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Abstract

Automatically describing videos in natural language is an ambitious problem, which could bridge
our understanding of vision and language. We propose a hierarchical approach, by first gener-
ating video descriptions as sequences of simple sentences, followed at the next level by a more
complex and fluent description in natural language. While the simple sentences describe simple
actions in the form of (subject, verb, object), the second-level paragraph descriptions, indirectly
using information from the first-level description, presents the visual content in a more com-
pact, coherent and semantically rich manner. To this end, we introduce the first video dataset in
the literature that is annotated with captions at two levels of linguistic complexity. We perform
extensive tests that demonstrate that our hierarchical linguistic representation, from simple to
complex language, allows us to train a two-stage network that is able to generate significantly
more complex paragraphs than current one-stage approaches.

1 Introduction

Automatic video to text translation is a very difficult, still unsolved problem, at the intersection of natural
language processing, machine learning and computer vision which has been widely researched in the last
years (Aafaq et al., 2019). Its applications are varied and far reaching, with impact in virtually all aspects
of our lives. One of the main challenges is that for a given visual input, there are infinitely many ways to
describe it in natural language. Every human utterance is unique (Chomsky and Lightfoot, 2002; Pinker,
2003), meaning that, while the classic machine learning paradigm assumes, for a given input, a certain
”label” from a finite set, language is much more complex and versatile.

Recurrent neural networks (RNN) establish the current basis for research in video to language transla-
tion. Using Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) to produce the final
text description has become the standard approach. The most common architecture is the sequence-to-
sequence model (Venugopalan et al., 2015; Donahue et al., 2015), which usually produces good results.
However, it is still unclear what the neural network learns, w.r.t language representation, semantics and
diversity. Recent works (Shetty et al., 2017) have clearly pointed out that automated systems have a
significantly less diverse vocabulary than humans. It has also been shown that as the sentence becomes
longer, the relation to the actual video content drops (Shetty et al., 2017).

Our goal is to study whether a dual, intermediate linguistic description at the level of short sentences,
describing simple actions in the form of (subject, verb, object) could help in the generation of more com-
plex and fluent language. Common sense and the challenges encountered in current research, strongly
suggest that the transition from vision to language could benefit from a more gradual approach: we
should first detect the actors and objects in the scene, then understand and describe their actions in short
sentences and only after, put everything together into a larger, coherent story, described in fluent natural
language. Note that the end description should not necessarily contain the initial simple sentences.

Thus, we propose a dual-stage video-to-language representation: at the first stage we describe the
video as a sequence of events, in the form of simple (subject, verb, object) sentences, which are also well
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localized in time and space. With a slight abuse of terminology, we refer to such simple sentences that
describe simple SVO (subject, verb, object) actions as SVO sentences, even though they may sometimes
contain more than three words. Then, the second-level description sums up the video content within a
coherent paragraph, which describes the visual content in a more elaborate way, by adding to the first
level information, causal and semantic relationships between actors and events (without having to repeat
the initial SVO sentences). In order to train our models to fully capture the role of the simple sentence
descriptions within the more complex video to natural language translation problem, we introduce a
novel and relatively large Videos-to-Paragraphs dataset (with appropriate annotations at both linguistic
levels), which contains indoor videos from a well-contained ”universe”. The scenes, actors and their
activities are in the context of what typically happens in a classroom.

Then, we conduct extensive experiments, which show that our two-stage video to language generation
system (Fig. 2) greatly benefits from the intermediate simple sentence representations, which stands
between the pure visual interpretation (at the level of single objects or actions as simple ”action labels”)
and the more complex interpretations in natural language (at the level of paragraphs).

2 Related work

The task of video captioning can be split in two stages: understanding the video and generating the text.
For generating the text, the most used approach is based on RNNs, which uses a video embedding to
generate the text (Venugopalan et al., 2015; Donahue et al., 2015). For creating the embedding, the
literature varies from average pooling over frame-based features (Venugopalan et al., 2014) to using
other various RNNs (Venugopalan et al., 2015; Donahue et al., 2015) and attention models (Yao et al.,
2015). Recently, reinforcement learning was also employed to improve pre-trained models by defining
policies and rewards specific to image (Chen et al., 2017; Liu et al., 2017; Ranzato et al., 2015) or
video (Pasunuru and Bansal, 2017b; Pasunuru and Bansal, 2017a) captioning metrics. Interestingly
enough, recent literature has also shown that the actual encoder architecture affects the results less than
the high-level, pretrained image, video and audio features used at input (Duta et al., 2018). This suggests
that a more complex, stage-wise encoder-decoder pathway could be needed between vision and language,
which further justifies our approach.

