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Abstract

Although neural table-to-text models have achieved remarkable progress with the help of large-
scale datasets, they suffer insufficient learning problem with limited training data. Recently, pre-
trained language models show potential in few-shot learning with linguistic knowledge learnt
from pretraining on large-scale corpus. However, benefiting table-to-text generation in few-shot
setting with the powerful pretrained language model faces three challenges, including (1) the
gap between the task’s structured input and the natural language input for pretraining language
model. (2) The lack of modeling for table structure and (3) improving text fidelity with less
incorrect expressions that are contradicting to the table. To address aforementioned problems, we
propose TableGPT for table-to-text generation. At first, we utilize table transformation module
with template to rewrite structured table in natural language as input for GPT-2. In addition, we
exploit multi-task learning with two auxiliary tasks that preserve table’s structural information by
reconstructing the structure from GPT-2’s representation and improving the text’s fidelity with
content matching task aligning the table and information in the generated text. By experimenting
on Humans, Songs and Books, three few-shot table-to-text datasets in different domains, our
model outperforms existing systems on most few-shot settings.

1 Introduction

Table-to-text generation, aiming at generating descriptive text about important information in structured
data, has well application prospect in communicating with human in a comprehensible and natural way,
such as financial report (Murakami et al., 2017), medical report (Hasan and Farri, 2019) generation, etc.
In recent years, data-driven models have shown impressive capability to produce informative and fluent
text with the help of large-scale datasets, such as WIKIBIO (Lebret et al., 2016) and E2E (Dušek et al.,
2020). However, it is not always feasible to collect large-scale labeled dataset for various domains in the
real world, resulting in unsatisfying performance due to the insufficient training. Such few-shot learning
setting for table-to-text generation is not well-explored, and in this paper, we focus on exploring how to
efficiently model for few-shot table-to-text generation with limited training pairs.

Recently, pre-trained language models have shown promising progress in various natural language
processing tasks (Yang et al., 2019b; Devlin et al., 2019; Radford et al., 2019). They can capture linguis-
tic knowledge by pretraining on large-scale unlabeled dataset and generalize to downstream tasks with
little labeled data in target domain, effectively modeling for few-shot setting (Peng et al., 2020). How-
ever, efforts to benefit table-to-text generation from the powerful pre-trained language model, especially
in few-shot setting, are non-trivial due to three challenges. (1) There is a gap between the structured data
input for table-to-text generation and natural language input that is used for pretraining GPT-2. (2) Also,
it lacks modeling of the table’s structure which contains rich information to understand the input before
generating text. (3) Additionally, it doesn’t address how to maintain text’s fidelity for table-to-text gener-

* Equal Contribution.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



1979

Attribute Value

name james beattie
fullname james scott beattie
birth 27 february 1978 lancaster , england
position striker
currentclub swansea city ( assistant first team coach )
nationalteam england u21 england
article james beattie ( footballer )
... ...

Reference: james scott beattie ( born 27 february 1978 ) is an english former professional
footballer who played as a striker .

Table 1: A sample of table-text pair for table-to-text generation from Humans domain. The highlighted
phrases are information mentioned in text.

ation while exploiting linguistic knowledge from pretraining corpus, that is the (highlighted) information
in text (Table 1) should correctly derive from structured data.

In order to alleviate aforementioned problems, we propose TableGPT that focus on generating high-
fidelity text for table-to-text generation with limited training pairs. Addressing the gap between struc-
tured table input and natural language input that GPT-2 processes during pretraining, we utilize a table
transformation module that employs template to naturally transform structured table into natural lan-
guage. In addition, we utilize two auxiliary tasks under the framework of multi-task learning, table
structure construction and content matching, targeting pretrained GPT-2’s lack of modeling for table
structure and text’s fidelity. In detail, the table structure reconstruction task is proposed for GPT-2 which
force it to embed table structure into its representation when modeling structured table. Besides, we
utilize content matching task that help model correctly describe important information from table via
Optimal-Transport (Chen et al., 2019a) technique, which measures the distance between the informa-
tion in generated text and information in table and use the distance as penalty for text with incorrect
information.

