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Abstract

Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due
to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and
Vietnamese. Many previous approaches use translation data by translating from a rich-source
language, such as English, to low-source languages as auxiliary supervision. However, how to
effectively leverage translation data and reduce the impact of noise introduced by translation
remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transfer-
ring performance by a novel augmentation approach named Language Branch Machine Reading
Comprehension (LBMRC). A language branch is a group of passages in one single language
paired with questions in all target languages. We train multiple machine reading comprehension
(MRC) models proficient in individual language based on LBMRC. Then, we devise a multilin-
gual distillation approach to amalgamate knowledge from multiple language branch models to a
single model for all target languages. Combining the LBMRC and multilingual distillation can
be more robust to the data noises, therefore, improving the model’s cross-lingual ability. Mean-
while, the produced single multilingual model can apply to all target languages, which saves the
cost of training, inference, and maintenance for multiple models. Extensive experiments on two
CLMRC benchmarks clearly show the effectiveness of our proposed method.

1 Introduction

Machine Reading Comprehension (MRC) is a central task in natural language understanding (NLU)
with many applications, such as information retrieval and dialogue generation. Given a query and a text
paragraph, MRC extracts the span of the correct answer from the paragraph. Recently, as a series of large-
scale annotated datasets become available, such as SQuAD (Rajpurkar et al., 2016) and TriviaQA (Joshi
et al., 2017), the performance of MRC systems has been improved dramatically (Xiong et al., 2017;
Hu et al., 2017; Yu et al., 2018; Wang et al., 2016; Seo et al., 2016). Nevertheless, those large-scale,
high-quality annotated datasets often only exist in rich-resource languages, such as English, French
and German. Correspondingly, the improvement of MRC quality can only benefit those rich-source
languages. Annotating a large MRC dataset with high quality for every language is very costly and may
even be infeasible (He et al., 2017). MRC in low-resource languages still suffers from the lack of large
amounts of high-quality training data.

Besides, in real business scenarios, it is not practical to train separate MRC models for each language
given that there are thousands of languages existed in the world. Thus multi-lingual MRC (single model
for multiple languages) is of strong practical value by greatly reducing the model training, serving and
maintenance costs.

To tackle the challenges of MRC in low-resource languages, cross-lingual MRC (CLMRC) is pro-
posed, where translation systems are used to translate datasets from rich-source languages to enrich

∗Equal contribution. Work was done when Junhao Liu was an intern at Microsoft STCA.
†Min Yang and Daxin Jiang are corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



2711

training data for low-resource languages (Asai et al., 2018; Lee et al., 2018). However, CLMRC is
severely restricted by translation quality (Cui et al., 2019).

Recently, large-scale pre-trained language models (PLM) (Devlin et al., 2018; Yang et al., 2019; Sun
et al., 2019) are shown effective in NLU related tasks. Inspired by the success of PLM, multilingual
PLM (Lample and Conneau, 2019; Huang et al., 2019; Liang et al., 2020) are developed by leverag-
ing large-scale multilingual corpuses for cross-lingual pre-training. Those powerful multilingual PLM
are capable of zero-shot or few-shot learning (Conneau et al., 2018; Castellucci et al., 2019), and are
effective to transfer from rich-resource languages to low-resource languages. Although those methods
gain significant improvements on sentence-level tasks, such as sentence classification (Conneau et al.,
2018), there is still a big gap between the performance of CLMRC in rich-resource languages and that
in low-resource languages, since CLMRC requires high quality fine-grained representation at the phase-
level (Yuan et al., 2020).

Several studies combine multilingual PLM with translation data to improve the CLMRC performance
by either data augmentation using translation (Singh et al., 2019) or auxiliary tasks (Yuan et al., 2020)
(see Section 2 for some details). Those studies take two alternative approaches. First, they may just
leverage translated data in target languages as new training data to directly train target language models
(Hsu et al., 2019). The performance of such models is still limited by the translation issues (i.e, the noise
introduced by the translation processing). Second, they may strongly rely on language-specific external
corpuses, which are not widely or easily accessible (Yuan et al., 2020).