The idea of generating textual descriptions of simpler events has also been studied (Krishna et al.,
2017; Li et al., 2018; Wang et al., 2018a). However, those methods finish at that first level of short
sentences, without producing longer and more complex paragraphs, beyond the simple concatenation
of the sentences. Moreover, the published datasets do not provide annotations at both levels of simpler
sentences and complex paragraphs.

Another recent idea that is related to ours (Wang et al., 2018b) is to ”divide and conquer” the video
content, by first breaking the long caption into many small segments, then employ a sequence to sequence
model to generate the final caption. They introduce a transformed version of the Charades dataset (Sig-
urdsson et al., 2016). Actors were given a script and were asked to record a video that follows it as closely
as possible. Different than us, they identify actions by class labels (which is a standard approach), not
describe such actions by short sentences (which is an intermediate vision-to-language translation ap-
proach). Moreover, their final captions are significantly shorter than ours (ours: 40.03 vs theirs: 24.13
words on average per caption). Thus, they focus on the intermediate prediction of ”action labels”, com-
bined with a reinforcement learning approach. We generate more sophisticated textual descriptions by
going through an initial stage of descriptions in simple sentences and, thus, take a longer step towards
bridging the gap between vision and natural language.

The lack of other datasets in the literature that provide annotations at both levels of simple sentences
and more complex language, limits, for now, the experimental comparisons with methods such as (Wang
et al., 2018b). However, by introducing our new Videos-to-Paragraphs dataset, with full annotations
at both levels, we are able to compare to published state of the art methods by retraining them on our
dataset.

Our approach is to the best of our knowledge novel. However, there are other methods that proposed
to have an intermediate representation (Yu et al., 2016), but, different than our first-level SVO represen-
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Figure 1: Examples from Videos-to-Paragraphs Dataset. We present annotations for two different videos.
For each we present a few SVO (subject, verb, object) events along with: their start frame, end frame,
corresponding space-time bounding box that contains the event, and its simple sentence description. At
the bottom we present the paragraph-level video description. The paragraphs contain longer and more
complex sentences than the SVOs.

tation, that intermediate representation is a hidden RNN state that does not have an explicit, explainable
meaning. The two levels we propose are valid linguistic representations at different levels of spatiotem-
poral context. One is limited to local SVOs, the other is a compact paragraph at the whole video level.
Then, other published works predict only simple semantic representations of video content (similar to
our proposed SVOs) (Xu et al., 2015; Zanfir et al., 2016).

3 Our Videos-to-Paragraphs Dataset

Below we describe our Videos-to-Paragraphs dataset and provide details regarding annotations and vari-
ous statistics of the dataset.

3.1 Dataset description

The dataset consists of 510 videos captured in an indoor school environment. There are videos from var-
ious shots from two different classrooms and some shots on the hallway in between. Each video clip has
about 30 seconds and the videos were filmed with two different cameras: a fixed one and a moving one,
focusing on the central actors. Thus, we aim to better understand how learning video-to-text generalizes
depending on one camera setting or the other. The protagonists perform various activities, which usually
involve interacting with different objects. All activities are centered around the people and their interac-
tion with other people and objects. Examples of such simple ”atomic” actions are: enter/leave a room,
drink water, sit up/sit down, pick up/put down objects (e.g. pen, laptop, notebook, mobile phone etc),
talk to/hug/shake hands with/present to another person, open the door/the window, and others, that usu-
ally take place in a classroom environment. We designed scenarios that are as realistic as possible, such
that a given video could contain many other objects and actions taking place in the background. These
basic, atomic actions are the ones described in small (subject, verb, object) sentences. The main feature
that distinguishes our dataset from others in the literature is that we limited all scenes and scenarios to a
self-contained, well-covered ”universe” of actors, actions and plausible event, in order to better capture
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and study the relationship between vision and language within a specific context. Without this compact,
self-contained set of videos, the gap between vision to language is simply too large to bridge, and the
task is more prone to overfitting - an observation which often can be made in the current literature.

