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Abstract

As research on utilizing human knowledge in natural language processing has attracted consid-
erable attention in recent years, knowledge graph (KG) completion has come into the spotlight.
Recently, a new knowledge graph completion method using a pre-trained language model, such
as KG-BERT, was presented and showed high performance. However, its scores in ranking met-
rics such as Hits@k are still behind state-of-the-art models. We claim that there are two main
reasons: 1) failure in sufficiently learning relational information in knowledge graphs, and 2)
difficulty in picking out the correct answer from lexically similar candidates. In this paper, we
propose an effective multi-task learning method to overcome the limitations of previous works.
By combining relation prediction and relevance ranking tasks with our target link prediction, the
proposed model can learn more relational properties in KGs and properly perform even when
lexical similarity occurs. Experimental results show that we not only largely improve the ranking
performances compared to KG-BERT but also achieve the state-of-the-art performances in Mean
Rank and Hits@10 on the WN18RR dataset.

1 Introduction

A Knowledge Graph (KG) is a graph-structured knowledge base, where real-world knowledge is rep-
resented in the form of triple (h, r, t): (head entity, relation, tail entity) which means h and t have a
relationship r. Entities and the relation in a triple are denoted as nodes and an edge of the graph, re-
spectively. In recent years, Natural Language Processing (NLP) has benefited from utilizing KGs in
various applications such as language modeling (Peters et al., 2019; Liu et al., 2019a), question answer-
ing (Zhang et al., 2019; Huang et al., 2019), and machine reading (Yang and Mitchell, 2017). Since
there has been an increasing demand for high-quality knowledge, the reliability of KG has also become
important. Therefore, knowledge graph completion (a.k.a. link prediction), which identifies whether the
triple in KG is valid or not, has been actively investigated.

Several studies on the knowledge graph completion have been conducted (Bordes et al., 2013; Trouil-
lon et al., 2016; Sun et al., 2019; Dettmers et al., 2018). They presented methods to model the connec-
tivity patterns between entities in KG, and score functions to define the validity of the triple. However,
these methods only consider graph structure and relational information depending on existing KG. Thus,
they cannot predict well on triples that contain less frequent entities. Recently, addressing the sparseness
problem of previous models, Yao et al. (2019) proposed a method called KG-BERT for knowledge graph
completion, using entity descriptions and pre-trained language models. Even though KG-BERT signifi-
cantly improved mean ranks using preliminary linguistic information from BERT (Devlin et al., 2018),
the results in other ranking metrics such as MRR and Hit@k are still behind the state-of-the-art models.

We claim that there are two major reasons for this problem. First, KG-BERT misses lots of relation
information in KGs. While previous state-of-the-art methods aimed to model relational properties in
graphs, KG-BERT only uses binary cross entropy loss to predict valid or invalid triples for the link
prediction task. Next, KG-BERT has difficulty in picking out the answer entity between lexically similar
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Figure 1: Architecture of the proposed multi-task learning method for knowledge graph completion.

candidates. For example, given head entity and relation as (take a breather, derivationally related for,
) and the correct tail entity as “breathing time”, KG-BERT predicts “snorkel breather” and “breath”

as top scores because of the lexical similarity by “breath”. This problem leads to lower performance in
MRR and Hits@k.

In this paper, we propose an effective multi-task learning method to overcome these problems. We
devise a multi-task framework by adding two tasks (relation prediction and relevance ranking) to link
prediction, our target task. In the relation prediction, the model is trained to predict the relationship
between given two entities, which helps the model learn more relational properties. In the relevance
ranking, the model is trained by the margin ranking loss to make a gap between the valid triple and
lexically similar candidates. We evaluate the proposed method on two popular datasets WN18RR and
FB15k-237, and experimental results show that our method could improve ranking performance by a
large margin compared to KG-BERT. Notably, our method achieves state-of-the-art performances in
Mean Rank and Hits@10 on the WN18RR dataset.