According to the generalized cross-lingual transfer result (Lewis et al., 2019), the best cross-lingual
performance is often constrained by the passage language, rather than the question language. In other
words, the passage language plays an important role in CLMRC. The intuition is that the goal of MRC
to pinpoint the exact answer boundary in passage, thus the language of passage has stronger influence on
the performance than the question language. Motivated by this intuition, in this paper, we propose a new
cross-lingual training approach based on knowledge distillation for CLMRC. We group the translated
dataset (i.e., both questions and passages are translated into all target languages) into several groups. A
group, called a language branch, contains all passages in one single language paired with questions in
all target languages. For each language branch, a separate teacher model is trained. Those language
branch specific models are taken as teacher models to jointly distill a single multilingual student model
using a novel multilingual distillation framework. With this framework, our method can amalgamate
multiple language diversity knowledge from language branch specific models to a single multilingual
model and can be more robust to defeat the noises in the translated dataset, which obtains better cross-
lingual performance.

We make the following technical contributions. First, on top of translation, we propose a novel lan-
guage branch training approach by training several language specific models as teachers to provide fine-
grained supervisions. Second, based on those teacher models, we propose a novel multilingual multi-
teacher distillation framework to transfer the capabilities of the language teacher models to a unified
CLMRC model. Last, we conduct extensive experiments on two popular CLMRC benchmark datasets in
9 languages under both translation and zero-shot conditions. Our model achieves state-of-the-art results
on all languages for both datasets without using any external large-scale corpus.

The rest of the paper is organized as follows. We review related work in Section 2, and present our
method in Section 3. We report experimental results in Section 4 and conclude the paper in Section 5.

2 Related Work

Our study is mostly related to the existing work on CLMRC and knowledge distillation. We briefly
review some most related studies here.

Assuming only annotated data in another source language is available, CLMRC reads one context
passage in a target language and extracts the span of an answer to a given question. Translation based
approaches use a translation system to translate labeled data in a source language to a low-resource target
language. Based on the translated data, Asai et al. (2018) devise a run-time neural machine translation
based multilingual extracted question answering method. Singh et al. (2019) propose a data augmenta-
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Figure 1: Model overview of our approach.

tion strategy for cross-lingual training. Cui et al. (2019) leverage a back-translation method to conduct
CLMRC. All of these methods rely on a translation system to obtain high-quality translation data, which
may not be available for some low-resource languages.

Recently, large-scale pre-trained language models have shown effective in many natural language
processing tasks, which prompt the development of multilingual language models, such as multilingual
BERT (Devlin et al., 2018), XLM (Lample and Conneau, 2019), and Unicoder (?). These language
models aim to learn language agnostic contextual representations by leveraging large-scale monolingual
and parallel corpuses, which show great potential on cross-lingual tasks, such as sentence classification
tasks (Hsu et al., 2019; Pires et al., 2019; Conneau et al., 2018). However, there is still a big gap
between the performance of CLMRC in rich-resource languages and that in low-resource languages,
since CLMRC requires the capability of fine-grained representation at the phase-level (Yuan et al., 2020).

To further boost the performance of multilingual PLM on CLMRC task, Yuan et al. (2020) propose
two auxiliary tasks mixMRC and LAKM on top of multilingual PLM. Those auxiliary tasks improve the
answer boundary detection quality in low-resource languages. mixMRC first uses a translation system to
translate the English training data into other languages and then constructs an augmented dataset of pairs
〈question, passage〉 in different languages. This new dataset turns out to be quite effective and can be
used directly to train models on target languages. LAKM leverages language-specific meaningful phrases
from external sources, such as entities mined from search logs of commercial search engines. LAKM
conducts a new knowledge masking task. Any phrases contained in the training instances belonging
to the external sources are replaced by a special token [MASK]. Then, the task of mask language
model (Devlin et al., 2018) is conducted. The mixMRC task may still be limited by the translation
quality and LAKM requires a large amount of external corpus, which is not easily accessible.

