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Abstract

In contrast with the traditional single-grained word segmentation (SWS), where a sentence cor-
responds to a single word sequence, multi-grained Chinese word segmentation (MWS) aims to
segment a sentence into multiple word sequences to preserve all words of different granularities.
Due to the lack of manually annotated MWS data, previous work train and tune MWS models
only on automatically generated pseudo MWS data. In this work, we further take advantage of the
rich word boundary information in existing SWS data and naturally annotated data from dictio-
nary example (DictEx) sentences, to advance the state-of-the-art MWS model based on the idea
of weak supervision. Particularly, we propose to accommodate two types of weakly labeled data
for MWS, i.e., SWS data and DictEx data by employing a simple yet competitive graph-based
parser with local loss. Besides, we manually annotate a high-quality MWS dataset according to
our newly compiled annotation guideline, consisting of over 9,000 sentences from two types of
texts, i.e., canonical newswire (NEWS) and non-canonical web (BAIKE) data for better evalua-
tion. Detailed evaluation shows that our proposed model with weakly labeled data significantly
outperforms the state-of-the-art MWS model by 1.12 and 5.97 on NEWS and BAIKE data in F1.

1 Introduction

As a preliminary but critical processing step for Chinese language processing, word segmentation (WS)
has been extensively studied for decades and made great progress (Zheng et al., 2013; Pei et al., 2014;
Zhang et al., 2016; Yang et al., 2019; He et al., 2020). However, most of previous works adopt the
single-grained word segmentation (SWS) formulation, where a sentence corresponds to a single word
sequence according to some pre-defined annotation guidelines. As shown in Figure 1 (left), the SWS
annotations of the sentence are different according to the guidelines of Penn Chinese Treebank (CTB)
(Xue et al., 2005), the People Daily Corpus of the Peking University (PPD) (Yu et al., 2003), and the
Microsoft Research WS Corpus (MSR) (Huang et al., 2006). This is largely due to the fact that the
boundary between words is usually subtle and vague (Jernudd and Shapiro, 1989) and there are various
underlying linguistic theories. Sproat et al. (1987) show that the consensus ratio over word boundaries
is only 76% even among Chinese native speakers without training on any guideline.

In order to guarantee the annotation consistency, people turn to detailed annotation guidelines ac-
cording to specific tasks or applications. For example, CTB usually prefers fine-grained words over
coarse-grained words to facilitate further annotation of syntax and semantics, while PPD accommodates
more coarse-grained words with information extraction and retrieval tasks in mind. This poses a strong
challenge in Chinese WS since words of different granularities are necessary for a variety of tasks and
applications at the same time. Zhu and Li (2008) and Hou et al. (2010) adopt heuristic rules based on
lexicon dictionaries to accommodate the necessity. Similar functions are provided by publicly available
Chinese WS tools such as jieba and PullWord. However, the effectiveness of such tools are far below
satisfactory without tackling segmentation ambiguity problem.
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Figure 1: SWS annotation heterogeneity of an example sentence (left) with its MWS tree (right): “二 (two)老 (elder)都 (both)
是 (are)令 (make)人 (people)尊敬 (respect)的 (of)科学 (science)家 (expert).”

It is worth emphasizing that even for the same task or application, words of different granularities can
be useful due to its potential complementarity: fine-grained words capture local features and help reduce
data sparseness, whereas coarse-grained words reserve more semantics to perform exacter matching and
analysis. This facilitates researchers to employ multiple SWS outputs at the same time in information
retrieval (IR) (Liu et al., 2008) and machine translation (MT) (Su et al., 2017).

Motivated by above perspectives, multi-grained word segmentation (MWS) is formally proposed by
Gong et al. (2017) as a useful and challenging direction for research on word segmentation. Given an
input sentence, MWS aims to accommodate all words of different granularities with a hierarchical tree
structure. Figure 1 (right) presents an example, where “W” means the spanning characters compose a
word. In this example, “二 (two)”, “老 (elder)”, “二老 (two elders)”, “都 (both)”, “是 (are)”, “都是 (both
are)”, “令 (make)”, “人 (people)”, “令人 (make people)”, “尊敬 (respect)”, “令人尊敬 (respectable)”, “
的 (of)”, “科学 (science)”, “家 (expert)”, “科学家 (scientist)” are all the words of different granularities.
To solve the issue of lacking labeled MWS data, they construct a large-scale pseudo MWS data for model
training and tuning. They propose several MWS approaches and justify the superiority of treating MWS
as constituent parsing. However, their approaches only learn from pseudo MWS data and do not fully
exploit word boundary information from other available sources which are helpful and easy to obtain.

