with layer normalization (Ba et al., 2016) to facilitate the convergence of the model during training. The
final output matrix is denoted as E′.

4.1.3 Additive Attention Mechanism

The additive attention layer (Wu et al., 2019) is utilized to recognize informative contextual words and
structural contexts. It takes matrix E′ from the last layer as input, whereby each column represents the
vector of a word or document. The weight of each item is computed as follows:

Weight = qT · tanh (V ·E′ +V′), (4)

where V ∈ Rk×k is the projection parameter matrix, V′ ∈ Rk×(n+m) is the bias matrix, and q (k-
dimensional) is a parameter vector. The Weight vector is a row vector of dimension (m + n), where
each column represents the weight of a corresponding word or document. The Weight vector is applied
with the dropout technique to avoid over-fitting.

The output, EncoderVector, is the dot product of the softmaxed Weight vector and input matrix,
E′, where all rows of the embedding vectors are weighted and summed, as illustrated below:

EncoderVector = E′ · softmax(WeightT ). (5)

4.2 Citation Encoder

The citation encoder is designed to predict potential citations by calculating the probability score between
an OUT document matrix, DO, and the EncoderVector from the context encoder, which is defined
as follows:

ŷ = EncoderVectorT ·DO. (6)

The scores are then normalized using the softmax function as follows:

p = softmax(ŷ). (7)

4.3 Model Training and Optimization

We adopted a negative sampling training strategy (Mikolov et al., 2013b) to speed up the train-
ing process for DACR. In each iteration, it generates a positive sample (correctly cited pa-
per) and n negative samples. Therefore, the calculated probability vector, p, is composed of
[ppositive, pnegative−1, pnegative−2, ..., pnegative−n]. The loss function computes the negative log-
likelihood of the probability of a positive sample, as follows:

L = − log(ppositive) +
n∑

i=1

log(pnegative−i). (8)

Stochastic gradient descent (SGD) (Sutskever et al., 2013) is used to optimize the model.

5 Experiments

We evaluated the recommendation performance of our model and five baseline models on two datasets,
namely DBLP and ACL Anthology (Han et al., 2018). The recall, mean average precision (MAP), mean
reciprocal rank (MRR), and normalized discounted cumulative gain (nDCG) are reported for a compar-
ison of the models. These values are summarized in Table 2. Additionally, we proved the effectiveness
of adding information about sections, relatedness, and importance, as shown in Figure 3.



Table 1: Statistics of the datasets
Overview of the dataset Number of sections in the dataset

All Train Test Generic Section Abstract Background Introduction Method Evaluation Discussion Conclusions Unknown

DBLP No. of Docs 649,114 630,909 18,205 Train 617,402 9,589 452,430 3,226,521 153,737 19,738 435,514 155,777
No. of Citations 2,874,303 2,770,712 103,591 Test 5,243 155 6,437 25,956 1,312 200 1875 58,975

ACL No. of Docs 20,408 14,654 1,563 Train 11,725 114 9,973 42,749 4,186 442 9,456 847
No. of Citations 108,729 79,932 28,797 Test 3,789 33 3,429 12,625 1,587 159 3,186 0

5.1 Dataset Overview
The larger dataset, DBLP (Han et al., 2018), contains 649,114 full paper texts with 2,874,303 citations
(approximately five citations per paper) in the field of computer science. The ACL Anthology dataset
(Han et al., 2018) is smaller, containing 20,408 texts with 108,729 citations; however, it has a similar
number of citations per paper (about five per paper) to the DBLP dataset. We split the datasets into
a training dataset, for training the document, word, and section vectors, and test dataset with papers
containing more than one citation published in the last few years for recommendation experiments. An
experimental overview is provided in Table 1.

5.2 Document Preprocessing
The texts were pre-processed using ParsCit (Councill et al., 2008) to recognize citations and sections. In-
text citations were replaced with the corresponding unique document IDs in the dataset. Section headers
often have diverse names. For example, many authors name the “methodology” section using customized
algorithm names. Therefore, we replaced all section headers with fixed generic section headers using
ParsLabel (Luong et al., 2010). Generic headers from ParsLabel are abstract, background, introduction,
method, evaluation, discussions, and conclusions. If ParsLabel is not able to recognize a section, we
label it as “unknown.” Detailed information for each section is listed in Table 1.

5.3 Implementation and Settings
DACR was developed using PyTorch 1.2.0 (Paszke et al., 2019). In our experiments, word and document
embeddings were pre-trained using DocCit2Vec with an embedding size of 100, a window size of 50
(also known as the length of the local context, i.e. 50 words before and after a citation), a negative
sampling value of 1000, and 100 iterations (default settings in (Zhang and Ma, 2020)). The word vectors
for generic headers, such as “introduction” and “method,” were selected as pre-trained vectors for the
section headers. DACR was implemented with 5 heads, 100 dimensions for the query vector, and a
negative sampling value of 1000. The SGD optimizer was implemented with a learning rate of 0.0001,
a batch size of 100, and 100 iterations for the DBLP dataset, or 300 iterations for the ACL Anthology
dataset. To avoid over-fitting, we applied a 20% dropout in the two attention layers.