Knowledge Distillation is initially adopted for model compression (Buciluǎ et al., 2006), where a small
and light-weight student model learns to mimic the output distribution of a large teacher model. Recently,
knowledge distillation has been widely applied to many tasks, such as person re-identification (Wu et al.,
2019), item recommendation (Tang and Wang, 2018), and neural machine translation (Tan et al., 2019;
Zhou et al., 2019; Sun et al., 2020). Knowledge distillation from multiple teachers is also proposed (You
et al., 2017; Yang et al., 2020), where the relative dissimilarity of feature maps generated from diverse
teacher models can provide more appropriate guidance in student model training. Knowledge distillation
is effective in transfer learning in those applications.

In this paper, on top of translation, we propose a novel approach of language branch training to ob-
tain several language-specific teacher models. We further propose a novel multilingual multi-teacher
distillation framework. In contrast to the previous work (Hu et al., 2018; Yuan et al., 2020), our pro-
posed method can greatly reduce the noise introduced by translation systems without relying on external



2713

LBMRC Dataset for English

Passage_en: … Immediately in front of the Main Building and 
facing it, is ([a copper statue of Christ)] with arms upraised …

Question_en Question_es Question_de

LBMRC Dataset for Spanish

Passage_es: … Inmediatamente frente al Edificio Principal y frente 
a él, está ([una estatua de cobre de Cristo)] con los brazos …

Question_en Question_es Question_de

Passage_de: … Unmittelbar vor dem Hauptgebäude und davor 
befindet sich ([eine kupferne Christusstatue)] mit Waffen …

Question_en Question_es Question_de

LBMRC Dataset for German

Question_en: What is in front of the Notre Dame Main Building?

Passage_en: … Immediately in front of the Main Building and 
facing it, is ([a copper statue of Christ)] with arms upraised …

Question_es: ¿Qué hay frente al edificio principal de Notre Dame?

Passage_es: … Inmediatamente frente al Edificio Principal y frente 
a él, está ([una estatua de cobre de Cristo)] con los brazos …

Question_de: Was ist vor dem Notre Dame-Hauptgebäude?

Passage_de: … Unmittelbar vor dem Hauptgebäude und davor 
befindet sich ([eine kupferne Christusstatue)] mit Waffen …

Translate English Dataset into Non-English 

English MRC Dataset

Translated Spanish and German MRC Dataset

1

2

Figure 2: Overview of LBMRC dataset construction process. We use 3 languages (English, Spanish,
German) in this illustration. In the first step, the English MRC dataset is translated into the other lan-
guages, including both questions and passages. In the second step, the construction method described in
Section 3.1 is applied to build the LBMRC dataset for each language.

large-scale, language-specific corpus. Our method is applicable to more cross-lingual tasks.

3 Methodology

We formulate the CLMRC problem as follows. Given a labeled MRC datasetDsrc = {(psrc, qsrc, asrc)}
in a rich-resource language src, where psrc, qsrc and asrc are a passage, a question, and an answer to
qsrc, respectively, the goal is to train a MRC modelM for the rich-resource language src and another
low-resource language tgt. For an input passage ptgt and question qtgt in tgt,M can predict the answer
span atgt = (atgts , atgte ), where atgts and atgte are the starting and ending indexes of the answer location in
passage ptgt, respectively. ModelM is expected to have good performance not only in the rich-resource
language src, but also in the low-resource language tgt.

We first propose a new data augmentation based training strategy, Language Branch Machine Reading
Comprehension (LBMRC), to train separate models for each language branch. A language branch is a
group that contains passages in one single language accompanied with questions in all target languages.
Under this setting, we can construct a language branch dataset for each language. Using each language
branch dataset, we train a separate MRC model proficient in the language. Then, the branch-specific
MRC models are taken as multiple teacher models to train a single multilingual MRC student model
using a novel multilingual language branch knowledge distillation framework. The overview of our
approach is illustrated in Figure 1.

