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Abstract

We present a parsing model for projective dependency trees which takes advantage of the exis-
tence of complementary dependency annotations for a language. This is the case for Arabic with
the availability of CATiB and UD treebanks. Our system performs syntactic parsing according
to both annotation types jointly as a sequence of arc-creating operations following the Easy-First
approach, and partially created trees for one annotation type are also available to the other as
features for the score function. This method gives error reduction of 9.9% on CATiB and 6.1%
on UD compared to a single-task baseline, and ablation tests show that the main contribution
of this reduction is given by sharing tree representation between tasks, and not simply sharing
BiLSTM layers as is usually performed in NLP multitask systems.

1 Introduction

Dependency parsing is the task of assigning a syntactic structure to a sentence by linking its words with
binary asymmetrical typed relations. In addition to syntactic information, dependency representations
encode some semantic aspects of the sentence which make them important to downstream applications
including sentiment analysis (Tai et al., 2015) and information extraction (Miwa and Bansal, 2016).

In this paper we are interested in Arabic dependency parsing for which two formalisms have been
developed (See §2). The first is the Columbia Arabic Treebank (CATiB) representation (Habash and
Roth, 2009), which is inspired by Arabic traditional grammar and which focus on modeling syntactic
and morpho-syntactic agreement and case assignment. The second is the Universal Dependency (UD)
representation (Taji et al., 2017), which has relatively more focus on semantic/thematic relations, and
which is coordinated in design with a number of other languages (Nivre et al., 2017). While previous
work on Arabic dependency parsing (Marton et al., 2013; Taji et al., 2017) tackled these formalisms
separately, we argue that they stand to benefit from multitask learning (MTL) (Caruana, 1993). MTL
allows for more training data to be exploited while benefiting from the structural or statistical similarities
between the tasks. We therefore propose to learn CATiB and UD dependency trees jointly on the same
input sentences using parallel treebanks.

Deep neural networks are particularly suited for multitask scenarios via straightforward parameter and
representation sharing. Some hidden layers can be shared across all tasks while output layers are kept
separate. In fact, most deep learning architectures for language processing start with sequential encoding
components such as BiLSTMs or Transformer layers which can be readily shared across multiple tasks.
This approach is widely applicable even to tasks that use very different formalisms and do not have par-
allel annotations (Søgaard and Goldberg, 2016; Hashimoto et al., 2017). This type of sharing has also
been shown to benefit (semantic and syntactic) dependency parsing, both transition-based (Stymne et al.,
2018; Kurita and Søgaard, 2019) and graph-based (Sato et al., 2017; Lindemann et al., 2019). In addition
to simple parameter sharing, joint inference across multiple tasks has been shown to be beneficial. Peng
et al. (2017) perform decoding jointly across multiple semantic dependency formalisms with cross-task
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factors that score combinations of substructures from each (Peng et al., 2017). Joint inference how-
ever comes with increased computational cost. To address this issue, we introduce a multitask learning
model for dependency parsing (§3.2). This model is based on greedy arc selection similar to the neural
easy-first approach proposed in (Kiperwasser and Goldberg, 2016) (§3). We use tree-structured LSTMs
to encode substructures (partial trees) in each formalism which are then concatenated across tasks and
scored jointly. Hence, we model interactions between substructures across tasks while keeping com-
putational complexity low thanks to the easy-first framework. Furthermore, this approach enables the
sharing of various components between tasks, a richer sharing than the mere sequential encoder sharing
found in most multitask systems (Kurita and Søgaard, 2019). Our multitask architecture outperforms
the single-task parser on both formalisms (§4.3). The parser itself is open-source and can be found at
https://github.com/yash-reddy/MEF_parser.

Beside efficiency, the tree-structured LSTM easy-first framework provides several advantages which
makes it appealing in our settings. New arc selection decisions are conditioned on encoded represen-
tations of partially parsed structures in both formalisms with the latest information at each step. Since
some word attachments are harder to find in one formalism than the other (longer range, ambiguous rela-
tions, etc.), we suppose that looking at the substructure involving such a word in one formalism may help
make better decisions in the other. We do not need to postulate any priority between the tasks nor that
all attachment decisions must be taken jointly which is computationally expensive, we leave the exact
flow of information to be learned by the model. Additionally, (Kurita and Søgaard, 2019) showed that
even when no easy-first strategy is hard-wired into their multitask semantic dependency parser, it gets
nevertheless learned from the data in a reinforcement learning framework.