3.2 Annotations

For each video we have several two-layered text annotations from multiple annotators. Actors were asked
to behave naturally, as if in a real-life classroom scenario, without a given script, by acting freely. A list
of 39 possible actions and 19 different object categories, were given only as examples at the beginning.
Annotators were only asked to limit the complexity of the short sentences (SVO) as much as possible,
without any other strict rules.

Simple SVO sentences: they describe simple, atomic actions that are well located in space (with a
bounding box annotation for each frame) and time (start and end frame for each action). The simple SVO
sentences at level one could sometimes contain more than three (subject, verb, object) words necessary
to describe a simple action. Also, each action bounding box has annotated ”links” to other bounding
boxes, if they are semantically related.

Higher, video level paragraph description: a paragraph consisting of several sentences (3.6 sen-
tences on average), which explains concisely and fluently what happens in the video. The paragraphs
describe the video content at a holistic level, by incorporating the information from simple sentences
within a larger context. They provide information that is not included in the simpler sentences, regarding
how the atomic events relate to each other in time and space. Being closer to natural human language,
they often provide higher level interpretations and explanations regarding why the people in the video
perform certain actions. Note that the annotators were left free to write the paragraphs as they considered
appropriate. As mentioned, the annotation at the first level of atomic actions is more strict, being limited
to simple SVO sentence.

We provide some annotation examples in Fig. 1. For the first example in Fig. 1 the full list of SVOs
is: 1 - ”A woman draws”, 2 - ”A person shows another person something on the blackboard”, 3 - ”Two
persons are talking”, 4 - ”A man walks”. We also annotate links between SVOs that are considered
to be semantically related, providing a higher level of dependency, not between objects but between
events/actions. In the given example, we have a link between SVO 2 and SVO 1, which constrains SVO
2 to be conditioned on SVO 1. These events connecting links enable the construction of a hierarchy or a
graph of events.

The annotators consist of 20 graduate students in artificial intelligence, who volunteered for this task.
The videos were randomly assigned to students so that each video has at least 2 annotations. For the an-
notation process, we developed a specific, modified version of a public annotation tool (Shen, 2016).We
modified the tool to facilitate drawing and defining SVOs, adding links and the overall paragraph de-
scription.

3.3 Videos-to-Paragraphs Dataset statistics

Our dataset consists of 510 videos (245 filmed with a fixed camera and 265 with a mobile camera that
follows the scene), each having about 30 seconds. From the 510 videos, we use 438 for training, 20
for validation and 52 for testing. We have collected 1048 annotations, so that each video has at least 2
annotations. In these 1048 annotations we have 9036 annotated SVOs. Thus we have, on average: 8.62
SVOs per annotation, with 5.24 words per SVO and 4.13 sec. covered by a SVO. A SVO covers on
average 14% of the video, while about 81.4% from a video is covered by all the annotated SVOs for that
particular video. Many SVOs (68% of them) are overlapping with others temporally, as different actions
may happen simultaneously, sometimes even done by the same person (eg: talking to someone, sitting
down and putting down something). A paragraph-level description has on average 3.66 sentences (longer
than the initial-level SVO sentences) and 40.03 words.
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Figure 2: Our system consists of several modules that work together to form two encoding pathways, one
that processes the video frames (module (A) Frame encoder) and the other that processes the SVOs (mod-
ule (B) SVOs encoder and module (D) SVOs sequence generator). At the end, a RNN generator (module
(C) Paragraph description generator) outputs the final description. For generating a SVO sequence, we
first determine the start and end times of potential SVOs (module (D.1) SVO proposal generator). Then,
for each SVO time window we generate a textual description (module (D.2) SVO text generator), then
sort the SVOs in temporal order (module (D.3) SVO ordering) and obtain the SVO sequence which is fed
to the (B) SVO encoder module. Please see the full method’s pseudo-code in the supplementary material.

