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Abstract

Human natural language is mentioned at a specific point in time while human emotions change
over time. While much work has established a strong link between language use and emotional
states, few have attempted to model emotional language in time. Here, we introduce the task of
affective language forecasting – predicting future change in language based on past changes of
language, a task with real-world applications such as treating mental health or forecasting trends
in consumer confidence. We establish some of the fundamental autoregressive characteristics of
the task (necessary history size, static versus dynamic length, varying time-step resolutions) and
then build on popular sequence models for words to instead model sequences of language-based
emotion in time. Over a novel Twitter dataset of 1,900 users and weekly + daily scores for 6
emotions and 2 additional linguistic attributes, we find a novel dual-sequence GRU model with
decayed hidden states achieves best results (r = .66). We make our anonymized dataset as well
as task setup and evaluation code available for others to build on.

1 Introduction

With the growth of social media, natural language processing has increasingly turned toward problems in
the social scientific domains. Language has been used to predict personality disorders, political ideology,
and mental health (Preotiuc-Pietro et al., 2016a; Iyyer et al., 2014; Coppersmith et al., 2014). However,
such predictions are typically made cross-documents or -users rather than cross-time (forecasting the
future).

Predictions across time can enable another level of applications for NLP in the social sciences. For
example, knowing how someone’s mood may change next week can be a valuable insight into preemp-
tively preparing mental health assistance. We may be able to better predict a substance abuse relapse or
suicide attempt, or provide individual insights into the precipitators of such events.1 Applications also
exist in other domains, such as correlating mood and personal buying habits, or predicting the mood of
performers (e.g. professional athletes) as insight into how well they will perform next.

One of the challenges for doing temporal predictions based on language is the availability of time-
series data. Most user-level datasets only provide one measurement, typically of a demographic or
psychological trait (something that doesn’t change frequently). On the other hand, document-level data
(such as that of most sentiment analysis) may provide information across time, but they are typically
divorced from the individual. Alternatively, instead of relying on annotations or self-reported data, one
can simply predict the future language-based measurement (i.e. as output from another model).

Here, we propose a method of forecasting any future dimension of language, based on their current
and past language. Formally, we define affective language forecasting as finding a function of past
language (f ) which estimates the output of a function of future language (a):

f(Xd
t−1, X

d
t−2, ..., X

d
t−n) + ε = a(Xd

t ) (1)

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Deaths from suicide are the second leading cause of death for young adults and overdoses are on the rise, not far be-
hind (Curtin et al., 2016; Rudd et al., 2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where X represents a d-dimensional feature vector derived from language use at a particular time-step
and a is conceptually a mapping of future language to the characteristic of interest. ε represents an
error to be minimized. We show work towards this problem by forecasting multiple different dimensions
of affective language. Affective language can be defined as any language that is related to mood or
emotions, such as measuring affective valance(positive/negative mood) or something more specific such
as the emotion of surprise. This work covers the forecasting of: Affective valence, Intensity, Anger,
Disgust, Joy, Fear, Sadness, and Surprise.

Inclusion of the time dimension to an NLP problem can increase its modeling complexity significantly.
We lay a modest foundation for handling these complexities, such as, the amount of history needed at the
user level and what formatting of data needs to be done to facilitate modeling accurate predictions(i.e.
time-step resolution). We also address the issue of gathering a large time-series dataset that tracks dy-
namic information at the user level.

Our contributions include:
• The definition of the task of self-supervised affective forecasting of lexicon frequency and the release

of our novel dataset to promote community participation2

• Analysis of the characteristics of language that exist over the temporal dimension, notably related
to the amount of history necessary to generate accurate forecasts of future linguistic trends

• Evaluation of modern deep learning techniques and their application or modification to the domain
of time-series language forecasting

• Introduction of a new validation paradigm for time-series forecasting, making a distinction between
an out-of-time forecast and users who are out-of-sample

2 Related Work

Time-series forecasting has been applied to many fields and applications. Traditionally, linear autore-
gressive(AR) models have been used in areas such as weather (Hillmer and Tiao, 1982) and stock fore-
casting (Pai and Lin, 2005). Similarly, AutoRegressive Integrated Moving Average(ARIMA) models are
also popular choices in practice for imparting stationarity3 (Franses, 1991) to the time-series, specifically
from the integration(I) step.