We conducted experiments on three data-to-text datasets on different domains (Chen et al., 2020b):
Humans, Books, Songs in various settings. Both automatic evaluation and human evaluation results
show that our model can achieve new state-of-the-art performance for table-to-text generation in terms
of generating fluent and high-fidelity text in most few-shot settings.

2 Background

2.1 Task Definition

For the table-to-text task discussed in this paper, we can formulate each training instance as pair of table
and summary E = (S, T ). Given a table, which can be formulated as sets of records S = {ri}Ni=1, the
model is expected to generate descriptive text T = w1, w2, ..., wL. N is the number of records and L
is the number of words in text. Each record ri consists of two type of information: ri.a and ri.v. ri.a
denotes the attribute of the record (e.g. name) and ri.v denotes the corresponding value (e.g. james
beattie). Please note that both ri.a and ri.v can be viewed as a sequence of words.

2.2 Pre-trained Language Model

Recently, pre-trained language models, such as BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019),
XLNet (Yang et al., 2019b) and more, have achieved remarkable progress in various NLP tasks. The
main idea is to pretrain a neural language model with large number of parameters on large-scale dataset
in order to capture the linguistic knowledge at first. Then, transfer those knowledge to downstream task
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Figure 1: TableGPT’s Training Process. Tokens in red indicate information in reference and those in blue
refers to value tokens’ corresponding attribute. (a) Table Transformation employs template to rewrite the
structured table in natural language and concatenate with reference to form a training pair, resulting in
language model loss LLM with GPT-2. (b) Table Structure Reconstruction and (c) Content Matching are
auxiliary tasks. The former reconstructs attributes from GPT-2’s representation of value tokens, forming
LSR. The latter use Optimal Transport to measure distance between information mentioned in text and
table, using this as content matching loss LCM . The model is jointly finetuned with above three losses.

via finetuning on the task’s dataset. Impressively, they can outperform various NLP tasks’ previous state-
of-the-arts by a large margin. Since we investigate table-to-text generation task in this paper instead of
natural language understanding tasks, we choose GPT-2 as the basis of our model. The model structure
for GPT-2 is a 12-to-48-layer transformer decoder (Vaswani et al., 2017) with 117 million to 1542 million
parameters. Each layer consists of a stack of masked multi-head self attention and feed-forward neural
network with residual connection and layer normalization. The pre-training target of GPT-2 is as the
same as language model: maximizing gold text’s probability. The large-scale model is trained on vast
and diverse WebText dataset with 8 million documents collected from the Internet. Its success in the area
of text generation attributes to both its high capacity model and knowledge learnt from pretraining on
vast dataset.

3 Approach

In this section, we propose to address the three incompatibility between pretrained language model and
table-to-text generation illustrated in Section 1. Figure 1 presents the overall multi-task training frame-
work of our model. We first utilize table transformation module to reasonably transform structured table
into text sequence and aggregate it with reference text, resulting in a suitable training sequence for GPT-
2 model. Then, two auxiliary tasks: table structure reconstruction and content matching with optimal
transport (Chen et al., 2019a) are performed on top of GPT-2’s representation of the training sequence.
Those two auxiliary tasks’ training objectives along with GPT-2’s language model training objective are
jointly finetuned based on the pre-trained GPT-2 under the multi-task training framework. The overall
objective here is to produce high-fidelity text while maintaining its fluency.

3.1 Table Transformation
As noted in Section 2.1, the given structured table consists of multiple records as attribute-value pairs. In
order to adapt to the sequential nature of language model, we employ a template-based table serialization
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method (Chen et al., 2019b) to encode such structured table as a sequence. For example, we serialized
the attribute-value pair ”name: jack reynolds” as a sentence ”name is jack reynolds.” and concatenate all
of them into a document according to the order of records in table.

After obtaining the serialized structured table, we connect it with the corresponding natural language
description T with special token “< table2text >”. It serves as a functional token that both encodes the
overall information of the table and as a starting signal to generate text. The whole sequence is ended
with special token “< endoftext >”. In this way, our model encodes the structured table and learns
to predict the target sequence one word at a time as in GPT-2. We denote the final input sequence as
ST = st1, · · · , stm+n+2. m is the length of serialized table, n is the length of text and 2 refers to the
special tokens mentioned above. The language model’s training objective is to maximize the likelihood
of the reference text, which is equivalent to minimize the negative log likelihood (language model loss
LLM ) as characterized by Equation 1.