4 Proposed approach

Our key idea is to generate natural language descriptions from video input in a hierarchical, stage-wise
manner. Starting from describing atomic actions in simple sentences, then we generate a more compact
and coherent final text, in more complex language. Intuitively, we relate this approach to visual object
recognition, in which we recognize whole objects by first detecting their parts and sub-parts. We view
language generation from a similar, stage-wise perspective. In fact, by describing the world at many
different layers of semantic abstraction in space and time, we expect language to be more complex
than the visual recognition of physical objects. Thus, we propose a hierarchical representation of the
vision-language world, in which objects first do simple things described in simple sentences, before
relating these simple events and creating larger stories. These stories contain more complex connections,
descriptions and explanations, requiring more complex language. We present an overview of our system
in Fig. 2. There are two pathways: one that receives the whole video, processes it and creates a video
embedding and the other that processes SVOs and creates a SVOs embedding. In the end, features from
both pathways are combined and fed to a ”Paragraph description generator” module. Next we define
each component.

4.1 Frame encoder

The frame encoder (module A in Fig. 2), a standard LSTM (Venugopalan et al., 2015) receives frame-
level Inception v4 (Szegedy et al., 2017) features pre-trained on ImageNet (Deng et al., 2009), for a given
input video. It produces a video embedding that is then fed into the description generator.

4.2 SVOs encoder

The SVOs encoder (module B in Fig. 2) receives an input paragraph formed by concatenating all the
SVOs descriptions for a given video and outputs an embedding vector, for the whole paragraph (see
Sec. 4.4). The SVOs encoder is a LSTM that receives one word at a time (Fig 2). Note that we add to the
vocabulary the end sentences delimiter ”.”, such that the SVOs encoder can process an entire paragraph.
Before being fed to the LSTM, each word is transformed into a feature vector using GloVe (Pennington
et al., 2014). In the end, we obtain one embedding vector that represents the whole sequence of SVOs.
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4.3 Paragraph description generator
The description generator (module C in Fig. 2) is a classical textual decoder (Venugopalan et al., 2015),
initialized with the concatenation of the SVOs encoding and the frame encoding. The goal is to have a
sequence to sequence model that also receives SVOs features (obtained from the SVOs encoder), as well
as the frame features.

4.4 SVO sequence generator
The purpose of this module (module D in Fig. 2) is to generate multiple SVOs descriptions, at different
times, from a video and eventually output a sequence of SVOs in termporal order. The SVO sequence is
encoded and then fed to the final paragraph description generator module.

4.4.1 SVO proposals generator
For the SVO proposals generator (module D.1 in Fig. 2) we first test a simple idea: generate a fixed
number of SVOs per video, uniformly distributed over time. So, we split each video in 8 sub-videos
representing the SVOs, then generate a text for each (Sec. 4.4.2). The second idea is to train a confidence
network that, given a sub-video, outputs a score which indicates whether or not an atomic event (SVO)
occurs on those frames. We use an LSTM network to process the frames (similar to the ”Frames encoder”
module) and add at the end a fully connected layer that outputs the confidence score. We train this
network to predict the time-wise intersection over union between a sub-video and ground truth SVOs
from the training videos. Finally, we generate many SVOs proposals, compute the score given by the
confidence network, then apply non-maxima suppression to obtain the final SVO sequence ordered in
time.

4.4.2 SVO text generator
This module (D.2 in Fig. 2) receives as input a video (or sub-video) and outputs a single short sentence
(a SVO). We test two ideas: 1) receive as input a full-size sub-video (consider only start and end times,
without bounding box) and 2) take an input sub-video (also limited to the given bounding box).

4.4.3 SVO ordering
This module (D.3, Fig. 2) aims to generate a sequence of SVOs that are correlated with the way the
events occurs in the video. In order to obtain the final description, we look at the links between the SVOs
ensuring that if a SVO depends on another, then it will appear before it, in the final sequence. The second
option is to sort the SVOs by their starting time. Please see the pseudo-code of our full algorithm in the
supplementary material.

5 Experimental setup

We validate experimentally the benefit of the two-stage text representation and generation approach for
video to language translation. Thus, we design experiments that highlight the relevance of key elements
of our method and use the standard language metrics in the literature: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), CIDEr (Vedantam et al., 2015) and METEOR (Banerjee and Lavie, 2005).