This paper advances the state-of-the-art MWS model with weakly labeled data. Particularly, we
propose to accommodate two types of weakly labeled data, i.e., SWS and naturally annotated dictio-
nary example (DictEx) sentences, as extra training data, by employing a simple but competitive graph-
based parsing model with local span-wise loss. Besides, we develop a unified annotation guideline
for MWS and manually annotate a large-scale high-quality MWS dataset containing over 9,000 sen-
tences from both canonical newswire texts (NEWS) and non-canonical web texts (BAIKE) for bet-
ter evaluation. Detailed evaluation shows that our proposed model with weakly labeled data signif-
icantly improves the state-of-the-art MWS model by 1.12 on NEWS and by 5.97 on BAIKE in F1.
We release all the newly annotated data and the codes at https://github.com/gloria0108/
multi-grained-word-seg.

2 Graph-based Model with Local Loss

Given an input sentence, the task of MWS is to retrieve all words of different granularities, which can be
naturally organized as a hierarchical tree structure as shown in Figure 1 (right).

Gong et al. (2017) propose several MWS approaches and show that treating MWS as constituent
parsing leads to the best performance. They adopt the transition-based parser of Cross and Huang (2016),
which greedily searches an optimal shift-reduce action sequence to build a tree. In this work, instead of
adopting the transition-based parser as Gong et al. (2017), we employ the graph-based parser of Stern et
al. (2017) and replace the original global max-margin loss with local span-wise loss (Joshi et al., 2018;
Teng and Zhang, 2018) as our basic MWS model due to two considerations: 1) the graph-based parser
with local loss gains more efficiency without hurting the performance compared with the transition-
based parser and the graph-based parser with global loss, which will be discussed in Section 5.3; 2)

https://github.com/gloria0108/multi-grained-word-seg
https://github.com/gloria0108/multi-grained-word-seg
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Figure 2: Architecture of our MWS model.

more importantly, this work aims to conduct in-depth study on a simple, efficient, and effective way
to incorporate weakly labeled data for MWS. The graph-based parser with local loss trains the model
directly on individual labeled spans, and thus can accommodate weakly labeled data naturally.

2.1 Model Architecture
As illustrated in Figure 2, our model architecture consists of following four components.

The input layer builds a dense vector representation for each character position x0x1...xn, given the
input sentence c0c1...cn, where ci denotes the i-th character and c0 is a pseudo character for sentence
start. Following previous work on Chinese word segmentation (Pei et al., 2014), we use the concatenation
of single character embeddings embci and bigram character embeddings embci−1ci as the input.

xi = embci ⊕ embci−1ci (1)

The encoding layer uses two layers of BiLSTM to encode the sentence and produce contextualized
representations. We use fi and bi to denote the hidden vector of the top-layer forward and backward
LSTMs for the i-th position.

The span representation layer constructs a dense representation vector for each possible span
ci...cj−1 denoted as (i, j):

ri,j = (fj − fi)⊕ (bi − bj) (2)

which is also known as the LSTM-minus features (Wang and Chang, 2016; Cross and Huang, 2016).
The classification layer uses an MLP to compute the labeling scores of each span.

oi,j = W2ReLU(W1ri,j + b1) + b2 (3)

where W1, W2, b1, and b2 are parameters. In our task, the dimension of oi,j is 2, w.r.t “W” and “NW”
respectively (oi,j [0] is the score of labeling span (i, j) as a word, and oi,j [1] as a non-word).

2.2 Training with Local Span-wise Loss
During training, we compute a local cross-entropy loss value for each span, and accumulate all loss
values of all possible spans in the input sentence.