LLM = − 1

n+ 1

m+n+2∑
i=m+2

logP (sti|st<i) (1)

3.2 Table Structure Reconstruction

As shown in Table 1, unlike many natural language generation tasks that take sentences as input, table-
to-text generation models need to process table with structural information. Each data record in the input
can be seen as a pair of attribute and value. Traditionally, table-to-text models utilized attribute-value
concatenation to represent the tables. In this way, they are able to capture the structural information
by learning the correspondence between value and attribute. However, when we transform the table
into natural language and use pre-trained language model GPT-2 for representation, it lacks the explicit
modeling to incorporate such structural information. Inspired by Liu et al. (2019), our model treats
the attribute names as the labels for the model to reconstruct such structural information from GPT-2’s
learned table values’ representation.

In detail, as shown in Figure 1 (b), given a serialized table Sk which consists of different attributes and
values in natural language form, the table structure reconstruction task takes the last layer of GPT-2’s
hidden states for each value tokens [Hti,j ]i=1:n,j=1:mi of the table and classify which attribute does each
value token’s representation refer to. Specifically, the i means the ith record of the table Sk, j means the
jth value token of ith record, n is the number of records and mi is the number of tokens of ith record’s
value.

P (ai,j) = softmax(Hti,jWt + bt) (2)

LSR = − 1

Z

n∑
i=1

mi∑
j=1

logP (a?i,j) (3)

Equation 2 shows the detail of the reconstruction classifier. Please note that the serialized table consists
of attribute, value and template tokens. In this auxiliary task, we only take the GPT-2’s hidden states for
those value tokens and reconstruct the structural information by classifying their corresponding attribute.
Wt and bt are the trainable parameters of the introduced classifier and p(ai,j) is probability to classify
value token Hti,j as referring to attribute ai,j . We use cross entropy as this task’s objective function,
illustrated by Equation 2 and 3. a?i,j refers to the gold attribute label for the value token and Z is the
number of value tokens’ that need to reconstruct the corresponding attribute label. By incorporating this
auxiliary task, TableGPT can be guided to embed structural information when representing the table at
the training stage.

3.3 Content Matching

Take Table 1 as an example, generating high fidelity text that correctly describe information in the table
is the core of table-to-text generation. Producing fluent but incorrect text still means unsatisfying perfor-
mance as the text is not reliable for the purpose of disseminating comprehensible information. Ideally,
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when generating words that is intended to describe information in table, directly copying them from
table will result in high-fidelity text. However, it’s non-trivial to integrate a copy mechanism inside the
transformer architecture of GPT-2 model, since the change of model structure may break syntactic and
semantic features contained in the pretrained language model, which are essential for text generation
especially in few-shot setting. Also, rephrasing sometimes is needed to produce more natural text.

In order to encourage our model to generate high-fidelity text while keeping GPT-2’s advantage of
produing fluent text, we utilize another auxiliary task, called content matching task, during finetuning on
the table-to-text corpus. The content matching task is to explicitly match the important information in a
table with information in the corresponding generated text. An intuitive way is to apply a mis-matching
loss by hard-matching key information in table and information in the generated text. But that is discrete
and non-differentiable and the corresponding gradient descent can’t be learned directly. Inspired by
optimal transport (OT) that can measure the distance between information in source sequence and target
sequence (Chen et al., 2019a) without breaking the end-to-end training process, we adopt it as a content
matching loss that guide the model to generate text containing information that align with the table.