5.1 Implementation details
All models were trained in PyTorch (Paszke et al., 2019) using the Adam optimizer (Kingma and Ba,
2014) for about 1000 epochs using a batch size of 64 on a Nvidia GTX1080Ti. The base learning rate is
4e-4 and has a decay rate of 0.8 at each 200 epochs. The SVO text generator is trained separately using
ground truth SVO annotations and then frozen in all other experiments. All the other components are
trained end-to-end.

5.2 Comparison to existing methods
Even though we introduce a new annotation scheme, it is crucial to see how we stand against other
published methods. So, we compare against a strong baseline (S2VT system (Venugopalan et al., 2015))
and a recent state-of-the-art method (Duta et al., 2018) (see Tab. 1). Please note that for a fair comparison,



2442

Figure 3: Qualitative video to language generation results. Note the quality differences between the
descriptions at the level of SVO sequences and those at the level of paragraphs. The generated paragraphs
are more concise and coherent. They tell more with less words, using longer sentences and overall
more complex language. Also note that our full model (PG-NMS-Pred-SVO) generates longer and more
diverse descriptions than the state of the art method for vision-to-language translation of (Duta et al.,
2018), which is trained on the same videos, having the same target ground truth, with no restriction
regarding the length or structure of the generated text. Seq-GT-SVO are the ground truth annotations
for the SVOs concatenated without using any model. PG-GT-SVO receives as input the ground truth
SVOs and generates the paragraph, while our final model PG-NMS-Pred-SVO does not have access to
the ground truth SVOs during inference and uses predicted SVOs. Please see additional results in the
supplementary material.

we compare against their best single model which uses a sequence-to-sequence approach and an attention
mechanism.

For a fair comparison to (Venugopalan et al., 2015), we follow the same base architecture and only
add the SVOs enconder (module B) as a second pathway. As seen in Fig. 3, our model generates longer
and more complex paragraphs. So, our two level annotation scheme, brings a clear improvement over
the baseline model in all cases where the SVO encoding is used. The fact that a simple SVO generation
scheme, with 8 SVOs per video, uniformly sampled in time (PG-SW-Pred-SVO model in Tab. 1), brings a
substantial improvement of 6% over the baseline (6% is very large for the video-to-language literature),
is strong evidence, that the intermediate level of SVO description is a solid contribution. Then, our
full PG-NMS-Pred-SVO model, which produces superior SVO sequences through a more sophisticated
confidence network with non-maxima suppression (Sec. 4.4.1), further improves to more than 16% on

Method B@1 B@2 B@3 B@4 M R C
Baseline 49.0 29.2 17.4 10.3 15.2 30.0 16.6

(Duta et al., 2018) 48.2 28.4 16.7 9.9 15.8 30.0 18.3
PG-SW-Pred-SVO 51.2 33.6 22.2 14.4 17.3 33.8 22.9

PG-NMS-Pred-SVO 49.3 32.5 21.7 14.5 19.7 37.3 26.2

Table 1: Comparison with state of the art methods, using several evaluation metrics (BLEU@N (B@N),
ROUGE (R), METEOR (M) and CIDEr (C)). The compared methods were trained from scratch on the
training set of our database. At test time, all methods have access only to the input video. Our approach
leads by a significant margin especially w.r.t the most recent metrics. Both PG-SW-Pred-SVO and PG-
NMS-Pred-SVO take advantage of the two level scheme annotation, the difference between them is that
PG-SW-Pred-SVO uses a more naive way of detecting SVO regions - sliding window, while PG-NMS-
Pred-SVO uses a more sophisticated confidence net in conjunction with nonmaxima suppersion - module
D.1
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Method Time
GT info

Space
GT info

B@1 B@2 B@3 B@4 M R C

Inter-human - - 44.0 29.6 19.9 13.1 19.0 34.4 32.6
Baseline - - 49.0 29.2 17.4 10.3 15.2 30.0 16.6