Word2Vec and Doc2Vec were implemented using Gensim 2.3.0 (Řehůřek and Sojka, 2010), and Hy-
perDoc2Vec and DocCit2Vec were developed based on Gensim. All baseline models were initialized
with an embedding size of 100, a window size of 50, and default values for the remaining parameters.

5.4 Recommendation Evaluation
We designed three usage cases to simulate real-world scenarios:

• Case 1: In this case, we assumed the manuscript was approaching its completion phase, meaning the
writer had already inserted the majority of their citations into the manuscript. Based on the leave-
one-out approach, the task was to predict a target citation, by providing the contextual words (50
words before and after the target citation), structural contexts (the other cited papers in the source
paper), and section header as input information for DACR.

• Case 2: Here, we assumed that some existing citations were invalid because they were not available
in the dataset, i.e., the author had made typographical errors or the manuscript was in an early
stage of development. In this case, given a target citation, its local context and section header,
we randomly selected structural contexts to predict a target citation. The random selection was
implemented using the build-in Python3 random function. All case 2 experiments were conducted
three times to determine the average results to rule out biases.



Table 2: Citation recommendation results (** statistically significant at 0.01 significance level)

Model DBLP ACL
Recall@10 MAP@10 MRR@10 nDCG@10 Recall@10 MAP@10 MRR@10 nDCG@10

W2V (case 1) 20.47 10.54 10.54 14.71 27.25 13.74 13.74 19.51
W2V (case 2) 20.46 10.55 10.55 14.71 26.54 13.55 13.55 19.19
W2V (case 3) 20.15 10.40 10.40 14.49 26.06 13.21 13.21 18.66
D2V-nc (case 1) 7.90 3.17 3.17 4.96 19.92 9.06 9.06 13.39
D2V-nc (case 2) 7.90 3.17 3.17 4.96 19.89 9.06 9.06 13.38
D2V-nc (case 3) 7.91 3.17 3.17 4.97 19.89 9.07 9.07 13.38
D2V-cac (case 1) 7.91 3.17 3.17 4.97 20.51 9.24 9.24 13.68
D2V-cac (case 2) 7.90 3.17 3.17 4.97 20.29 9.17 9.17 13.58
D2V-cac (case 3) 7.89 3.17 3.17 4.97 20.51 9.24 9.24 13.69
HD2V (case 1) 28.41 14.20 14.20 20.37 37.53 19.64 19.64 27.20
HD2V (case 2) 28.42 14.20 14.20 20.38 36.83 19.62 19.62 27.18
HD2V (case 3) 28.41 14.20 14.20 20.37 36.24 19.32 19.32 26.79
DC2V (case 1) 44.23 21.80 21.80 31.34 36.89 20.44 20.44 27.72
DC2V (case 2) 40.31 20.16 20.16 28.69 33.71 18.47 18.47 25.17
DC2V (case 3) 40.37 19.02 19.02 26.84 31.14 16.97 16.97 23.20
DACR (case 1) 48.96∗∗ 23.25∗∗ 23.25∗∗ 33.93∗∗ 42.43∗∗ 22.92∗∗ 22.92∗∗ 31.64∗∗
DACR (case 2) 45.39∗∗ 22.32∗∗ 22.32∗∗ 31.98∗∗ 40.13∗∗ 21.93∗∗ 21.93∗∗ 30.04∗∗
DACR (case 3) 42.32∗∗ 21.39∗∗ 21.39∗∗ 30.22∗∗ 38.01∗∗ 20.84∗∗ 20.84∗∗ 28.45∗∗

• Case 3: It is assumed that the manuscript was in an early phase of development, where the writer
has not inserted any citations or all existing citations are invalid. Only context words and section
headers were utilized for the prediction of the target citation (no structural contexts were used).

To conduct recommendation via DACR, an encoder vector was initially inferred using the trained
model with inputs of cases 1, 2, and 3, and then, the OUT document vectors were ranked based on dot
products.

Five baseline models were adapted for comparison with DACR. As the baseline models do not explic-
itly consider section information, information on the section headers were neglected in the inputs.

1. Citations as words via Word2Vec (W2V) This method was presented in (Berger et al., 2017),
where all citations were treated as special words. The recommendation of documents was defined
as ranking OUT word vectors of documents relative to the averaged IN vectors of context words,
and structural contexts via dot products. The word vectors were trained using the Word2Vec CBOW
algorithm.