As in Section 3.1, the whole GPT-2 training sequence consists of serialized table and reference
text. The serialized table sequence, x = x1, · · · , xm, can be represented as a discrete distribution
µ =

∑m
i=1 uiδxi , where ui ≥ 0 and

∑
i ui = 1, m is the length and δx is the Dirac function cen-

tered on x. Similar with the serialized table sequence, the discrete distribution of reference text sequence
y = y1, · · · , yn can be represented as ν =

∑n
j=1 vjδyj . Under such setting, computing the OT (optimal

transport) distance between probability distributions u = {ui}mi=1 and v = {vj}nj=1 is defined as the
solution of the following network-flow problem (Luise et al., 2018):

LCM = min
T∈Π(µ,ν)

m∑
i=1

n∑
j=1

Tij · d(xi, yj) (4)

where Π(µ,ν) = {T ∈ Rm×n
+ |T1n = µ,T>1m = ν} which is the set of joint distribution of the

two marginal distribution u and v, 1n and 1m are n-dimensional all-one vector and m-dimensional
all-one vector respectively, and d(xi, yj) denotes the cost of moving xi to yj . Especially, we adopt the
cosine distance between two token embedding vectors of xi and yj , which is defined as d(xi, yj) =
1 − xiyj

‖xi‖2‖yj‖2
. Exact minimization over T is computational intractable. In order to overcome this

problem, we use the recently proposed Inexact Proximal point method for Optimal Transport (IPOT)
(Chen et al., 2019a) as an approximation.

For natural language generation tasks such as neural machine translation, OT distance is often applied
by matching source sequence with whole target sequence, since almost every word in both sequences
are supposed to be matched. However, when it comes to table-to-text task in a realistic way, there are
some redundant information or words in both table and text. In order to apply the OT distance, unlike
previous adoption (Wang et al., 2020) based on the assumption that all information in the table should be
described in text, we propose to only match the record words which appear in both table and reference
text. In this way, the OT distance is able to avoid wrongly penalizing text that doesn’t mention redundant
information in table.

3.4 Learning Objective
For table structure reconstruction and content matching, both auxiliary tasks are trained with the main
GPT-2’s language model loss together, which can be regarded as multi-task learning. The loss function
of multi-task learning consists of language model loss LLM , table structure reconstruction loss LSR and
content matching loss LCM . In this way, the loss function LMT of the full model is computed as follows:

LMT = LLM + λ1LSR + λ2LCM , (5)

where λ1 and λ2 are hyper-parameters that are two scale factors. Please note that when optimizing the
LCM with IPOT algorithm, the gradients of OT loss are hard to back propagate to model’s parameters,
since the process of sampling words from multinomial distribution which comes from language model
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Domain Humans Books Songs

# of training instances 50 100 200 500 50 100 200 500 50 100 200 500

Base 2.9 5.1 6.1 8.3 7.3 6.8 7.8 8.8 10.4 12.0 11.6 13.1
Base + switch + LM 25.7 29.5 36.1 41.7 34.3 36.2 37.9 40.3 36.1 37.2 39.4 42.2

Base + switch + LM (R) 25.1 27.7 33.7 41.6 33.8 35.4 37.6 40.9 35.3 37.8 39.2 41.8

TableGPT 29.8 34.5 40.6 45.6 35.1 37.3 38.5 41.6 36.7 37.8 39.3 42.3
-sr 29.1 34.0 40.2 45.5 34.8 37.1 37.1 41.5 35.6 37.7 39.2 41.8
-cm 29.2 33.5 40.0 45.6 34.8 37.0 36.5 42.2 35.7 37.4 39.2 41.8

-sr&cm 29.0 32.9 40.0 45.3 34.2 36.5 38.4 41.4 35.5 37.0 39.0 41.6

Table 2: BLEU-4 results on Humans, Books and Songs domains.

Domain Humans Books Songs

# of training instances 50 100 200 500 50 100 200 500 50 100 200 500

Base 0.1 0.4 0.8 1.5 1.7 1.5 2.1 2.4 4.1 5.1 4.7 5.8
Base + switch + LM 14.1 16.2 22.1 28.3 22.5 23.1 25.0 27.6 26.2 28.6 30.1 32.6

Base + switch + LM (R) 12.1 14.1 19.1 28.2 22.2 22.2 24.4 27.3 27.0 28.3 28.8 32.0

TableGPT 16.3 20.6 27.6 32.4 24.0 25.4 26.7 28.9 27.1 29.4 30.6 32.8
-sr 16.7 20.2 26.2 32.3 23.4 25.7 26.5 29.2 26.3 29.0 31.0 33.5
-cm 15.7 20.0 25.4 31.6 22.3 24.9 26.3 29.7 26.2 28.6 30.9 33.1

-sr&cm 16.2 19.3 26.6 32.1 23.7 25.1 26.4 28.7 25.8 25.9 30.6 33.7

Table 3: ROUGE-4 (F-measure) results on Humans, Books and Songs domains.

is unfortunately non-differentiable. In order to back propagate LCM , we adopt the Soft-argmax trick to
approximate each word embedding vector. During testing, we feed the serialized table with special token
< table2text > into GPT-2 and generate the text word by word.