L = −
∑

0≤i<j≤n
log

eoi,j [y
∗
i,j ]

eoi,j [0] + eoi,j [1]
(4)

where y∗i,j ∈ {0, 1} is the gold-standard label for span (i, j).
For the weakly labeled data introduced in Section 3, the loss function only accumulates the values of

the spans with ground-truth labels and overlooks others.
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Figure 3: A weakly labeled sentence from SWS data: 他
(He)整天 (whole day)乐呵呵 (happy).
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找 到 最 佳 途 径

Figure 4: A weakly labeled sentence from DictEx: 找到
(find)最佳 (the best)途径 (way).

2.3 Inference with Chart Decoding

During test, after obtaining the scores of different labels for each span, we follow Stern et al. (2017) and
adopt chart decoding to find a global optimal MWS tree T ∗ with the highest score from all the possible
trees. The score of an MWS tree T is the sum of label scores of all spans.

score(T ) =
∑

(i,j,y)∈T

oi,j [y] (5)

where (i, j, y) means span (i, j) is labeled as y, y ∈ {0, 1}.

3 MWS with Weakly Labeled Data

Due to the lack of manually labeled high-quality data, Gong et al. (2017) construct a large-scale pseudo
labeled MWS data by automatically converting existing heterogeneous SWS data in a pairwise way.
They train their model with the pseudo labeled data and obtain promising performance on a small scale
manually labeled MWS data. However, they observe that the pseudo labeled data inevitably has a lot of
noise due to the pairwise conversion model and severly suffer from the under-representation phenomena
of multi-grained words. In order to alleviate above issues, we propose to accommodate two types of
weakly labeled data (i.e., SWS data and DictEx data) as extra data for MWS training, inspired by previous
work on utilizing naturally annotated data for SWS (Jiang et al., 2013; Zhao et al., 2018).

3.1 SWS Data as Weakly Labeled Data

Although Gong et al. (2017) already adopt three heterogeneous SWS data to construct pseudo MWS
data, there exist many other high-quality SWS datasets to explore with, and new ones are constantly
annotated by research institutes and commercial companies.

Instead of converting such new SWS data into noisy MWS data as Gong et al. (2017) did, we propose
to treat SWS data as weakly labeled MWS data with a minor extension on the training loss. The key
idea is that when accumulating training loss, we only consider spans whose gold-standard labels can
be directly determined according to the SWS annotation and overlook others, as illustrated in Figure 3,
where spans labeled with “W” correspond to the words in the SWS sentence, those labeled with “NW”
are definitely non-words since they overlap with existing gold-standard words (i.e., the words annotated
in SWS data), and all blank spans without labels are overlooked with no loss.

3.2 DictEx Data as Weakly Labeled Data

The use of naturally annotated data has been extensively studied for SWS (Jiang et al., 2013; Liu et al.,
2014; Zhao et al., 2018). The basic idea is to derive word boundaries from implicit information encoded
in web texts, such as anchor texts and punctuation marks, and use them as partially labeled training data
in sequence labeling models.
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In this work, we propose to obtain naturally annotated data with complete word information from
the example sentences in dictionary (rather than only boundaries), which are manually constructed by
linguistic experts, e.g., Entry: 最佳 (the best)

Example sentence:
1: 找到最佳途径 2: 这是最佳选择
(find the best way) ( this is the best choice)

where two DictEx sentences are carefully chosen to explain the usage of the word “最佳 (the best)”.
Obviously, we can safely assume the two characters “最佳 (the best)” compose an explicit word. In
this way, we can obtain many naturally annotated sentences, each labeled with one explicit word from a
dictionary entry. Similar to the SWS data case, we can adjust the training loss to utilize such naturally
annotated DictEx sentences by only accumulating the loss of the spans whose gold-standard labels can
be directly determined, as shown in Figure 4.

4 High-quality Evaluation Data Annotation

Gong et al. (2017) construct pseudo MWS data as the training and development datasets and manually
annotate 1,500 sentences with the MWS tree structure as the test data. They present pseudo MWS results
to annotators for correction without defining a strict MWS annotation guideline. Their inter-annotator
consensus ratio is very high (98.1%). The main reason is that the annotators usually only detect very
obvious segmentation errors and accept others as correct by default. Our early investigation shows that
their data contains at least 5% annotation errors according to our newly compiled guideline.