Some possible enhancements to our model are explored in §6.

Summary of contributions In this paper, (i) we propose a new multitask dependency parsing algo-
rithm, based on easy-first hierarchical LSTMs, capable of decoding a sentence into multiple formalisms;
(ii) we show that our joint system outperforms the single-task baseline on both CATiB and UD Ara-
bic dependency treebanks; and (iii) demonstrate experimentally that linguistic information available in
each formalism helps make better predictions for the other by showing that the parser learns to leverage
information from each dimension to parse the other dimension better.

2 Linguistic Background: CATiB vs. UD

The CATiB and the Arabic UD treebanks are currently the two largest Arabic dependency treebanks.1

As both treebanks are in dependency representations, that leads to them sharing a number of similarities.
However, there are a few differences between the two treebanks stemming from the granularity of their
tag sets and their specific definitions of dependencies.

Granularity of tags One of the design features of CATiB is fast annotation (Habash and Roth, 2009),
hence it has only six POS tags and eight dependency relations. On the other hand, UD aims to accom-
modate constructions in universal languages (Nivre et al., 2017), and therefore have finer-grained tagsets
with 17 POS tags and 37 basic dependency relations. Naturally, a tag in CATiB, whether a POS tag
or a dependency relation, may correspond to a number of tags in UD. Figure 1 illustrates that mapping
through a number of examples. UD’s noun (NOUN), adjective (ADJ), and number (NUM) tags correspond
to CATiB’s nominal (NOM) tag. Similarly, when it comes to modifiers in UD, if they are headed by a verb
then they are oblique nominals (OBL), if they are headed by a noun then they can be nominal modifiers
(NMOD), adjectival modifiers (AMOD), or numeric modifiers (NUMMOD), depending on the modifier’s
POS tag. However, in CATiB, they are all modifiers (MOD). On the other hand, the Idafa relation (IDF) in
CATiB is also a nominal modifier in UD, but for this particular structure UD uses the possessive subtype
(NMOD:POSS) to distinguish it from other nominal modifiers.

Definition of a dependency The philosophical difference between CATiB and UD is in how they define
a dependency relation. CATiB focuses on modeling the assignment of case to make the tree structures

1For more information on Arabic natural language processing challenges, see Habash (2010).

https://github.com/yash-reddy/MEF_parser
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Figure 1: An example dependency tree in CATiB and UD representations

closer to traditional Arabic grammar analysis (Habash and Roth, 2009). As a result, function words
tend to head their phrase structures. On the other hand, UD aims to minimize the differences between
languages with different morphosyntactic structures, and therefore focus on the meaning (Nivre, 2016).
This often makes content words the heads of phrase structures. We can see some of those differences
in the examples in Figure 1, the most prominent of which may be prepositional phrase constructs. In
CATiB, particles head these phrases since they modify the case assignment of the words that follow
them. In contrast, particles in UD attach low under the content head of these phrases to keep the focus
on the semantic meaning of the sentences.

Due to these differences and similarities in representation, we hypothesize that parsing the two tree-
bank formalism along side each other will help improve both parsing outcomes.

3 Model

We briefly describe the single task Easy-First (EF) parsing algorithm Kiperwasser and Goldberg (2016)
and its components, then we discuss the multitask extension (MEF) inspired by (Constant et al., 2016)
adapted to the tree-structured LSTM in terms of the updated parsing algorithm and its components.

3.1 Single-task Model

The EF parsing model builds dependency trees bottom-up. Intuitively, it can be seen as a greedy version
of the Eisner algorithm (Eisner, 1996) where each span contains at most one subtree and where each
subtree, once created, is fixed and must be a part of the final structure. The algorithm maintains a
sequence of pending subtrees. Two adjacent subtrees in the sequence may combine, by adding an arc
from the root of one subtree to the other, and be replaced by a new (bigger) subtree. Since there are few
subtrees to consider — at most n+ 1 pending subtrees for a sentence of n words — the context of each
decision, ie each arc creation between subtrees, can depend on the whole subtrees involved provided
they can be encoded with a fixed representation. This was first noted in (Kiperwasser and Goldberg,
2016) where a subtree root was represented via the latent states of two LSTM recurrent networks, each
encoding the sequence of modifiers in one direction (left or right) going outwards. Since modifiers are
themselves encoded this way, this recursion effectively represents the whole subtree. EF relies on several
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Figure 2: A component-wise comparison of the disjoint Easy-First Parsers (i) and our maximally con-
nected system (ii). We use the component-based representations that showcase the interactions between
various components to illustrate the differences in connectivity. The rectangle with π represents a proxy
for a shared component and ⊕ represents concatenation.

components which compute representation at different stages of the calculation. These components can
be seen in Figure 2 where they drawn as rectangles in areas (a) to (e). We review them before presenting
the algorithm.