4 Experiment

4.1 Datasets and Experiment Settings
Following Chen et al. (2020b)’s work on few-shot table-to-text generation, we conducted experiments
on three datasets in different domains: Humans, Books and Songs respectively. Each instance in those
datasets consists of the structured infobox as the table and first sentence of the article as reference.
Same as Chen et al. (2020b), we train our model on different few-shot setting with training dataset size
varying from 50, 100, 200 to 500. Also, models are chosen based on performance on validation set with
1000 instances. Test sets for Humans, Books and Songs consist of 13587, 5252 and 11879 instances
respectively.

We implement TableGPT based on the transformers library (Wolf et al., 2019). The configuration of
base GPT-2 model is 12 layers and 8 attention heads per layer. For optimizer, we adopt the OpenA-
IAdamW optimizer with 100 warm steps. We train the model with learning rate set to 2e-4. The batch
size is set to 10 for all datasets. The weights λ1, λ2 of the table structure reconstruction loss and content
matching loss are both 0.2 according to performance on validation set. Following Chen et al. (2020b)’s
way to deal with the vocabulary limitation, for all datasets we use the Byte Pair Encoding (BPE) and
subword vocabulary as in Radford et al. (2019).

4.2 Comparing Methods
We compare our proposed TableGPT with baseline model and previous state-of-the-art model: Base
and Base+switch+LM. More details can be found in Chen et al. (2020b).
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Domain Humans Books Songs

Metrics #Sup #Cont Nat. #Sup #Cont Nat. #Sup #Cont Nat.

Reference 4.20? 0.36? 1.27? 3.54? 0.43 1.03? 3.22 0.64? 1.26?

Base+switch+LM(R) 3.20? 0.96? 0.85 3.32 0.46 1.15? 2.92 0.75 0.73?

TableGPT 3.67 0.60 0.89 3.28 0.42 0.83 3.05 0.77 1.01

Table 4: Human evaluation results. Models with ? perform significantly different from TableGPT (p <
0.05), using a one-way ANOVA with posthoc Tukey HSD tests.

• Base: It is based on a Seq2Seq model with field-gating encoder that incorporate the table struc-
ture’s information during encoding (Liu et al., 2018). Additionally, it utilizes the pre-trained word
embedding which is fixed during the training stage. Since it achieves competitive performance on
large-scale dataset, it can show how a data-driven Seq2Seq model typically perform with limited
training data.

• Base + switch + LM: It tries to exploit GPT-2’s learnt knowledge from pretraining on vast corpus
by proposing a switch policy that choosing between copying from infobox and generating from the
GPT-2 language model when generating each word in text. We also use the released codes and
data1 by Chen et al. (2020b) to reproduce its result for human evaluation and report corresponding
automatic evaulation results as Base + switch + LM(R).

• TableGPT: In this paper, we propose TableGPT that exploits GPT-2’s learnt knowledge from pre-
training on vast corpus for few-shot learning while enhance it for generating high fidelity text with
two auxiliary tasks. Also, we perform ablation studies for evaluating each auxiliary task’s contri-
bution. -sr represents the variant without table structure reconstruction, -cm represents the variant
without content matching and -sr&cm shows the performance of GPT-2 without auxilary tasks.

4.3 Automatic Evaluation
Following the previous work Chen et al. (2020b), we adopt BLEU-4 (Papineni et al., 2002) and ROUGE-
4 (Lin, 2004) to conduct automatic evaluations. Table 2 and 3 show corresponding results of comparing
methods on different datasets. Although the Base achieves competitive results when training on large-
scale dataset (Liu et al., 2018), the performance drops drastically in few-shot setting. While utilizing a
switch policy to combine copying words from table and generating words from GPT-2 (Base + switch
+ LM) can achieve impressive performance in all few-shot setting, a standard GPT-2 model (TableGPT
- sr&cm) that takes a serialized table as input and generate text afterwards without copying can actu-
ally perform better in most of the few-shot setting. TableGPT with table structure reconstruction and
content matching that preserves structural information during encoding and guide the model to gener-
ate high-fidelity text can further improve the performance. Ablation studies also show that each of the
auxiliary task attributes to the performance enhancement and applying both of them can achieve the best
performance in most of the few-shot setting.