3.1 Language Branch Machine Reading Comprehension (LBMRC)

The generalized cross-lingual transfer (G-XLT) approach (Lewis et al., 2019) trains a cross-lingual MRC
model using the SQuAD (Rajpurkar et al., 2016) dataset and evaluates the model on samples of questions
and passages in different languages. The results show that the best cross-lingual answering performance
in the testing phase is sensitive to the language of passages in the test data rather than the language of
questions. This observation suggests that the language of passages in training data may play an important
role in the CLMRC task.

Based on the above understanding, we devise a new data augmentation based training strategy
LBMRC. It first trains MRC models in several languages and then distills those models to derive a final
MRC model for all target languages. In contrast to the mixMRC strategy (Yuan et al., 2020), LBMRC
groups the translation data into several language branches using passage languages as identifiers. Each
language branch contains all passages translated into one single language accompanied with questions
in different languages. Figure 2 shows the overall procedure of this data construction process. We train
a separate MRC model for each language branch, which is expected to be proficient in one specific
language.
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3.1.1 Language Branch Construction
To obtain parallel question and passage pairs in different languages, we adopt a method similar to (Yuan
et al., 2020; Singh et al., 2019) by employing a machine translation system to translate a labeled dataset
of questions and passages in English into datasets in multiple languages Dk = {(pk, qk, ak)}, where
pk, qk and ak are a passage, a question, and the answer to qk, respectively, all in language k. In this
process, it is hard to recover the correct answer spans in translated passages. To mitigate this problem,
we take a method similar to (Lee et al., 2018) that adds a pair of special tokens to denote the correct
answer in the original passage. We discard those samples where the answer spans cannot be recovered.
The language branch for language k is the set of passages and answers in language k accompanied by
the queries in all languages, that is, DLB

k = {(pk, {q1, . . . , qK}, ak)}, where K is the total number of
languages.

3.1.2 Language Branch Model Training
Similar to the MRC training method proposed in BERT (Devlin et al., 2018), the PLM model is adopted
for encoding the input text x = [q, p] into a deep contextualized representation H ∈ RL×h, where L
represents the length of the input text x, h is the hidden size of the PLM model. Then, we can calculate
the final start and end position predictions ps,pe. Take the start position ps as an example, it can be
obtained by the following equations:

zs = H · us + bs

ps = softmax(zs/τ)
(1)

where us ∈ Rh, bs ∈ RL are two trainable parameters, zs ∈ RL represents the output logits, ps ∈ RL is
the predicted output distribution of the start positions, τ is the temperature introduced by (Hinton et al.,
2015) to control the smoothness of the output distribution.

For each DLB
k , we train a language branch MRC model Mk by optimizing the log-likelihood loss

function:

LNLL(DLB
k ;Mk) = −

1

N

N∑
i=1

(
(ak

s,i)
T · log(pk

s,i) + (ak
e,i)

T · log(pk
e,i)
)

(2)

whereN is the total number of samples inDLB
k , the temperature parameter τ is set to 1, (pk

s,i,p
k
e,i) ∈ RL

are the start and end position predictions of sample i from modelMk, (ak
s,i,a

k
e,i) ∈ RL are the ground-

truth one-hot labels for the start and end positions of sample i in DLB
k .

3.2 Multilingual Multi-teacher Distillation

Let Mstu denote the model parameters of the student multilingual MRC model. Mstu is expected to
distill the language-specific knowledge from the multiple language branch teachers {Mk}Kk=1. In terms
of training data, we take the union of LBMRC datasets as the distillation training dataset D which is
D = {DLB

1 ∪ · · · ∪ DLB
K }.

Distillation Training We train a multilingual student model to mimic the output distribution of the
language branch teacher models. Specifically, the distillation loss of the student model can be described
in the form of cross-entropy. In order to distill knowledge from multiple teachers simultaneously, we
propose to aggregate the predicted logits from different teachers. Formally, the distillation soft logits
zs,i, ze,i used to train the student model can be formulated as:

zs,i =
K∑
k=1

wk
s · zk

s,i; ze,i =
K∑
k=1

wk
e · zk

e,i (3)

where wk = {wk
s , w

k
e} are hyper parameters to control the contributions of each teacher model, zk

s,i

and zk
e,i are the predicted soft logits of sample i from the language branch teacher model Mk. The
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multilingual multi-teacher distillation loss can be calculated as:

LKD(D;Mstu) = −
1

N

N∑
i=1

(
(ps,i)

T · log(pstu
s,i ) + (pe,i)

T · log(pstu
e,i )
)
× τ2 (4)

where τ is the temperature parameter, ps,i and pe,i are the start and end distributions calculated by
Equation 1 based on soft logits zs,i, ze,i, pstu

s,i and pstu
e,i are also calculated by the softmax-temperature

based on the student predicted soft logits zstu
s,i , z

stu
e,i .

Besides, the student model can be also trained using the ground-truth labels of start and end indexes.
Let LNLL(D;Mstu) denote the log-likelihood loss function of the one-hot label on the training dataset
D, which can be formulated as follows:

LNLL(D;Mstu) = −
1

N

N∑
i=1

(
(as,i)

T · log(pstu
s,i ) + (ae,i)

T · log(pstu
e,i )
)
. (5)

Finally, the whole multilingual distillation training loss for the student modelMstu can be summarized
as:

LTotal(D;Mstu) = λ1LNLL(D;Mstu) + λ2LKD(D;Mstu) (6)

where λ1 and λ2 are hyper parameters to balance the contribution of two types of loss.

Selective Distillation Here, we consider a proper mechanism to choose the distillation weights
{wk}Kk=1 which can assist the student model to learn from a suitable teacher. We investigate two selection
strategies and experiment with their performance in the distillation processing. As the first method, we
treat the weights as prior hyper parameters which means that we fix the {wk}Kk=1 with initial values and
train our student model with the same weights during the whole process. In the second mechanism, we
use the entropy impurity to measure the teacher’s confidence of a predicted answer including the output
distributions of start and end indexes. The confidence of the answer is higher when the impurity has a
lower value. Take the start position aggregation as an example, the impurity value is used to determine
the weight distribution {wk

s}Kk=1 as follows:

pk
s = softmax(zk

s ),

I(pk
s) = −(pk

s)
T · log(pk

s)

wk
s =

exp(I(pk
s))∑

j exp(I(p
j
s))

(7)

where I(·) represents the impurity function, zk
s represents the predicted logits of start position from

Mk. Based on this, the distillation weights for each teacher model can be adjusted automatically for
each instance.

4 Experiments

Extensive experiments of our proposed method are conducted on two public cross-lingual MRC datasets.
In the following sections, we describe our experimental settings, results, and analyze the performance.

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Metrics
To verify the effectiveness of our method. We use the following datasets to conduct our experiments.

MLQA A cross-lingual machine reading comprehension benchmark (Lewis et al., 2019). The in-
stances in MLQA cover 7 languages. We evaluate our method on three languages (English, German,
Spanish) with translation training method, and also test our method under the setting of zero-shot trans-
fer on the other three languages (Arabic, Hindi, Vietnamese).
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XQuAD Another cross-lingual question answering dataset (Artetxe et al., 2019). XQuAD contains
instances in 11 languages, and we cover 9 languages in our experiments. Similar to the setting above,
we evaluate our method on English, German, Spanish. In addition, we test our method on Arabic, Hindi,
Vietnamese, Greek, Russian, and Turkish under the setting of zero-shot transfer.

Evaluation Metrics The evaluation metrics used in our experiments are same as the SQuAD
dataset (Rajpurkar et al., 2016) including F1 and Exact Match score. F1 score measures the answer
overlap between the predicted and ground-truth answer spans. Exact Match score measures the percent-
age of predicted answer spans exactly matching the ground-truth labels. We use the official evaluation
script provided by (Lewis et al., 2019) to measure performance over different languages. For the XQuAD
dataset, we follow the official instruction provided by (Artetxe et al., 2019) to evaluate our predicted re-
sult.