Seq-GT-SVO Y Y 46.7 35.3 26.6 19.5 27.6 44.6 43.7
PG-GT-SVO Y Y 59.3 40.9 28.0 19.5 22.6 41.8 45.9

Seq-Pred-SVO Y Y 39.9 25.3 15.4 9.1 19.2 33.5 22.9
PG-Pred-SVO Y Y 57.0 38.5 25.5 17.2 19.2 38.5 31.3
Seq-Pred-SVO Y N 38.9 25.1 15.6 9.3 18.7 33.6 23.9
PG-Pred-SVO Y N 55.0 36.3 24.3 16.5 18.7 38.1 35.8

Seq-SW-Pred-SVO N N 36.8 22.4 13.0 7.3 16.2 29.0 10.4
PG-SW-Pred-SVO N N 51.2 33.6 22.2 14.4 17.3 33.8 22.9

Seq-NMS-Pred-SVO N N 32.1 20.3 12.6 7.6 17.7 29.1 3.3
PG-NMS-Pred-SVO N N 49.3 32.5 21.7 14.5 19.7 37.3 26.2

Table 2: Evaluating the effect of using the second-level paragraph generation (”PG” models) vs the first-
level of SVO sequences (”Seq” models), using common evaluation metrics (BLEU@N (B@N), ROUGE
(R), METEOR (M) and CIDEr (C)). The ”Baseline” model uses no SVO modules. For the ”Seq” cases we
compared the generated SVO sequence (using only module D in Fig. 2) with the ground truth paragraph
description. For the ”PG” cases, we compared the generated paragraph (using the full system, with all
modules A, B, C and D in Fig. 2) to the ground truth. Note that generating the paragraph at the second
level greatly helps vs. using the more simple SVO sequence. The ”SW” case uses a sliding window
approach to detect SVO regions, while ”NMS” refers to the use of a confidence net in conjunction with
nonmaxima suppression (module D.1) for SVO detection. In the Time/Space GT columns we show
whether true temporal or spatial SVO location is given (Y) or not (N). In the ”Pred” cases, the SVOs
were generated automatically vs. the GT case when true SVOs were given.

CIDEr score over (Venugopalan et al., 2015) and 10% over the state-of-the-art (Duta et al., 2018).
This significant jump in performance is strong indication that an intermediate level annotation (such as
we propose, in the form of SVOs) is needed to eventually reach the superior levels of complex, fluent,
natural language.

5.3 The importance of paragraph description

One can argue that the sequence of SVOs, ordered in time, is a sufficient full description of video content.
So, we compare our two-stage model output against the ”sequence” obtained by concatenating together
all the SVOs (generated or ground truth) in Tab. 2. There is a major difference between the SVO sequence
paragraph and the description. This is not surprising as natural language is diverse. A good description
of a video is not limited to just enumerating, in simplistic sentences, all the atomic events that occur in a
video. The results clearly show that paragraph-level descriptions are not trivial concatenations of lower-
level SVOs. They also set an upper-bound for the dense captioning methods: even if a dense captioning
method perfectly predicts the SVOs and concatenates them into a final description, it still cannot capture
the final description in natural language. This once again proves that the whole is greater and actually
different than the simple sum of its parts (Sternberg and Sternberg, 2016).

This fact is even better seen when comparing the system using ground truth SVOs (PG-GT-SVO) to
the ground truth SVO sequence, directly (Seq-GT-SVO). As shown in Tab. 2, even though the results
are close, for the CIDEr metric, which is known to better correlate with the human judgment, PG-GT-
SVO, which produces second-level paragraphs, is superior by 2% to the ground truth SVO sequence.
This observation shows that by processing the SVOs and using them as features, we can obtain a bet-
ter description than by simply copying the SVOs. It again stresses out that learning first to second level
language transformations improves natural language generation. Additionally, in both cases the improve-
ment compared to the baseline is over 25%, meaning that our proposed scheme is useful.
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Method Feature type B@1 B@2 B@3 B@4 M R C
Baseline (Hara et al., 2018) 49.8 31.5 20.2 13.2 16.2 30.6 19.2

PG-GT-SVO (Hara et al., 2018) 60.4 42.0 29.5 20.6 21.8 42.3 47.3
PG-NMS-Pred-SVO (Hara et al., 2018) 53.4 34.8 23.3 15.6 18.7 35.9 28.7

Baseline (Xie et al., 2018) 51.3 30.5 18.7 12.4 15.8 31.3 24.8
PG-GT-SVO (Xie et al., 2018) 58.9 42.5 31.3 22.7 23.5 43.3 48.9

PG-NMS-Pred-SVO (Xie et al., 2018) 52.9 35.2 23.0 14.6 18.6 35.9 27.5

Table 3: Influence of different additional features. We report the commonly used metrics: B@N stands
for BLEU@N while R, M and C represent the ROUGE, METEOR and CIDEr metrics. As it can be seen,
even when using more powerful features, there is a clear improvement gain when using our two level
annotation scheme.