Word representation (a) and context (b) For each position i in the sentence t = t0 . . . tn, its word
embedding and its POS tag embedding are looked up and concatenated, and then passed through an
affine transformation. The sequence of such vectors is fed to a 2-layer bidirectional LSTM (Graves et
al., 2005) in order to obtain a sequence of contextual token representations v = v0 . . . vn.

Tree representation (c) and (e) The representation of a pending tree root hi is the concatenation of
the representations of its two sequences of modifiers (one for each side) li and ri: hi = [li; ri]. The
sequence of left modifier trees li = vi,m1, . . . ,mkl ordered from the head outward is represented by the
latent state of an LSTM network where each left modifier mk is first transformed before it is read by the
LSTM as m′

k = tanh(W [mk;xk] + b) where xk is the embedding of the label of the arc from wi to wk.
A similar encoding, depending on a second LSTM, gives ri. At the initialization step of EF, pending
single-node subtrees are encoded with this method, where the sequence of modifiers at each position i is
restricted to vi on both sides.

Arc scoring (d) Since it would be intractable to take the complete sequence h into account when
considering the weights of possible labeled arcs between adjacent subtrees hi and hj , the context of
decision is restricted to a window of k previous and k following trees, with k small (set to 2 in our
experiments, after having experimented with k = 1 and k = 3.). . Left (resp. right) context lc (resp.
rc) is simply represented as the concatenation of the k trees before hi (resp. after hj) in the sequence,
padded if necessary. Moreover, the scoring function is decomposed as the sum of the unlabeled score
and the labeled score. For instance, a right arc going from wi to wj labeled with l, the scoring function is
defined as: s(hi, hj ,→, l, lc, rc) = sU (hi, hj ,→, lc, rc) + sL(hi, hj ,→, l, lc, rc). These two functions
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can be compactly implemented by feed-forward multi-layer perceptrons which given trees and contexts
return a vector of scores for all combinations of labels and directions.

Algorithm More formally, a sentence is represented as a sequence of tokens t = t0 . . . tn where ti such
that i ≥ 1 is the ith token of the sentence and t0 is a dummy root symbol. EF starts by converting each
token to a pending tree consisting of a single node ti and computes its fixed-size vector representation
hi. This gives a sequence of trees2 h = h0 . . . hn.

Then, for n steps, EF goes through all pairs of adjacent pending trees (hi, hj) in the sequence h and
predicts the maximum scoring labeled arc. Scores are interpreted as quantifying confidence or easiness
of the decision. If the triple (hi, hj , l) gives the highest scoring arc and this arc is right-oriented (resp.
left-oriented) then the arc wi →l wj is created (resp. wj →l wj), hj (resp. hi) is removed from the
sequence, and finally hi (resp. hj) is updated to reflect the addition of a rightmost (resp. leftmost)
modifier. This process stops after n steps, when only one tree remains, and the set of created arcs is
returned. Parsing amounts to a sequence of arc-creating actions, depending on the scoring function and
its parameters. These can be learned from examples via gradient descent in a supervised setting using
teacher forcing and max-margin objective. We refer interested readers to (Kiperwasser and Goldberg,
2016) for more details.

3.2 Multitask Model

Since we are interested to see how the flow of syntactic information can be shared between CATiB and
UD, we adapt the neural EF (Kiperwasser and Goldberg, 2016) to multidimensional EF (MEF), following
the nomenclature of Constant et al. (2016), with two tasks, one for each syntactic representation. We now
review the changes from EF to MEF, looking at the algorithm and at the components.