4.1.2 Baseline Methods
We compare our method with the following baseline methods: (1) Baseline, a method originally proposed
in (Lewis et al., 2019) that the MRC model is trained in English dataset and tested on the other languages
directly, (2) mixMRC, a translation based data augmentation strategy proposed in (Yuan et al., 2020;
Singh et al., 2019), which mixes the question and passage in different languages, (3) LAKM, a pre-trained
task devised in (Yuan et al., 2020) by introducing external sources for phrase level mask language model
task, and (4) mixMRC + LAKM, a combination method of (2) and (3) through multiple task learning.

4.1.3 Implementation Details
We adopt the pre-trained multilingual language model XLM (Lample and Conneau, 2019) to conduct our
experiments. XLM is a cross-lingual language model pre-trained with monolingual and parallel cross-
lingual data to achieve decent transfer performance on cross-lingual tasks. We use the Transformers
library from HuggingFace (Wolf et al., 2019) to conduct our experiments. For the MRC task, the pre-
trained model is used as the backbone and two trainable vectors are added to locate the start and end
positions in the context passage, same with (Devlin et al., 2018).

To construct the LBMRC dataset, We translate the SQuAD dataset to Spanish and German languages
which are two relatively high-resource languages, hence, the number of language branch models is 3
(K = 3). The target languages of our CLMRC model are English, Spanish, and German. The English
branch dataset is always added to other non-English language branch datasets to improve the data quality,
which can reduce the impact of noise in data and improve the performance of non-English teachers in
our experiments.

In order to fit the multilingual model into the GPU memory, we pre-processed the teachers’ logits
for each instance in dataset D. For the multilingual model training, We use AdamW optimizer with
eps = 1e−8 and set weight decay to 0.005. The learning rate is set as 1e−5 for the language branch
model training and distillation training. The XLM model is configured with its default setting. For the
first selective distillation mechanism, we set the hyper parameters of wk

s = wk
e = 1/K which reach the

best performance in our experiments. The distillation loss weight is set as λ1 = 0.5, λ2 = 0.5 and the
softmax temperature τ = 2. We train 10 epochs for each task which can make sure each task converges.

4.2 Experimental Results
4.2.1 Results on MLQA
We first evaluate our method on the MLQA dataset in 6 languages. The results are shown in Table 1.
Compared with XLM baselines of original report results and our reproduced results, our method with
both selective multilingual distillation strategies (Ours-hyper, Ours-imp) outperform the strong baseline
LAKM, mixMRC and mixMRC + LAKM in en, es and de. Especially note that the LAKM method uses
extra language corpus to train a better backbone language model, while our method without using exter-
nal data can also improve the performance significantly with more than 3% consistent gains in es and de
languages. This verifies that the LBMRC training approach could preserve the language characteristics
in each teacher model and the multi-teacher distillation step could further reduce the training data noise
introduced during the translation process.
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Methods
MLQA (EM / F1)

en es de ar hi vi

Lewis¶ 62.4 / 74.9 47.8 / 65.2 46.7 / 61.4 34.4 / 54.0 33.4 / 50.7 39.4 / 59.3
Baseline 63.4 / 77.3 49.7 / 68.2 48.5 / 63.7 37.5 / 56.9 37.0 / 54.3 42.4 / 63.5
LAKM 64.6 / 79.0 52.2 / 70.2 50.6 / 65.4 - - -
mixMRC 63.8 / 78.0 52.1 / 69.9 49.8 / 64.8 38.5 / 58.4 40.1 / 57.1 45.2 / 66.2
mixMRC + LAKM 64.4 / 79.1 52.2 / 70.3 51.2 / 66.0 - - -

Ours-hyper 64.8 / 79.3 53.9 / 71.8 52.1 / 66.8 40.4 / 60.0 42.8 / 59.8 46.1 / 67.2
Ours-imp 64.7 / 79.2 54.3 / 72.0 52.4 / 66.9 40.1 / 59.9 42.9 / 59.9 46.5 / 67.5

Table 1: EM and F1 score of 6 languages on the MLQA dataset. The left 3 languages (en, es, de) are
under translation condition while the right part (ar, hi, vi) results are under the zero-shot transfer method.
The results with ¶ are adopted from Lewis et al. (2019).