However, in recent years model architectures such as LSTM (Hochreiter and Schmidhuber, 1997) or
GRU cells (Chung et al., 2014) have shown promise with their ability to model long-term dependencies.
The recurrent nature of these models allow them to adapt to a time-series forecasting domain. Where
input features are often lagged values of the predicted outcome, while still offering a more flexible
architecture and non-linear modeling capabilities.

Such architectures have been used extensively in the medical domain, by leveraging electronic health
records, to forecast a patient’s future physical health. For example, the work of (Choi et al., 2016) designs
a stacked GRU architecture to forecast the diagnosis of a patient at their next doctor’s visit, while jointly
learning to predict the duration until the next visit(an example of a poison process).

In the language domain the only similar work is that of (Halder et al., 2017). In which, their goal is to
predict an online forum participants ”emotional progression” measured by their negative emotion index,
a simple metric that defines the polarity of a user’s word count

(
num(neg words)−num(pos words)

num(total words)

)
. We

differentiate our work by focusing on forecasting established psychological definitions of affect and by
using only linguistic features to forecast future linguistic trends.

3 Data and Time-Series

We derived our data set from a collection of publicly posted tweets previously used for demographic
prediction (Volkova et al., 2013; Sap et al., 2014).

As one of the first studies of language forecasting of any kind, we sought to primarily focus on a well-
represented time resolution – weekly aggregates of tweets. This helped us focus on the fundamentals

2Data available at https://github.com/MatthewMatero/AffectiveLanguageForecasting
3Ensuring that our time-series maintains the same, approximate, statistical properties over time. Such as mean and variance

https://github.com/MatthewMatero/AffectiveLanguageForecasting


2915

of the methods rather than missing data issues.4 Only tweets without URLs (i.e. no retweets) were
considered and users were filtered based on having 3+ original tweets per week, resulting in a dataset
containing 850,000 tweets spanning 1,900 users. Our dataset contains users who posted between the
years of 2009 and 2014 and had 20 contiguous weeks of data.

Additionally, we treat the problem as that of predicticting future change in affective language as op-
posed to modeling the static scores. By focusing on the change, the data is essentially detrended as if
mean centered (i.e. increasing stationarity in our time-series) while the static scores can still be derived.
To determine the change, a difference is taken between neighboring time steps for all features. After
which, 19 data points remain in our sequence which is further split into 14 weeks for training and 4
weeks for testing per user.

3.1 Linguistic Dimensions

Affect and Intensity: As our primary emotional dimension, we focus on affective valence. Valence,
in conjunction with intensity or arousal, are often considered fundamental coarse-grained constructs for
modeling emotional states (Russell, 1980; Posner et al., 2005). Valence can be thought of as the extent
of positive or negative emotion. We use the pre-trained model valence and intensity of (Preoţiuc-Pietro
et al., 2016b).

Six Emotions: To model the language of finer-grained emotions beyond just positive/negative valence,
we include the basic 6 emotions (Ekman, 1999). These consist of the following: Anger, Disgust, Joy,
Fear, Sadness, and Surprise. We extract these emotions from text using a human curated lexicon, as
defined by the NRC (Mohammad and Kiritchenko, 2015). The lexicon leverages the amount of words
that display each emotion per message to measure each emotion.