Algorithm MEF is similar to EF but operates on two sequences of trees h(c), h(u) (one for CATiB,
one for UD) which we assume to be built from the same sequence of tokens t = t0 . . . tn. MEF iterates
for 2n arc-creating steps until only one tree remains in each sequence. Each step finds the maximum
scoring labeled arc between pairs of adjacent trees as before, but it now visits the two sequences. Thus
the change in the algorithm is minimal, but it should be noted that the construction of dependency trees
can be interleaved. Of course, in order to take advantage of this added complexity, a task should be able
to peek at the other to get further information. To this end we need to keep track of how a specific token
and its partial tree representation is encoded in both tasks. If token ti is represented by a subtree hi in
one task, we note h̄i its counterpart, its representation for the other task. EF components may or may
not make use of this extra-dimensional representation. This gives a variety of models with gradually
increased sharing of representations, ranging from the model depicted in Figure 2 (i) where there is no
sharing at all, to model (ii) with sharing at every stage of the architecture. We describe how this sharing
is implemented.

Word representation and context The simplest form of sharing is at the token level. If shared, there
is only one look-up table to store embeddings for both tasks, otherwise each task has its own table. The
contextual token representation sharing has three degrees: we can share both biLSTM layers, the lower
layer only, or none at all.

Arc scoring If sharing this component, we add counterparts as additional parameters. Tak-
ing the arc scoring example from the previous section s(hi, hj ,→, l, lc, rc) becomes s(hi, hj ,→
, l, lc, rc, h̄i, h̄j , l̄c, r̄c, l̄) where l̄c and r̄c are the concatenations of the counterparts trees in left and
right context. l̄ is the embedding of the dependency label of the arc to wj in the other task, or special
vector indicating that its head selection has not be performed yet. This gives the system a way to learn
to wait for the other task to take a decision.

Arc Selection We see that the multitask system has a choice of parsing dimensions to make. While the
base parsing algorithm itself does not impose any constraint on which dimension should be preferred,

2In the following, we will abuse terminology and use the same notation to identify trees and their vectorized representations.
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System Configurations CATiB DEV UD DEV
Embeddings Context Node Encodings Scoring network LAS UAS LAS UAS
Easy-First baseline (Nothing is shared) (Kiperwasser and Goldberg, 2016) 85.16 87.49 84.24 87.22
NOTSHARED NOTSHARED NOTSHARED SHARED 85.26 87.29 83.99 87.02
NOTSHARED NOTSHARED REP NOTSHARED 85.84 87.71 84.61 87.39
NOTSHARED NOTSHARED REP SHARED 85.23 87.26 84.40 87.20
NOTSHARED ONEONE REP+DEPREL NOTSHARED 85.91 87.56 84.49 87.42
NOTSHARED ONEONE REP+DEPREL SHARED 85.64 87.60 84.49 86.95
NOTSHARED ONEONE NOTSHARED NOTSHARED 85.11 87.52 84.31 87.25
NOTSHARED ONEONE NOTSHARED SHARED 85.12 87.41 83.99 87.10
NOTSHARED TWO REP NOTSHARED 85.99 87.84 84.59 87.25
NOTSHARED TWO REP SHARED 85.85 87.67 84.31 87.19
NOTSHARED TWO REP+DEPREL NOTSHARED 85.99 87.74 84.49 87.32
NOTSHARED TWO REP+DEPREL SHARED 85.78 87.72 84.57 87.16
NOTSHARED NOTSHARED NOTSHARED NOTSHARED 85.02 87.28 84.24 87.31
NOTSHARED NOTSHARED NOTSHARED SHARED 85.02 87.39 84.13 87.23
NOTSHARED NOTSHARED REP NOTSHARED 85.78 87.76 84.62 87.13
NOTSHARED NOTSHARED REP SHARED 85.58 87.44 84.55 87.11
NOTSHARED ONEONE REP+DEPREL NOTSHARED 85.97 87.79 84.38 87.22
NOTSHARED ONEONE REP+DEPREL SHARED 85.75 87.36 84.30 87.07