We further test our method under the setting of zero-shot transfer in other languages ar, hi, vi. Since
the LAKM method requires language-specific corpora to train the backbone model, it is not feasible
to access such a corpus to train the backbone model for every low-resource language. Hence, we only
compare our method with mixMRC for a fair comparison. For the languages ar, hi and vi, we zero-shot
transfer our model to predict in these contexts. We can find that our method also obtains state-of-art
results compared with the mixMRC and Baseline with more than 4% improvement. These results in
the MLQA dataset show that our method not only improves the performance in the languages included
in our language branch training but also has better-transferring capability to predict the answer in those
languages not included in our language branch.

To compare the two selective distillation strategies we devised above, the impurity selective mecha-
nism Ours-imp gets the best results on most languages, thus proving to be a proper way to aggregate the
knowledge from multiple language branch teachers than the weight fixing method Ours-hyper.

Methods
XQuAD (EM / F1)

en es de

Baseline 68.8 / 81.3 56.9 / 75.6 55.5 / 72.6
mixMRC 69.2 / 82.4 58.7 / 78.8 58.2 / 75.4

Ours-hyper 69.9 / 83.2 59.3 / 79.9 59.4 / 76.3
Ours-imp 70.1 / 83.4 59.6 / 80.0 59.8 / 76.5

Table 2: EM and F1 score of 3 languages on the XQuAD dataset under the translation-train setting.

Methods
XQuAD (EM / F1)

ar hi vi el ru tr

Baseline 43.2 / 62.6 46.0 / 63.1 48.7 / 70.4 49.4 / 68.5 55.2 / 72.3 44.1 / 63.1
mixMRC 42.4 / 63.6 50.0 / 66.2 52.7 / 72.6 51.1 / 72.1 58.7 / 75.9 47.8 / 65.8

Ours-hyper 44.5 / 65.0 52.0 / 67.4 55.5 / 74.6 52.2 / 73.1 59.3 / 76.6 50.8 / 68.3
Ours-imp 44.0 / 64.6 52.5 / 67.9 55.6 / 74.9 52.4 / 73.3 59.6 / 76.6 50.2 / 67.7

Table 3: EM and F1 score of 6 languages on the XQuAD dataset under the zero-shot transfer setting.

4.2.2 Results on XQuAD
We evaluate our method on another common used cross-lingual benchmark XQuAD dataset in 9 lan-
guages. The results are shown in Table 2 and 3 which are under the condition of translation and zero-shot
respectively. Since the LAKM method is not suitable in this dataset, we directly compare our method
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with the mixMRC. Our method consistently outperforms the mixMRC methods in both two conditions.
In terms of translation condition, our best method Ours-imp gets 1.7% and 2.7% improvement of EM
score on es and de respectively. The impurity selective strategy is better for these 3 languages. In terms
of the zero-shot transfer, our method obtains a bigger improvement in these 6 languages. Take the Ours-
hyper as an example, 4 languages (ar, hi, vi, tr) gain more than 2 points increase of EM score compared
with the strong baseline mixMRC. The other 2 languages also have decent EM metric improvement with
2.5% and 1.5% for el and ru respectively. The evaluation results on the XQuAD dataset further verify
the effectiveness and robustness of our proposed method.

4.3 Analysis

4.3.1 Why Use LBMRC?
First, we analyze the training strategy of LBMRC. In order to get different language branch teachers, a
possible way is to train each teacher model according to the translated dataset directly. Take the German
as an example, this method directly uses the German MRC dataset translated from English as the training
set to train the German MRC model. The evaluation results are shown in Table 4, where the results with
¶ are adopted from Lewis et al. (2019), the Baseline method uses the only English dataset to train and
then zero-shot transfers to other languages, and the w/o LBMRC method translates the English dataset to
other languages and train separate MRC models for each translated dataset. This method (w/o LBMRC)
even underperforms the Baseline method where only English training data is used, which aligns with the
results from Lewis et al. (2019). The results show that simply leveraging the noisy translated datasets for
training can not improve the performance properly.