In order to produce more high-quality data for better evaluation, we adopt a more scientific and ro-
bust annotation procedure and methodology. Our annotation work differs from Gong et al. (2017) from
following aspects: 1) We compile a systematic and detailed MWS annotation guideline for annotators’
reference; 2) We abandon the annotation-via-correction method and present raw texts to annotators with-
out pseudo MWS results or any other word information; 3) We adopt double annotation for all sentences
with inconsistency handling by experts, to guarantee high quality.

As a result, we achieve the first large-scale high-quality MWS evaluation data covering two sources,
i.e., 3,000 NEWS and 6,320 BAIKE sentences.

4.1 Annotation Process
Annotation guideline. After a few months’ in-depth study, we integrate the three well-known SWS
guidelines (i.e., CTB, PPD and MSR) and compile a systematic and detailed MWS annotation guideline.
We also gradually improve the guideline according to the feedback from the annotators.

Quality control. We employ 24 undergraduate students as annotators and train them for 4-8 hours be-
fore formal annotation. We apply strict double annotation to guarantee high quality and build a browser-
based annotation platform to support the annotation workflow.

Data selection. To better understand the capability of the state-of-the-art MWS model in dealing with
real-world data, we select data from two sources for annotation, i.e., canonical newswire (NEWS) and
non-canonical web texts .

For the canonical newswire texts, we re-annotate the 1,500 sentences of Gong et al. (2017), which
are randomly sampled from CTB, PPD and MSR, according to our guideline. We further annotate 1,500
sentences from the year 2000 PPD SWS data, leading to 3,000 sentences with MWS full annotations,
which are used as the development and test data in this work.

For non-canonical web texts, we collect 12 million sentences with anchor texts from the Baidu Baike
website1 (similar to Wikipedia) after data cleaning. The anchor text is the visible, clickable text in a
hyperlink, which usually indicates a word or a phrase and thus can provide word boundary information.
For example, a hyperlink to the web page about “二氧化硫 (sulfur dioxide)” might take this form: “排放
(discharge) 大量 (a large amount of) <a href=“http://. . . ”> 二氧化硫 (sulfur dioxide) <\a>”, where
“二氧化硫 (sulfur dioxide)” is an anchor text. Inspired by the idea of naturally annotated WS data (Jiang
et al., 2013), we use anchor texts as word boundaries to select sentences difficult for models. First, we

1
https://baike.baidu.com/

https://baike.baidu.com/
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#Sents #Words
Grain Distribution (%)
Single Two Three+

NEWS? 1,500 45,279 71.6 26.8 1.6
NEWS 3,000 94,585 70.2 26.9 2.9
BAIKE 6,320 14,445 51.5 39.2 9.3

Table 1: Statistics of our manually annotated data.
NEWS? represents the NEWS data annotated by Gong
et al. (2017) Please note that BAIKE data is partially
annotated.

Type #Sent #Word
Train Pseudo MWS 138,628 4,127,461

SWS (additional) 100,000 2,490,589
DictEx (additional) 145,037 146,934

Dev Manual NEWS 1,000 31,477
Test Manual NEWS 2,000 63,108

Manual BAIKE 6,320 14,445

Table 2: Data statistics in our experiments.

use our basic MWS model trained on pseudo MWS data to predict an MWS tree for each sentence.
Then, we randomly select 6,320 sentences where the automatic MWS tree contains at least one word that
violates with a boundary, indicating the model makes at least one mistake. To save cost, we adopt partial
annotation for the Baike web texts, and annotate only words related with the anchor texts. We use the
annotated Baike web texts as a cross-domain test data.

4.2 Statistics and Analysis
Table 1 shows the data statistics. Our re-annotated NEWS data contains 1.4% more multi-grained words
compared with the NEWS data annotated by Gong et al. (2017), indicating that their annotation pro-
cedure may under-annotate multi-granularity structures. It is obvious that BAIKE contains much more
multi-grained words than NEWS, because for BAIKE we only partially annotated words related with
anchor texts, among which a large proportion are named entities and tend to be multi-grained.

Inter-annotator consensus ratio. The word-wise inter-annotator consensus ratio is defined as
#WordannoA∩annoB
#WordannoA∪annoB

, where the denominator is the number of words after merging the submission of all
annotator pairs, and the numerator is the consensus word number. The overall word-wise consensus ratio
is only 82.5%. This indicates the difficulty of the annotation task and the necessity of performing strict
double annotation to guarantee data quality.