4.4 Human Evaluation
Following the settings in Chen et al. (2020b), we conduct human evaluation on TableGPT with previous
state-of-the-art model Base+switch+LM(R) and Reference from two aspects: Factual correctness and
Language naturalness. We sampled 100 tables along with corresponding generated text from Humans,
Books and Songs test set (under the few-shot setting of 100 training data) respectively, resulting in 300
tables in total. In order to reduce variance caused by human, each example is evaluated by three different
graduates who have passed intermediate English test and the scores are averaged in Table 4.

The first evaluation criteria Factual correctness focuses on how well the text can correctly describe
information provided by the corresponding table. Each rater was provided with both the text and table.
They are asked to count how many facts contained in the text are consistent with information from table,

1https://github.com/czyssrs/Few-Shot-NLG
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Attribute Value

name james beattie
fullname james scott beattie
birth 27 february 1978 lancaster , england
height 6 1
position striker
currentclub swansea city ( assistant first team coach )
youthyears 1995 – 1996
youthclubs blackburn rovers
totalcaps 443
totalgoals 131
nationalyears 1996 2003
nationalteam england u21 england
nationalcaps 9 5
nationalgoals 4 0
manageryears 2013 – 2014
managerclubs accrington stanley
article james beattie ( footballer )
... ...

Reference: james scott beattie ( born 27 february 1978 ) is an english former professional
footballer who played as a striker .

Base+switch+LM(R): james beattie ( , born 10 july 1971 ) is an english former professional
association footballer who played for , among others , England .

TableGPT: james beattie ( born 27 february 1978 in lancaster ) is a former english footballer
who played as a striker .

Table 5: A sample table from Human test set and the texts generated with different methods, trained
with 100 training data. The facts that both exist in source table and summary text are highlighted with
the same color in background. The red text indicates the wrong fact of generated text conflicts with
information in source table. The blue text indicates the generated text fragment has grammatical error.

noted as #Sup , and how many are contradicting with or missing from the table, noted as #Cont. We
report the average number of supporting facts (#Sup) and contradicting facts (#Cont) on different dataset
in Table 4.

The second evaluation criteria Language naturalness tries to evaluate these models from the aspect of
grammaticality (is the sentence grammatically correct?) and fluency of the text (is the sentence fluent
and natural?). We arrange text from different models on the same table into 3 pairs. For each pair of
text without table, raters are asked to decide which one is better or whether both text are of same quality,
solely in terms of language naturalness. When a generated summary is chosen as the better one, we
assign 1.0 score to the better one and 0.0 score to the worse. If two summaries are deemed of same
quality, we assign 0.5 score to both of them. We then calculate the average scores and report results on
different dataset in Table 4.

Results show that TableGPT can produce less contradicting facts than previous state-of-the-art model
Base+switch+LM(R) on Humans and Books and achieves comparable performance on Songs. Mean-
while, TableGPT can include more supporting facts on Humans and Songs and generate more natural
text than Base+switch+LM(R) on Humans and Songs. Overall, our TableGPT model can improve text
fidelity while preserving the naturalness of the text.
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4.5 Case Study
Compared with the previous state-of-the-art model Base+switch+LM(R) and Reference, TableGPT
performs better. It can accurately describe most of the key information in fluent text compared with
reference. For Base+switch+LM(R), the design of separate copy mechanism and GPT-2 may attributes
to the inconsistent expression “played for , among others , England .” and the expression of wrong
birth date, which shows the imperfect switch policy on deciding when to copy from table can sometimes
hurt model’s ability to generate high-fidelity text. On the contrary, TableGPT, enhanced to generate
high-fidelity text with two auxiliary tasks without breaking one unified GPT-2 model for generating text,
performs better in terms of fidelity and fluency of text in this example.