Methods MLQA (EM / F1)
en es de

Lewis¶ 62.4 / 74.9 49.8 / 68.0 47.6 / 62.2
Baseline 63.4 / 77.3 49.7 / 68.2 48.5 / 63.7
w/o LBMRC - 49.6 / 68.3 47.5 / 62.2

Table 4: Translate-train result instead of LBMRC.

Teachers MLQA (EM / F1)
en es de

En 63.2 / 77.6 51.2 / 69.4 49.3 / 64.2
Es 62.9 / 77.4 51.9 / 70.0 49.1 / 63.9
De 63.6 / 78.1 51.2 / 69.3 50.4 / 65.0

Table 5: Performance of LBMRC teacher models.

The performance of our LBMRC teacher models are shown in Table 5. With the method introduced in
Section 3.1.2, we train each language branch teacher model using the according LBMRC dataset. From
the results, we can see that the Es and De teacher models achieve the best result on the test set in its
own language, which verifies the hypothesis we proposed in Section 3.1.2 that teacher model trained
using LBMRC can preserve language-specific characteristics. Compared with models trained using the
mixMRC strategy, LBMRC preserve the language diversity to obtain language-specific expert models.

4.3.2 Why Multilingual Multi-teacher Distillation Works?
According to Table 5, an observation is the performance of our teachers is worse than our distillation
models (Ours-hyper, Ours-imp) in Table 1, which due to the hidden noise in the training set introduced
by the translation process. With the help of multilingual distillation training, the student model can
be more robust to the data noises and effective to use the translated dataset. We further conduct some
ablation studies on different teacher settings: (1) w/o de, remove the de teacher model during multilingual
distillation training process, (2) w/o es, remove the es teacher model during multilingual distillation, (3)
w/ en, only adopt the en teacher model into the multilingual distillation process, and (4) w/ mix, we take
three MRC models trained with mixMRC strategy as the teacher models to do distillation training and
obtain a new single student model, where we use the same number of the teacher in our method for a fair
comparison. This study (w/ mix) is to verify the effectiveness of the language branch-based multilingual
distillation. The ablation results are reported in Table 6.

With the ablation study results, we can summarize that each teacher in different languages can have
specific contributions to our approach. Take w/o de as an example, the result shows that the de result
drops significantly compared with our best score while the en and es results are still relatively close.
While the w/o es shows similar trends in terms of the es test result. For w/ en (without leveraging the
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Exp.
MLQA (EM / F1)

en es de

Ours 64.7 / 79.2 54.3 / 72.0 52.4 / 66.9
- w/o de 64.5 / 79.0 54.1 / 71.9 51.2 / 66.1
- w/o es 64.4 / 78.6 53.2 / 71.2 51.8 / 66.6
- w/ en 63.9 / 78.2 52.8 / 70.9 50.9 / 65.8
- w/ mix 64.6 / 79.1 53.6 / 71.3 50.8 / 65.5

Table 6: The ablation study under different experiment settings.

knowledge from language branch teachers), the results degrade significantly on all languages. To further
verify the importance of LBMRC in the multilingual distillation, we replace LBMRC teacher models
with models trained using the mixMRC method. The experiment (w/ mix vs Ours) shows that the student
model has similar performance in en, but the performance in es and de have a big gap compared with our
method, especially for de. This shows that LBMRC could enhance cross-lingual transfer capability and
the effectiveness of multilingual distillation.

5 Conclusions

In this paper, we propose a novel language branch data augmentation based training strategy (LBMRC)
and a novel multilingual multi-teacher distillation framework to boost the performance of cross-lingual
MRC in low-resource languages. Extensive experiments on two multilingual MRC benchmarks verify
the effectiveness of our proposed method either in translation or zero-shot settings. We further analyze
the reason why combine the LBMRC and multilingual distillation can gain better cross-lingual perfor-
mance, which shows that our method is more effective to use the translation dataset and more robust to
the noise hidden in the translated data. In addition, our distillation framework produces a single multi-
lingual model applicable to all target languages, which is more practical to deploy multilingual serves.
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