Embeddings: Language is also directly modeled as covariates to our psychological attributes in the
form of word embeddings. 2 different sets of representations are learned from our data in an effort to eval-
uate which works better for temporal tasks. First, we learn 50-dimensional word2vec embeddings over
a large corpus of social media data (15 million tweets). Second, we extract BERT representations (De-
vlin et al., 2019) for our tweets using bert-large and concatenate outputs from the last 4 layers. After
extraction of BERT features, a non-negative matrix factorization (Févotte and Idier, 2011) is learned
and applied using a subset of 50,000 tweets stratified across users. This matrix factorization brings the
BERT features down to 50-dimensions to match word2vec. Embeddings are averaged across all words
from a given week from a user. Models that leverage these additional context features are referred to as
multivariate, as opposed to pure autoregressive(univariate) models.

3.2 Daily data

To consider the effect of temporal resolution and sparsity of data, a setup over days rather than weeks
was also devised. This poses two interesting problems: (1) most users do not tweet in consecutive days
leading to some missing data and (2) daily emotions are more prone to large fluctuations compared to
longer stretches of time. The setup of the data is the same as the weekly counterpart, except that if a user
does not have data for a given day it is marked empty for the models that can handle missing data (see
GRU-D) or as no change, otherwise. These days are also excluded from testing data (so only days that
had tweets are tested against). For daily resolution steps only a single linguistic dimension is explored:
Affective valence.

3.3 Self-supervision

A key feature of affective language forecasting is its ability to be trained with self-supervision. Thus,
we propose using the inherent structure of the language itself as the forecasting target. Much like how a
language model will use the next observed word as its target we will use the next “observed“ attribute of
language, as determined by a pre-trained model (Preoţiuc-Pietro et al., 2016b).

4We also explored the, more sparse, daily level as a final experiment.
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Importantly, the ratings used by Preotiuc-Pietro et al had high inter-rater agreement (icc = .77) and
the models themselves were quite accurate in terms of producing continuous-valued scores(r = .65 and
r = 0.80).

When not leveraging a pre-trained model, a hand curated lexicon is used to extract the underlying
emotional target. As described for the 6 NRC emotions.

3.4 Train-Test Setup: Time and Users
In training a k-fold validation(k=5) is also performed, where for each fold the following sub-splits are
generated: train users(weeks 1-14), test users 1 (weeks 15-19 of train users) referred to as out-of-sample
time, test users 2 (weeks 15-19 of users held-out from training/validation) referred to as out-of-sample
users, and validation users (weeks 15-19 of users held-out from training, different than test users 2).

In more detail, for train users only their first 14 weeks are used to train our models. The remaining
weeks of these users form our main test set(in-sample user, out-of-sample time(OOS Time)). Validation
users are out-of-sample users where only weeks 15-19 of their time-series is used to tune hyperparame-
ters. Lastly, our second test set is comprised of weeks 15-19 from users excluded from both training and
validation(out-sample user, out-of-sample time (OOS User)). This is because in practice, there could be
applications where users will not be available for training but only for testing.

4 Methods

We seek to model the affective score of future language (Yt; e.g. the positive/negative valence of the
language) as a function of past affective language (Yt-1, Yt-2, ...) as well as other dimensions of past
language (Xt-1, Xt-2, ...; e.g. vector embeddings):

Yt = f([Yt-1;Xt-1], [Yt-2;Xt-2], ..., [Yt-k;Xt-k]) + ε (2)

where t represents the next time-span (e.g. next week, or tomorrow) and k represents a history length
(order) of data to look backwards. All observations are over users.

This self-supervised objective, assumes affect scores at a given time point can be determined based
only on the language at that time (i.e. Yt = a(Xt) where a is a model or mapping from language at time
t to affect score). For example, a simple affect score may come from a lexicon of positive words which
always produces the same affect score given the same set of word counts. On the more sophisticated
side, the score may come from a complex predictive model based on the writings of the particular user
at a particular time.

4.1 Dual Sequence, Decayed, GRU Network
Our primary approach is motivated by adapting powerful autoregressive sequence models for words and
phrases (recurrent neural networks) to our task of forecasting affective language across weeks or days.

Ŷt = f(g(ht-1, Yt-1, Xt-1)) (3)

where Y and X are the given affect scores and vector embeddings and ht−1 is the hidden state from the
previous time step: hs = g(hs-1, Ys-1, Xs-1) (4)

f is the aggregation and activation function for the output layer and g is the composition and activation
function for the recurrent layer.