2. Citations as words via Doc2Vec (D2V-nc)(Berger et al., 2017). The citations were removed in
this method, and the recommendations were made by ranking the IN document vectors via cosine
similarity relative to the vector inferred from the learnt model by taking context words and structural
contexts as input (this method results in better performance than the dot product). The word and
document vectors were trained using Doc2Vec PV-DM.

3. Citations as content via Doc2Vec (D2V-cac) (Han et al., 2018). In this method, all context words
around a citation were copied into the cited document as supplemental information. The recom-
mendations were made based on cosine similarity between the IN document vectors and inferred
vector from the learnt model. The vectors were trained using Doc2Vec PV-DM.

4. Citations as links via HyperDoc2Vec (HD2V) (Han et al., 2018). In this method, citations were
treated as links pointing to target documents. The recommendations were made by ranking OUT
document vectors relative to the averaged IN vectors of input contextual words based on dot prod-
ucts. The embedding vectors were pre-trained by Doc2Vec PV-DM using default settings.

5. Citations as links with structural contexts via DocCit2Vec (DC2V) (Zhang and Ma, 2020). The
recommendations were made by ranking OUT document vectors relative to the averaged IN vectors
of input contextual words and structural contexts based on dot products. The embedding vectors
were pre-trained by Doc2Vec PV-DM with default settings.



Figure 3: Effectiveness of adding sections, relatedness, and importance

There are three main conclusions that can be drawn from Table 2. First, DACR outperforms all base-
line models at 1% significance level across all evaluation scores for all cases and datasets. This implies
that the additionally included combined information: namely sections, relatedness, and importance, are
essential for predicting useful citations. The effectiveness of each added information is presented in
Section 5.5.

Second, performance increases when additional information is preserved in the embedding vectors.
When comparing Word2Vec, HyperDoc2Vec, DocCit2Vec, and DACR, Word2Vec only preserves con-
textual information, HyperDoc2Vec considers citations as links, DocCit2Vec includes structural contexts,
and DACR exploits the internal structure of a scientific paper to extract richer information. The evalua-
tion scores increase with the amount of information preserved, indicating that overcoming information
loss in embedding algorithms is helpful for recommendation tasks.

Third, DACR is effective for both the large (DBLP) and medium (ACL Anthology) sized datasets.
However, we also realized that the smaller dataset requires higher iterations for the model to produce
effective results. It is presumed that more iterations of training can compensate for a lack of diversity in
the training data.

The performance of DACR could be further improved by more accurately recognizing section headers.
Moreover, we determined that some labels were incorrectly recognized or unable to be recognized by
ParsLabel. Therefore, we will work on improving the accuracy of section recognition in future work.

5.5 Effectiveness of Adding Sections, Relatedness, and Importance

In this section, we explore the effectiveness of adding the following information: section headers, re-
latedness, and importance. We run three modified DACR models without the corresponding layer, for
example, removing the section embedding layer for verifying the effectiveness of section information,
removing the self-attention layer for determining the relatedness between contextual words and articles,
and removing additive attention for demonstrating the importance of context. We present the scores of
recall, MAP, MRR, and nDCG at 10 for case 1 on the DBLP dataset for comparison, which are illustrated
in Figure 3.

Both models, DACR without self-attention and DACR without additive attention perform significantly
worse than the full model of DACR, whereas the performance of DACR without section information
drops by a minor margin. Three conclusions can be drawn from these facts.

Firstly, all modified models performed poorer than the full model, which supports our hypothesis: sec-
tions, relatedness, and importance between contextual words and articles are important for recommend-
ing useful citations. The relatedness information is more beneficial than section information, which is



evident when comparing DACR without section and DACR without self-attention.
Secondly, the primary reason for the 0-close scores of the model without additive attention is that the

losses of the model did not converge without the additive attention layer. Therefore, we consider that the
additive attention has a two-fold purpose: ensuring convergence and learning the importance of context.

Lastly, only appropriate combinations of information and neural network layers lead to optimal so-
lutions, as deficits in any of the three types of information (section, relatedness, and importance, or
attention layers) result in low performance.

6 Conclusions and Future Work

In this study, we proposed a citation recommendation model with dual attention mechanisms. This model
aims to simplify real-world paper-writing tasks by alleviating the issue of information loss in existing
methods. Our model considers three types of essential information: section for which a user is working
and need to insert citations, relatedness between the local context words and structural contexts, and
their importance. The core of the proposed model is composed of two attention mechanisms: self-
attention for capturing relatedness and additive attention for learning importance. Extensive experiments
demonstrated the effectiveness of the proposed model in designed scenarios intended to mimic the real
world scenarios as well as the efficiency of the proposed neural network.

In future work, we will first attempt to improve the accuracy of recognizing section headers to improve
the usability and performance of the algorithm. Second, we will include additional paper-related infor-
mation in the model, such as word positions. Third, we will explore more sophisticated neural network
architectures to improve accuracy and reduce the training time of the model.
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