5 Experiments

We conduct various experiments to show the effectiveness of our proposed MWS approaches.
Data. Data statistics are shown in Table 2. For the training data, we directly adopt the pseudo MWS

training data of Gong et al. (2017), consisting of about 140K sentences from CTB, PPD, and MSR via
automatic pairwise conversion as the baseline. For the dev data, different from previous work which uses
the pseudo MWS data, we randomly sample 1,000 sentences from the manually labeled NEWS data.
We use two types of test data, the manually annotated 2,000 sentences of NEWS and 6,320 sentences
of BAIKE. For the SWS data, we use 100K sentences from the year 2000 PPD, while we collect 140K
naturally annotated DictEx sentences from the Dictionary of Modern Chinese Grammar Information of
Peking University (Yu and Zhu, 2017) and the Xinhua dictionary2.

Evaluation metrics. Given an input sentence, MWS aims to precisely segment the sentence
into all words of different granularities. We adopt the same evaluation metircs as SWS. Precision
(#Wordgold∩pred

#Wordpred
), recall (#Wordgold∩pred

#Wordgold
) and F1 ( 2PR

P+R ) score are used to measure the MWS performance.
We adopt Dan Bikel’s randomized parsing evaluation comparator for significance test (Noreen, 1989).

Model setting. We preserve most of the hyperparameter settings in Stern et al. (2017), and our
preliminary experiments show that the performance of our approach is quite stable. Each model is
trained for at most 1000 iterations, and early stopping is triggered when the peak performance does not
increase in 50 consecutive iterations.

5.1 Benchmark Methods
We adopt following four benchmark methods for comparison. Beside the transition-based parser and the
graph-based parser with global max-margin loss, we also re-implement another two benchmark methods

2http://xh.5156edu.com/
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Models Dev Test (NEWS) Test (BAIKE)

P R F1 P R F1 P R F1
SWS aggregation 87.75 91.65 89.66 87.78 91.45 89.58 38.21 43.30 40.59
Sequence labeling 92.39 89.15 90.74 92.49 88.89 90.65 42.85 32.27 36.82
Transition-based parser 94.18 91.64 92.89 94.55 90.88 92.68 48.98 39.10 43.08
Graph-based parser (global) 95.57 90.88 93.16 95.34 90.51 92.86 49.64 37.89 42.98
Our graph-based basic parser (local) 95.52 90.93 93.17 95.24 90.59 92.86 48.39 38.91 43.14
+SWS 94.70 93.31 94.00 94.63 93.09 93.85 50.19 47.63 48.88
+DictEx 95.15 91.60 93.34 94.94 91.27 93.07 47.61 39.87 43.40
+SWS&DictEx 94.94 93.67 94.30 94.68 93.29 93.98 50.21 47.94 49.05

Table 3: Main results of different approaches.

in Gong et al. (2017) and report their results on the new evaluation data for more insights. All the models
adopt the similar architecture based on a multi-layer BiLSTM encoder.

1. SWS aggregation. We train three SWS models separately on PPD, MSR and CTB datasets, and
merge their outputs as MWS results.

2. Sequence labeling. It considers MWS as sequence labeling problem. Each character corresponds
to an MWS label to denote the positions of the character in all the multi-grained words containing it.

3. Transition-based parser. We adopt the same transition-based parser of Cross and Huang (2016).
4. Graph-based parser (global). We use the same graph-based constituent parser of Stern et al.

(2017) with global max-margin loss.

5.2 Main results

Table 3 compares different approaches on the manually annotated development, NEWS-test and BAIKE-
test. Please kindly note that the results look very low on BAIKE-test, because only the most difficult parts
(anchor texts) are partially annotated for BAIKE sentences, as discussed in Section 4.1.

Our graph-based parser with local loss outperforms the SWS aggregation and sequence labeling
methods with large margins (p < 0.001) on both dev and tests. We observe that although the SWS
aggregation method achieves the best recall compared with other benchmark methods, the precision is
very low due to the ignorance of the connections among different heterogeneous SWS data. The recall
of the sequence labeling approach is poor, because the sequence labeling model produces less words
and multi-grained words than other models and thus fails to produce words more than three granularity
levels. These indicate that casting MWS as a constituent parsing problem is more proper.