Method Camera type B@1 B@2 B@3 B@4 M R C
Baseline mobile 44.5 26.6 15.8 8.9 15 29.9 15.5
Baseline fixed 55.2 36.1 23.1 14.4 16.6 35.7 19.5

(Duta et al., 2018) mobile 43.2 26.0 15.6 10.1 15.1 27.5 18.1
(Duta et al., 2018) fixed 47.4 29.8 18.3 11.2 16.9 32.1 21.2

PG-NMS-Pred-SVO mobile 48.6 29.7 18.6 12 17 34 23.7
PG-NMS-Pred-SVO fixed 48.3 34.2 23.4 15.1 21.3 37.7 26

Table 4: Comparison between fixed and mobile camera. We report the commonly used metrics: B@N
stands for BLEU@N while R, M and C represent the ROUGE, METEOR and CIDEr metrics. We re-
trained all models from scratch to include only videos filmed with mobile or fixed camera. The fixed
camera videos are easier to describe in natural language, on average and the results are superior to the
mobile camera case.

5.4 The importance of features
Lately, it has been shown that the features are highly important for the task of captioning (e.g. 3D
convolutional features (Sun et al., 2019b; Sun et al., 2019a)). We show tests with using additionl features
in Tab. 3. We add two different feature sets, commonly used in the field (Hara et al., 2018; Xie et al.,
2018). Both methods extract features from the action recognition task using 3D Convolutional Neural
Networks. As see in Tab. 3 our method brings a clear gain even though the extra features are much
stronger than the initial ones. This is yet another indication that the proposed two level annotation
scheme brings a solid additional value.

5.5 Comparing humans to other humans
By studying the inter-human agreement between annotations, we should get a better understanding of
the system’s performance (Tab. 2). As expected, there is a large variety in how different humans describe
the same video. The relatively low results for human-to-human evaluation, reveal once again the innate
difficulty of the task and the limitation of the current evaluation metrics. It indicates the strong need for
a better knowledge representation at the intersection of vision and language, which could help both in
evaluation, as well as in language understanding and generation at a deep semantic level. This is a future
direction that is worth pursuing and which could take advantage of our proposed hierarchical structure
for language generation, from simple events to complex paragraphs.

6 The effect of camera movement

The introduced Videos-to-Paragraphs dataset contains videos filmed from two viewpoints: a mobile one
that follows the action and a fixed one that captures the whole scene. Please note that for the fixed camera,
the whole scene is captured and there is no action that occurs outside of the camera viewpoint. As seen in
Tab. 4 there is a clear difference between the fixed camera and the mobile one, the fixed-camera scenario
being clearly superior. This shows that a larger context, as captured by the fixed camera scheme, helps
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the model. The power of context is also emphasized in experiments when we restricted the SVOs to the
annotated bounding box, obtaining worse performance than when the whole frame is used.

7 Conclusions and Future Work

In this paper we introduced a novel, hierarchical approach to language generation from videos. It starts
with generating simple sentences ordered in time, followed by the generation, at a second stage, of a
longer and more complex description, which semantically relates the simpler events in space and time
using more coherent, natural language. This is to our best knowledge, the first approach of this kind in
the literature, with two explainable stages for video to language generation. Additionally, we introduce a
novel dataset, Videos-to-Paragraphs, with full annotations at both levels of textual descriptions, again, the
first of its kind in the literature. The dataset is instrumental in comparing our work to the standard, direct
video-to-language published approaches, which are not able to generate longer coherent paragraphs. Our
extensive experiments strongly suggest that the idea of generating explicit language in several phases,
going from simpler sentences, to longer paragraphs and then to complex stories, could offer an interesting
direction towards strong common vision and language representations.
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