Alternatively, one could model the progression as an aggregation over 2 separate, but related, se-
quences.

Ŷt = f(g1(h
(1)
t-1, Yt-1), g2(h

(2)
t-1, Xt-1)) (5)

h(1)s = g1(hs-1, Ys-1) (6)

h(2)s = g2(hs-1, Xs-1) (7)

where each gn is their own recurrent model learning from separate sequences of the affect score and
other language dimensions. f now aggregates their learned representations and generates a prediction.
A simple f would be to average the 2 separate predictions from each sequence.
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GRU Setup: We started with a standard GRU based RNN, due to their similar performance to LSTMs
while requiring fewer computations, but change a few initial configurations to better reflect the char-
acteristics of the autoregressive models rather than the typical sequential language tasks where GRU is
mostly applied. A shared learnable initial hidden state parameter was added to the network, allowing the
network to focus less on hidden state calculations at early time steps through the sequence. Additionally,
all of the reset gate biases were initialized to -1, favoring retention of hidden states.

An attention layer is also included to allow the GRU to weight time-steps. The attention calculation is
shown in equations 8, 9, and 10. Notice that in this context attention acts as a way of highlighting which
time-steps may contribute more to mood fluctuations and the score itself is based on the hidden states of
the other weeks. The first 2 equations handle the calculation of our attention weights for each time-step
and the third is a weighted sum of the hidden states.

Ĥ = tanh(H1:t) (8)
At = Softmax(W ∗ Ĥ +B) (9)

attn =
∑

At ∗Ht (10)

Decayed GRU: GRU-D (Che et al., 2018) has two important differences over a traditional GRU in
time-series tasks. First, it can account for missing data that is common across many time-series datasets.
Secondly, it applies a (learned) decay parameter across hidden-states to better emulate the passing of
time. An overview of these decays are below: 11 shows the formula for the learnable decay parameters
where δt is a time interval vector which encodes the time gap between observations, 12 shows the pa-
rameter applied to the input layer where md

t is a binary masking vector for variable d at time t, x̃d is the
mean, and xdt′ is the last observed value of xd and 13 is the decay applied to hidden states.

γt = exp (−max(0,Wγδt + bγ)) (11)

x̂dt = md
tx

d
t + (1−md

t )(γ
d
xtx

d
t′ + (1− γdxt)x̃

d) (12)
ĥt−1 = γht � ht−1 (13)

Attn Attn

Linear Linear

Wavg

GRU GRU GRU GRU GRU GRU

Figure 1: Architecture of parallel dual GRU system. Each
GRU has its own attention weights, the red border denotes tanh
activation across hidden output. Wavg is a weighted average
where weights are learned through training with an initial con-
figuration of .6/.4 target/context respectively

Dual-Sequence: In the models thus
far, the GRU does not explicitly han-
dle the input dimension representing
previous outcomes (Yt-1) any differ-
ent than any dimension of the input
embedding. Thus, we also devel-
oped another architecture that utilizes
2 parallel GRU layers. In this con-
figuration, one GRU layer will per-
form a pure(univariate) autoregres-
sion where its only input will be the
affect score(affective valence, inten-
sity, etc) and the other GRU will take
in any context variables(embeddings).
This approach enables separate atten-
tion layers, possibly highlighting dif-
ferent time-steps depending on the
type of data, while still training simul-
taneously. Structure of our proposed model is shown in figure 1, 2 GRUs with their own attention layers
and their final prediction being a (learned) weighted average of their outputs.