Our graph-based model with local loss performs slightly better on NEWS-test in F1 and achieves
nearly the same performance on BAIKE-test compared with the transition-based parser. Besides, the
results of the graph-based parser with local loss and global loss are comparable.

Moreover, the precision values are much higher than the recall values for transition/graph-based parser
on both types of test data. This large gap means that the MWS models tend to generate single-grained
words rather than multi-grained ones. The main reason is that multi-granularity phenomena are under-
represented in the noisy pseudo MWS data due to the mistakes and bias imposed by the automatic
conversion models.

Using additional SWS data for training brings large F1 improvement over the basic parser trained
on only pseudo MWS data. For NEWS, although precision decreases by 0.82/0.61 on dev/test, recall
increases by much larger margin of 2.38/2.50, leading to overall F1 increase of 0.83 and 0.99 on dev
and test (p < 0.001). We believe the reason is that the SWS data can alleviate the under-representation
of multi-granularity phenomena in the noisy pseudo MWS training data. For further investigation, we
calculate the word proportion (defined as #SpanW

#SpanW+#SpanNW
, where #SpanW and #SpanNW represent the

number of spans labeled “W” and “NW” respectively), which accounts for 3.5% for SWS data and only
2.0% for pseudo MWS data. In other words, there are more positive examples for the “W” label in the
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SWS data than in the pseudo MWS data, thus encouraging the model to produce more multi-grained
words and achieve higher recall to some extend. For BAIKE-test, the model with additional SWS data
outperforms the basic parser by 5.74 (from 43.14 to 48.88) in F1 (p < 0.001). The improvement is
mostly contributed by the large increase of recall, which is consistent with NEWS.

Using the DictEx data as extra training data consistently improves F1 score by 0.21/0.26 on
NEWS/BAIKE test compared with the basic parser trained on only pseudo MWS data. The improve-
ment seems small yet both significant (p < 0.001). Looking into the precision/recall changes, though
precision decreases a little bit, recall increases a lot. This can be explained similarly by the proportion of
positive “W” examples, which is 11.2% for DictEx and it is much higher than pseudo MWS data.

Above results show that the DictEx data is a very reliable knowledge source, and the small yet steady
improvement is mainly due to its weak supervision, considering that only a very small portion of spans
have loss in each sentence.

Using both SWS and DictEx data achieves the highest F1 scores on both dev and test, outperforming
the basic parser by 1.13 on dev, 1.12/5.91 on NEWS/BAIKE test (p < 0.001). Compared with the “+
SWS” model, the extra DictEx data increases both precision and recall on dev and NEWS/BAIKE test.

Overall, above results show that the SWS data can effectively reach a balance with the pseudo MWS
by alleviating under-representation problem of multi-granularity, while the DictEX data can provide
complementary and consistent contribution.

5.3 Efficiency
We report the averaged one-epoch training time on the pseudo MWS data (consuming 15,000 training
instances) as follows:

Transition-based parser 38min
Graph-based parser (global) 35min
Our graph-based basic parser (local) 23min

We choose the transition-based parser and the graph-based parser with global loss for comparison, as
they outperform other benchmark methods by large margins. We find that our graph-based parser with
local loss is about 1.5 times faster than these two compared models.

5.4 Analysis
We conduct detailed analysis to gain more insights on our proposed approaches. For space limitation,
we only present the analysis results on NEWS-test.

Influence of the amount of data. Figure 5 illustrates the influence of the amount of both the pseudo
MWS data and the weakly labeled data. In each curve, we fix the size of the pseudo MWS data and
incrementally add a random subset of the weakly labeled data. For the three curves, we use all, 50%,
and 25% of the pseudo MWS data by random sampling. We observe that using more weakly labeled
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data leads to consistently higher performance for all three curves. While the first 25% data produces
largest improvement, the gain becomes less substantial afterwards. From another aspect, performance
steadily goes up by large margin when raising the size of the pseudo MWS data, demonstrating that
the pseudo MWS data is fundamentally important for training the MWS model, although containing
inevitable noises.