SHARED ONEONE NOTSHARED NOTSHARED 85.47 87.27 84.67 87.42
SHARED ONEONE NOTSHARED SHARED 85.43 87.55 84.56 87.34
SHARED TWO REP NOTSHARED 85.80 87.86 85.03 87.66
SHARED TWO REP SHARED 85.60 87.57 84.67 87.53
SHARED TWO REP+DEPREL NOTSHARED 85.95 88.06 84.93 87.36
SHARED TWO REP+DEPREL SHARED 85.81 87.98 84.74 87.32
SHARED NOTSHARED NOTSHARED NOTSHARED 85.16 87.95 84.71 87.33
SHARED NOTSHARED NOTSHARED SHARED 84.96 87.92 84.58 87.21
SHARED NOTSHARED REP NOTSHARED 86.44 88.39 85.17 87.66
SHARED NOTSHARED REP SHARED 86.19 88.11 84.86 87.70
SHARED ONEONE REP+DEPREL NOTSHARED 86.66 88.51 85.16 87.72
SHARED ONEONE REP+DEPREL SHARED 86.23 88.26 84.90 87.38
SHARED ONEONE NOTSHARED NOTSHARED 85.64 87.96 84.59 87.47
SHARED ONEONE NOTSHARED SHARED 85.54 87.97 84.58 87.40
SHARED TWO REP NOTSHARED 85.92 87.81 84.82 87.47
SHARED TWO REP SHARED 85.93 87.97 84.68 87.44
SHARED TWO REP+DEPREL NOTSHARED 86.36 88.17 84.84 87.50
SHARED TWO REP+DEPREL SHARED 86.16 87.99 84.87 87.61

Table 1: Performance of systems with varying degrees of sharing across each component (See §4.2).

we explore strategies where one dimension is completely parsed before the other or the parser alternates
between dimensions for the selection of the arc to be added to the corresponding partial parse forest
(absolute parity). We experimented with absolute parity and freely learnt selection strategies, but found
no significant differences between these strategies.

4 Experiments

4.1 Data
Both CATiB and UD are automatically-converted treebanks. CATiB is created by converting parts 1, 2,
and 3 of the Penn Arabic Treebank (PATB) (Maamouri et al., 2004) constituency treebank to the CATiB
dependency representation. The UD treebank is an automatic conversion from the CATiB treebank (Taji
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Model CATiB TEST UD TEST
LAS UAS LAS UAS

Easy-First baseline (Kiperwasser and Goldberg, 2016) 84.63 86.93 83.71 86.65
Joint System (REP) 85.96 87.93 84.76 87.17
Joint System (REP+DEPREL) 86.15 88.08 84.71 87.19

Table 2: LAS and UAS results for the best performing systems against baseline on test sets.

et al., 2017). Both treebanks follow the PATB tokenization, with Alif wasla normalization. Additionally,
all numeral tokens were replaced by a unique NUM token.

Treebank Statistics In our experiments, we split the treebanks into TRAIN, DEV, and TEST following
the guidelines detailed by Diab et al. (2013). Our treebanks have 1,986 trees in DEV (73,945 tokens),
1,963 trees in TEST (74,125 tokens), and after excluding the non-projective trees, 15,603 trees in TRAIN

(577,564 tokens).

4.2 Experimental Configuration

Experiments were carried out with systems built using the exhaustive combination of the proposed com-
ponent configuration. We use the same hyper-parameters for each component and training setup as
Kiperwasser and Goldberg (2016) to keep the systems comparable, with the parameters initialized using
a Xavier initialization. The training was carried out for 50 epochs using the Adam optimizer ( Kingma
and Ba (2014) ) with learning rate, moving average for mean and the moving average for variance set to
0.001, 0.9 and 0.999 respectively. Following is the specification of the combinations of system design
hyper-parameters we explored: (i) WORD EMBEDDING: Word embeddings are NOTSHARED (base-
line) or SHARED; (ii) CONTEXT: BiLSTMs for contextual representations are NOTSHARED (baseline),
ONEONE (first layer shared) , or TWO (both layers shared); (iii) ENCODINGS: Encoded representations
are NOTSHARED (baseline), REP (only node representations shared), or REP+DEPREL (node and de-
pendency relation representations shared); (iv) SCORING FUNCTION: Unlabelled Scoring Network is
either NOTSHARED (baseline) or SHARED.

4.3 Results

We present the results of all models on the DEV set in Table 1, and the results of the best performing
systems on the TEST set in Table 2. The Labelled and Unlabelled Attachment Scores (LAS and UAS)
are computed with punctuation included. It can be seen that our proposed configurations show consid-
erable improvements over single-task baseline models. The best systems are the ones in which the word
embeddings are shared, the contextual representations are generated using one common and one task-
specific BiLSTM layer, and the representations are shared with or without the corresponding dependency
relation of the node. We denote these systems as Joint System (REP ) and Joint System (REP + DEPREL)
in subsequent analysis. We see that we improve upon both the CATiB and UD scores by considerable
margins of 1.52 points and 1.05 points on LAS respectively.