Dynamic Model Order: Normally when training an autoregressive model a restriction is set to apply
a fixed number of lag observations, commonly referred to as the order of regression denoted as p. The
order p is the amount of language history added to the model to make a prediction. Structure of an
autoregressive model can be seen in figure 2.
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Due to the dynamic unrolling nature of RNNs, there is no restriction to training with a set fixed p.
Here, we introduce dynamic order training: generating training examples of various length sequences
for each user with a selected minimum order and then add 1 more observation for each new history
length. Resulting in a training set where the first example is taken from each fixed order model(use
weeks 1-3 to predict 4, 1-4 to predict 5, until reaching the maximum 1-14 to predict 15). Both fixed and
dynamic p models are explored in the context of GRUs.

For models that can directly handle missing data(GRU-D) we mark dynamic p sequences shorter
than the maximum length(14) as missing. When using a fixed p we run GRU-D in a slightly different
configuration, namely GRU-DS, which only accounts for the internal state decay over time and doesn’t
directly model the missing data on the input layer.

4.2 Alternative Approaches
Deep Averaging Network: One way to model this problem is to ignore the sequential information
entirely but model the non-linearity’s between the average change in dimensions over a time-span. How-
ever, this approach is naive and is not encoding the most important aspect: time. A deep averaging
network(DAN) (Iyyer et al., 2015) with 2 dense layers and sigmoid activation between them is used.
During univariate training there are only 2 hidden units at each layer, while there are 35 when doing
multivariate.

Support Vector & Gradient Boosting Regression: These 2 models are popular approaches for many
machine learning tasks (Yoshimi and Kotani, 2019; Liu et al., 2019). The SVR chosen uses a linear
kernel and both models are implementations from the sklearn python package (Pedregosa et al., 2011).

Figure 2: Visualization of an autoregressive predic-
tion with an order p=4. The first prediction is made
using only the green(previously observed) data. For
each proceeding prediction the lag moves forward 1
time-step, but still maintains 4 previous observations
as input.

Autoregressive Ridge (AR-Ridge): A L2-
regularized(ridge) linear regression is also con-
sidered. In the field of time-series analysis a tra-
ditional linear regression is often preferred for
these types of tasks (Lydia et al., 2016; Balakr-
ishna et al., 2018).

Baselines: Simple Moving Average and Con-
stants: As a new task we propose a collection
of heuristic baseline models. For example, to
predict the future one may reuse values from
the past(i.e. someone’s change in mood may be
identical to their change last week).

We employ standard “zero rule” baselines,
with some modifications to time-series. These
are intended to capture easy to implement or naive approaches for prediction (Andrzejak et al., 2008;
Miglionico, 2019). The following 2 baselines are considered: (1) predict the last time step’s change
(last(1)) and (2) average of all available changes over a 14 time-step history (mean(14)).

An additional third baseline could be used where one would predict 0 change (no change), However,
for our evaluation we stick with the previously mentioned 2 baselines due to using Pearson correlation
(r) as our main evaluation metric. Where predicting 0 change would have no correlation with the actual
time-series values. Correlation is chosen as it is resistant to the scale of the target variable. Thus allowing
direct comparison of difficulty in forecasting across all of our affective dimensions

Transformer Networks: A popular approach to many tasks in Natural Language Processing is to
fine-tune a pre-trained language model (i.e. BERT) rather than train a smaller model from scratch.
However, these language models are pre-trained over individual messages and would require alternative
architectures for aggregating over multiple messages and capturing time. Since we are introducing the
problem we focus on a more fundamental setup and suggest such architectures would be an interesting
direction for future work. For example, one could explore various architectures for hierarchical models
on top of standard pre-trained transformer language models.
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Model (order) r
Baselines

Last (1) .47
Mean (14) .49

DAN (14) .49
GRU (14) .62
GRU-DS (14) .64
GRU-D (14) .64

Table 1: Performance of proposed GRU mod-
els: GRU with attention, and GRU with mem-
ory decay (GRU-D, GRU-DS) compared with
baselines and DAN. All models use the max,
order of 14, fixed history (p) and run with the
pure auto-regressive (univariate) input. Bold
results are found significant with p < .05 us-
ing a paired t-test.