Performance of different granularities. To understand the performance of our approaches on words
of different granularities, we divide the gold-standard words into three subsets according to their guan-
ularities and compute the recall of each approach on the three subsets. We compare our models with
the transition-based parser and the graph-based parser with global loss, which have better performance
than other benchmark methods. The results are shown in Figure 6. The percentages in parenthesis at
the X-axis denote the word proportions of corresponding granularities on NEWS-test. Figure 6 shows
that the words with more granularities have lower recall for all models. This indicates that multi-grained
words are difficult to predict. Compared with the transition-based parser and the graph-based parser
with global loss, our basic parser using only the pseudo data performs better in two of the three types of
granularities. After utilizing weakly labeled data, our MWS model achieves consistent improvements on
all the three types of granularities.

6 Related Work

MWS approaches. The industrial community has long been interested in retrieving words of different
granularities with the help of lexicon dictionaries and heuristic rules (Zhu and Li, 2008; Hou et al.,
2010). We also find that publicly available WS tools such as jieba3 and PullWord4 provide the interface
for retrieving words of different granularities. However, all those tools judge the probability of each
substring being a word independently, without resolving any segmentation ambiguity. Therefore, the
output words may overlap with each other.

Gong et al. (2017) first formally address the MWS task and build a pseudo MWS dataset for model
training. They also propose and compare three benchmark MWS approach, i.e., constituent parsing,
sequence labeling, and SWS aggregation, showing that treating MWS as constituent parsing is most
effective. We follow their work and advance the state-of-the-art MWS research progress from the per-
spectives of both data and approach.

Utilizing MWS results. Due to its critical importance, MWS results have been explored in various
NLP applications. Liu et al. (2008) propose a ranking based WS approach to produce words of dif-
ferent granularities to help IR. Su et al. (2017) propose a lattice-based RNN encoder for neural MT
by representing MWS outputs in word lattices, leading to improved translation performance. Due to
the lack of MWS model, they obtain MWS outputs from several SWS models independently trained on
heterogeneous SWS datasets.

Utilizing weakly labeled data. The use of weakly labeled data has been an interesting research
direction in NLP for a long time. On the one hand, it is usually much easier and cheaper to perform
partial annotation than complete annotation, especially for complex tasks such as parsing (Hwa, 1999;
Sassano and Kurohashi, 2010; Li et al., 2016b; Joshi et al., 2018). On the other hand, it is sometimes
feasible to automatically extract naturally annotated data. Several works utilize naturally annotated data
with word boundaries for training SWS models, by making use of markup information such as anchor
texts in web pages (Jiang et al., 2013; Liu et al., 2014; Zhao et al., 2018).

In this work, we propose two types of weakly labeled data for MWS, i.e., SWS data and naturally
annotated data from DictEx sentences, which are shown to be complementary and able to alleviate the
under-representation problem of multi-grained phenomena in the noisy pseudo MWS training data.

SWS with heterogeneous data. In recent years, there has been a surge of interest in improving SWS
with heterogeneous SWS data. The basic idea is improving SWS by utilizing multiple manually labeled
SWS data for training at the same time. Representative works include Li et al. (2016a), Chen et al.
(2016), He et al. (2018), Chen et al. (2017) and Yang et al. (2017). Although MWS results can be

3https://github.com/fxsjy/jieba
4http://pullword.com
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obtained by merging multiple SWS outputs, but many overlapped words may generated due to the lack
of proper constraints, leading to low precision. In this work, we alleviate this issue by considering MWS
as a constituent tree parsing problem.

7 Conclusions

This work advances the state-of-the-art MWS research from three perspectives. First, we manually an-
notate over 9,000 sentences for better evaluation, consisting of both canonical NEWS and non-canonical
BAIKE texts. Second, we employ a simple graph-based parsing model with local loss to facilitate the
use of weakly labeled data. Finally, we propose to accomodate two types of weakly labeled data as
extra training data, i.e., the SWS data and the DictEx data. Detailed analysis show that 1) the simple
graph-based parsing model with local loss achieves highly competitive performance; 2) both types of
weakly labeled data can provide consistent and substantial gains; 3) our proposed approach outperforms
the state-of-the-art MWS model by 1.12 on NEWS and by 5.97 on BAIKE in F1.
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