4.4 Analysis of Model Architecture Settings

Since we explored the full space of combinations of a number of model architecture settings, we proceed
to study the contributions of each of theses settings. In Table 3, we present the average LAS of all the
systems that share a particular model setting, e.g., out of the 36 systems, 18 include the setting WORD

EMBEDDING:NOTSHARED, and 18 WORD EMBEDDING:SHARED.
We see clearly from these settings that the best combinations for CATiB are WORD

EMBEDDING:SHARED, CONTEXT:ONEONE, ENCODINGS:REP+DEPREL, and SCORING FUNC-
TION:NOTSHARED. UD best parameters are the same except for ENCODINGS:REP. In general sharing
components is beneficial except for sharing the scoring function, which is reasonable. Since the values
are small, we were interested in studying their degree of overlap with each other, i.e., how linear is their
contributions. We consider the baseline features (as in the Kiperwasser and Goldberg (2016)’s parser)
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Average LAS ∆ Baseline
CATiB UD CATiB UD

WORD NOTSHARED 85.57 84.67 0.00 0.00
EMBEDDING SHARED 85.85 85.08 0.28 0.41
CONTEXT NOTSHARED 85.61 84.83 0.00 0.00

ONEONE 85.79 84.95 0.18 0.12
TWO 85.72 84.85 0.12 0.02

ENCODINGS NOTSHARED 85.26 84.66 0.00 0.00
REP 85.85 85.00 0.59 0.34
REP+DEPREL 86.02 84.97 0.76 0.31

SCORING NOTSHARED 85.80 84.95 0.00 0.00
FUNCTION SHARED 85.62 84.80 -0.18 -0.14

Table 3: Analysis of the contribution of various model architecture settings.

to have a 0.00 value; while the other settings are relative increases or decreases from it. See columns ∆
Baseline in Table 3. We then computed an estimated prediction of the LAS score by adding the ∆ values
to the Kiperwasser and Goldberg (2016) baseline system. Surprisingly, the resulting scores computed by
linear sum of the ∆s has a 0.89 correlation with the actual scores in CATiB, and 0.96 correlation with the
actual scores in UD. This suggests that the contributions of different settings are largely independent.

4.5 Qualitative Analysis

We studied the improvements in prediction in our best systems compared to the baseline system for both
CATiB and UD. We did a careful analysis of the trees, and in terms of the POS tag categories we find that
nominals, particles, and punctuation are the biggest beneficiaries in CATiB, whereas the nominals, as in
nouns, adjectives, and adverbs, are the biggest winners in UD. This makes sense since the particles in
UD are functional case markers that are restricted in their usage. Therefore, we do not see as much of an
improvement since they are already almost perfect. It is also worth noting that particles and punctuation
are known to be particularly hard cases connected to semantic ambiguity, making their improvement
consistent with our expectations. In terms of relations, the biggest improvements we saw were in terms
of modifiers. In CATiB, the biggest improvements are in the assignments of MOD, PRD, and TMZ. The
constructs of PRD and TMZ in particular are cases that are modeled differently in UD. We can see that
illustrated in Figure 1 in the number construct, where it attaches lower in UD rather than higher as it
does in CATiB. In UD, the biggest contributors are NMOD, OBJ and IOBJ, but there is generally an
improvement across the board in all relations. Finally, when we examined the different frames, we find
on average an 11% reduction in the errors, in both CATiB and UD, compared to the baseline in terms
of complete incorrect frames. The most changes in positive terms involve modifiers and Idafa (IDF in
CATiB, and NMOD:POSS in UD) constructions, where we improve in identifying the full correct frame.
However, it is worth noting that the worst cases involve similar constructs, where both systems seem to
be too eager to assign modifiers creating much more complex frames than needed.

4.6 Analysis of Switching Frequency

In order to better understand the interplay between transition-based parsing and the inter-dependence of
CATiB and UD, we tracked the changes in context when making parsing decisions. We measured the
percentage of consecutive decisions that lead to arcs in different dimensions, which we refer to as the
switching frequency. The Joint Systems (REP) and (REP+DEPREL) attained a switching frequency of
62% and 68% respectively. This indicates that the models are sensitive to inter-dimensional contexts:
arcs added in one dimension are helpful to parse the other. We tested this hypothesis further by forcing
our system to parse one dimension completely before switching to the other (during training and predic-
tion). This system can be thought of as a pipeline model which has a switching frequency of 0% while
still sharing components. We found that for CATiB, the LAS score of the best system decreased on the
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DEV set from 86.66 to 86.41 in the pipeline setup CATiB → UD, and to 86.37 in UD → CATiB. For
UD, the score decreased from 85.17 to 85.06 in pipeline CATiB→ UD and to 85.00 in UD→ CATiB.