Model (order) OOS Time(r) OOS Users(r)
GRU (11+) .63 .63
GRU-D (11+) .63 .64
GRU-DS (9) .64 .64

Table 2: Comparison of our various GRU model per-
formance when using in-sample users, out-sample
time and out-sample users, out-sample time. Uses
pure auto-regressive setting (only history of previ-
ous outcomes).

Ethics Statement: This research has been approved (deemed exempt status) by an academic institu-
tional review board.

5 Evaluation

The first set of results showcases the chosen zero rule baselines compared to all deep learning models
using a fixed order of 14 (the max). We show the results for the test set consisting of OOS Time users
for target variable affective valence. The zero rule baselines perform quite well, showing that even out-
predicting the past can be challenging. Note that the deep averaging network is operating on the same
information as the mean(14) baseline, so we expect it to perform similarly.

Figure 3: Comparison of GRUs for fixed and
variable order pure autoregressive approaches
as more history is added to the training exam-
ples for target variable affective valence. GRU-
D always leverages 14 weeks of data (Where
anything older than the set order is marked as
missing and leverages the mean instead). + de-
notes dynamic order and F denotes fixed order.

Additionally in practice there are many users who
would be forecasted but would possibly not be part of
the training data of any particular model. To emulate
this we examine results for a set of held-out users for
which our model has neither trained nor been tuned
on. We compare the results across select models from
the previous test set and this OOS User test set in
table 2. There seems to be no loss in predictive power
when evaluating against this held out set; showing the
robustness of the proposed models when fitting to a
real application scenario.

In figure 3, we show the effect of order p on our
autoregressive models with respect to correlation in a
pure autoregressive setup. As mentioned, a benefit of
using recurrent neural models for time-series model-
ing is the ability to implement dynamic unrolling on
variable length sequences. To explore the effective-
ness of our dynamic order technique for time-series,
we directly compare the GRU models using variable
p against training with a fixed p.

We find that applying the dynamic order to a model such as GRU-D, where data can be marked as
missing, gives clear benefits when compared against smaller fixed orders. However, as the order size
increases this loses its effectiveness. With respect to the amount of p required to create a robust model,
we typically find that most models perform best when utilizing 9 weeks of p before saturating.

We believe this is due to the shrinking of the training set. For each extra time-step of history, there is
a loss of 1 training example per user. In other words, each increase of 1 time-step of p reduces training
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Model (order) Uni(r) W2V(r)
Joint Sequence

GRU (11+) .63 .63
GRU-DS (13) .64 .64
GRU-D (9+) .65 .65

Dual Sequence
GRU (11+) - .63
GRU-DS (13) - .66
GRU-D (9+) - .66

Table 3: Pure auto-regressive versus
contextual auto-regressive / Joint versus
Dual: Comparison of univariate (pure au-
toregressive) versus multivariate (contex-
tual – includes features beyond the target
variable for the past) across the best mod-
els. Bold results show significance with
p < .05.

Model (order) W2V(r) BERT(r)
Dual Sequence

GRU (11+) .63 .62
GRU-DS (13) .66 .61
GRU-D (9+) .66 .61

Table 4: Comparison between the different types of lan-
guage representations, word2vec and bert across their
best GRU configurations. We believe BERT does not di-
rectly capture what our self-supervision technique high-
lights for emotions. Bold results show significance with
p < .05.

examples by approximately 1,900.
In table 3, we compare results across models when word embedding features are also included. From

our results we can see that utilizing the dual-GRU setup where one GRU handles a univariate autogression
and the other handles context variables is generally more favorable than utilizing only a single(joint)
GRU. However, generally there seems to be difficulty in extracting useful temporal information from
language representations in most cases.

We also highlight the differences in performance between using word2vec and BERT representations
in table 4. Typically, word2vec performs better than BERT for this task. We believe this is due to 2
reasons: (1) the objective of word2vec is more closely related to the way the pre-trained models were
trained(BOW) and how lexicons judge emotion (word occurrence, not context) and (2) BERT may be too
high of a level of semantics when trying to forecast the underlying temporal characteristics of language.