5 Related Work

In recent years, neural models for generating texts directly from preprocessed data (Wiseman et al., 2017;
Puduppully et al., 2019a; Puduppully et al., 2019b; Gong et al., 2019; Feng et al., 2020), have become
mainstream for table-to-text generation and achieved impressive performance with the help of large-
scale dataset. Mei et al. (2016) proposes a pre-selector on encoder-aligner-decoder model for generation,
which strengthens model’s content selection ability and obtains considerable improvement over standard
Seq2Seq model. Sha et al. (2018) proposes a hybrid attention mechanism for modeling the order of
content when generating texts. Liu et al. (2018) presents a field-gating encoder focusing on modeling
table structure and dual attention mechanism to utilize the structure information when decoding. In
addition, Bao et al. (2018) develops a table-aware sequence-to-sequence model on this task. However,
Chen et al. (2020b) shows that the well-performed Seq2Seq model trained on large-scale dataset suffer
from limited training data in few-shot setting.

Recently, GPT-2 has been successfully adapted to dialogue generation in few-shot setting (Zhang et
al., 2020; Peng et al., 2020), showing potential to address insufficient training data problem for few-shot
learning with the help of learnt knowledge from pretraining on vast corpus. As for table-to-text gener-
ation, Chen et al. (2020b) propose a switch model that use GPT-2 to generate template-like functional
words while generating factual expressions via copying records’ values from table in few-shot scenario.
Different from this work, we model the table and generate text within a GPT-2 model in a unified way and
we show that our proposed TableGPT can perform well in the few-shot scenario. In addition, different
from both works mentioned above, we enhance GPT-2’s ability to model table structure and to improve
text fidelity. Another closely related paper is Chen et al. (2019b), which predicts whether a statement
align with records in the table. Since the nature of classification task makes it possible to model table
records bidirectionally, it use BERT with templates to transform and model the table. Meanwhile, Chen
et al. (2020a) explores coarse-to-fine table-to-text generation with standard GPT-2 model. Different from
above two works, we adapted GPT-2 in a text generation scenario for structured data input and more im-
portantly address table structure modeling and improve text fidelity. In addition, one of the auxiliary task:
content matching is inspired by ideas in machine translation (Yang et al., 2019a) and Seq2Seq (Chen et
al., 2019a) model. The closest paper on data-to-text generation is Wang et al. (2020). They assume that
the expected generated text should cover all information in the table. But in a more realistic scenario,
like the task we explore in this paper, the table consists of redundant information and only the important
ones should be used to constraint model to generate high-fidelity text. Therefore, we propose to match
important information only in the table and information in text as an auxiliary task during training.

6 Conclusion

In this work, we present TableGPT, which enhances GPT-2 for table-to-text generation with two auxiliary
tasks, table structure reconstruction and content matching, for improving text fidelity while exploiting
GPT-2’s learnt linguistic knowledge from pretraining on large-scale corpus. In detail, we use table trans-
formation to bridge the gap between structured table and natural language input for GPT-2 and further
enhance GPT-2 with following two auxiliary tasks for table-to-text generation. The table structure re-
construction task help model preserve the structural information of input while representing table with
powerful pretrained GPT-2. In addition, the content matching task guides model to generate high-fidelity
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task with less incorrect expressions that are contradicting to the table via measuring distance between
table and information in generated text. Experiments are conducted on three datasets, Humans, Books
and Songs, in different domains. Both automatic evaluation and human evaluation results show that our
model achieves new state-of-the-art performance in most few-shot setting.
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Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. 2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Challenge. Computer Speech & Language, 59:123–156.

Xiaocheng Feng, Yawei Sun, Bing Qin, Heng Gong, Yibo Sun, Wei Bi, Xiaojiang Liu, and Ting Liu. 2020.
Learning to select bi-aspect information for document-scale text content manipulation. In AAAI, pages 7716–
7723.

Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu. 2019. Table-to-text generation with effective hierarchical
encoder on three dimensions (row, column and time). In EMNLP, pages 3141–3150.

Sadid A Hasan and Oladimeji Farri. 2019. Clinical natural language processing with deep learning. In Data
Science for Healthcare, pages 147–171.
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