5 Related Work

Arabic Syntactic Dependency Parsing Earlier work on syntactic dependency parsing for Arabic had
focused mainly on CATiB representation. Marton et al. (2013) explored the use several morpho-syntactic
features in the easy-first framework, while Shahrour et al. (2015; Shahrour et al. (2016) used MaltParser
(Nivre et al., 2006). Taji et al. (2017) presented the UD treebank more recently and conducted experi-
ments on CATiB and UD separately in a single-task settings. Multitask systems that have been developed
for Arabic were part of efforts to build one multilingual system for all UD dependencies. We present the
first effort on multitask joint parsing for multiple Arabic formalisms.

Multitask Dependency Parsing Research towards using multitask deep learning settings to resolve
NLP tasks has been an active ongoing subject since the early work of Collobert and Weston (2008)
where a single model is trained to perform multiple tasks. Success of such methods is largely due to
the effectiveness in deep learning of parameters sharing across multiple models, and learning of joint
representations of structures across multiple tasks.

Most similar to our setup is the 2015 SemEval shared task on semantic dependency parsing (Oepen et
al., 2015) where three distinct, parallel semantic annotations over the same common texts are available.
In this context, several multitask parsers have been proposed. Peng et al. (2017) presented a multitask
model with BiLSTMs parameters sharing and low-rank tensor scoring that evaluates the joint fitness of
trees across multiple tasks. Their joint inference procedure, however, involves third-order arc interac-
tions which makes it computationally expensive. On the same task, Kurita and Søgaard (2019) describe
a model that shares a representation of the complete partial parse forest of one dimension while taking
decisions on the other. This is similar in spirit to our sharing of parameters and representations. Fur-
thermore, they show that their transition-based parser effectively learns easy-first strategies with policy
gradient based reinforcement learning. This motivates further our choice of parsing framework. In fact,
several other multitask systems for semantic dependency parsing have been proposed (Hershcovich et
al., 2018; Stanovsky and Dagan, 2018; Peng et al., 2018; Lindemann et al., 2019; Prange et al., 2019)
but none of them build on the easy-first framework nor target the Arabic language. Along the lines of
multitask easy-first parsers, Constant et al. (2016) introduced a joint model for learning from multiple
treebanks simultaneously. They show that syntactic dependency representations and tree-based repre-
sentations of multiword expressions can help each other. However, they do not use a neural architecture
and perform experiments only on English and French.

When no parallel annotations on the same text are available, it has been shown that a single model can
be trained to perform multiple tasks as well. Ammar et al. (2016) uses a single model for multilingual
parsing trained from multilingual treebanks. Similar multitask models have been developed for cross-
domain dependency parsing trained with heterogeneous treebanks (Stymne et al., 2018; Sato et al., 2017).
Unlike our approach, decoding for each task is performed independently.

6 Conclusion and Future Work

We presented a dependency parsing model based on a multidimensional neural Easy-First model (Kiper-
wasser and Goldberg, 2016; Constant et al., 2016). This architecture enables sharing representation at
various levels of abstraction, and at different time steps of the parsing process, which makes it possible
to communicate information and to learn when sharing information is important across dimensions. We
tested this model on two syntactic dependency formalisms for Arabic that vary on the morpho-syntactic
(CATiB) to semantic (UD) spectrum. Our experiments showed that this architecture gives a 9.9% error
reduction on CATiB, and 6.1% error reduction on UD. Further analysis of this reduction shows that its
main contributor is not the sharing of lexical information, as is commonly done in multitask systems, but
the sharing of partial dependency trees given as input for arc weight prediction.

Future work will explore further sharing between parsers. In particular, we expect tree encoders could
benefit from the additional information (although redundancy with tree sharing in the score function
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could hurt the system). We also plan to work on model improvements to address the limitation arising
from added dimensions. For instance, with the addition of the second dimension, the notion of oracle
(Goldberg and Nivre, 2013) used for training becomes more fragile, since the number of correct actions
grows, and the order in which to perform them is unknown and can have some long term consequences
on the action in the other dimension. It would be interesting to explore how reinforcement learning,
where the notion of planning ahead is crucial, could help.
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