Affective valence prediction is also examined using off-the-shelf models such as SVR, GBR, and
(ridge) autoregression. Here, we show the best performing variants of each(their optimal p) and compare
to our best GRU model(dual GRU-DS p=13), shown in table 5.

A robustness check is performed to analyze sensitivity to seasonal trends. Figure 4a shows the squared
error averaged across all years of data separated by month for affective valence. Notably, there is not a
large increase in error during the winter months where one may expect emotions to be abnormal due to
the many holidays that occur, but rather error seems more dependent on number of users present in that
testing month, suggesting that this task scales well with respect to dataset size at the user level.

Robustness is also checked within user, where we visualize our model’s forecasted weekly changes for
a person’s affective valence, shown in figure 4b. Our model achieves great success at not only producing
accurate predictions but also capturing general trends in mood. However, there is evidence of the model
struggling when a user continually has large changes in mood week after week.

Results for affective attributes listed in section 3.1 are shown in table 6. Similar trends to affective

Model (order) r
SVR (13) .64
GBR (5) .58
AR-Ridge (9) .64
GRU-DS (13) .66

Table 5: Performance among traditional ML models given their optimal p and our best performing GRU
model. The traditional models perform quite well offering simplistic use, however the improvement with
deep learning implies there is more room to grow given larger data and model flexibility. Bold results
show significance with p < .05
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Language Variable r
Intensity(Arousal) .63
Anger .64
Disgust .63
Fear .65
Joy .63
Sadness .66
Surprise .64

Table 6: Results for the best model (dual GRU-
DS) for all other linguistic emotion dimensions
for OOS Time testing. In this configuration we
used multivariate input(word2vec) and an order
of 13 weeks.

Model (order) r
Last (1) .22
SVR (3) .36
AR-Ridge (3) .37
GRU (3+) .34
GRU-DS (3) .37
GRU-D (3+) .38

Table 7: Pure autoregressive OOS Time results
across models at daily resolution. All models use
a observation order of 3, which was found ideal, ex-
cept the zero rule baseline which is 1 by definition.
Bold results show significance with p < .05.

(a) Error analysis across time (b) Error analysis within user

Figure 4: (A) Average squared error per month across our OOS Time set; shown with standard error bars
and the amount of users in that month. Higher error is related to having fewer users that fell into that
test month rather than influence from any seasonal event(i.e. winter holidays or summer vacations). (B)
Dual GRU-DS performance when evaluating against a user’s change in affective valence across weeks,
compared with baseline mean(14) and the ground truth labels. We find that our predictions are typically
accurate. However, even when they fail the general trend is still present

valence are seen across these attributes, implying there is an underlying structure of affective language
in the temporal domain.

Finally, performance on the daily resolution dataset for affective valence is presented. A brief selection
of results is shown in table 7. In this setup, we only utilize a pure autoregressive approach rather than
multivariate, due to the abundance of missing data. GRU-D performs the best on this task, which we
believe is due to the nature of GRU-D and its ability to model missing data directly.

6 Conclusion

We presented a new subtask in NLP, self-supervised affective forecasting. The models proposed in this
work cover a wide range from traditional machine learning to deep learning techniques. While traditional
models perform well, GRUs with decayed hidden states provided more accurate results and offer a more
flexible architecture. We find this most helpful when experimenting with extra context features, such as
word embeddings, splitting the inputs into 2 separate forecasts for a dual sequence GRU offers the best
predictive power.

We also show that our modeling choices are robust to both seasonal variation and multiple evaluation
paradigms: OOS Time and OOS User. Lastly, we found a strong relationship between the order of our
models and the accuracy of future predictions with a performance leveling out roughly at a history of 9
weeks for pure autoregressive and 13 weeks for dual GRU-DS.

Affective forecasting can be leveraged for many domains, such as social sciences (mental health),
business (consumer buying habits, targeted ads), and athletics (game performance). We encourage others
to pick up this challenging task by releasing our novel dataset and task setup code.
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