2 Proposed Method

In this section, we propose a multi-task learning for knowledge graph completion. As shown in Figure 1,
we follow a multi-task learning framework in MT-DNN (Liu et al., 2019b), and use the pre-trained BERT
model as a shared layer. We combine three tasks: link prediction, relation prediction, and relevance
ranking. Each task has a classification layer W ∈ RK×H where K is the number of labels and H is the
hidden size of BERT. Following Devlin et al. (2018), every input sequence has a [CLS] token at the
head of sentence, and [SEP] token is used as a separator.

Link Prediction (LP): We define link prediction as same as KG-BERT (Yao et al., 2019), and this
is our main target task. Given a training set S, the input x is a text sequence of (h, r, t). Each entity is
represented as entity name and description, e.g., for triple (plant tissue, hypernym, plant structure), the
input sequence is as follows:

[CLS] plant tissue, the tissue of a plant [SEP] hypernym [SEP] plant structure, any part of
a plant or fungus [SEP]

The model is trained to predict whether a given triple (h, r, t) is valid or not, and invalid triples are made
by replacing head or tail entity with one of random entities. Let C be the final hidden vector of [CLS]
token, WLP ∈ R2×H be a classification layer for link prediction, and S′ be a invalid triple set, then

f(x) = softmax(CW T
LP ) = [ŷ0, ŷ1], LLP = −

∑
x∈{S∪S′}

y log ŷ1 + (1− y) log ŷ0 (1)
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# of entities # of relations train validation test

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

Table 1: Statistics of datasets.

where f(x) is the final output of the model and y ∈ {0, 1} is a label. Let the output of CW T
LP be

[s0, s1] ∈ R2, then s1 is used as the final ranking score in evaluation.
Relation Prediction (RP): The model learns to classify the relation of two entities. The input is head

and tail entity sequences, e.g., “[CLS] plant tissue, the tissue of a plant [SEP] plant structure, any part
of a plant or fungus [SEP]”, then the model trains to predict the relation hypernym. The classification
layer for relation prediction is WRP ∈ RR×H where R is the number of relations, and we minimize a
cross-entropy loss.

g(x) = softmax(CW T
RP ), LRP = −

∑
x∈S

y log g(x) (2)

where g(x) is the output of the model and y ∈ RR is a class indicator.
Relevance Ranking (RR): The objective of relevance ranking is to make valid triples keep higher

scores than invalid triples. We use a margin ranking loss to provide a bigger gap between valid and
invalid triples. The input is the same as link prediction, and the classification layer for relevance ranking
is WRR ∈ R1×H .

h(x) = sigmoid(CW T
RR), LRR =

∑
x∈S,x′∈S′

max{0, h(x′)− h(x) + λ} (3)

where h(x) is the output of the model and λ is a margin.
In the training time, we use mini-batch based stochastic gradient descent. We first compose mini-

batches for each task, DLP , DRP , and DRR, then combine all data D = DLP ∪DRP ∪DRR. At each
training step, the mini-batch is randomly selected from D, and then the task corresponding to the batch
is trained sequentially.

3 Experiments

Datasets We evaluated the proposed multi-task learning method on two benchmark datasets WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova and Chen, 2015). Each dataset consists of a set of
triples in the form of (h, r, t). WN18RR is a subset of WordNet, which is a lexical database of English.
Thus, entities in WN18RR are words or short phrases, and there exists 11 relations between two words,
such as hypernym and similar to. FB15k-237 is a subset of Freebase (Bollacker et al., 2008), a large-
scale graph database including general human knowledge. FB15k-237 has more general entities, such as
Lincoln and Monaco, and relations are longer and more complex than WN18RR. We used the same entity
descriptions with Yao et al. (2019): synset definitions from WordNet for WN18RR and descriptions from
Xie et al. (2016) for FB15k-237. Table 1 summarizes our datasets.

Baselines We mainly compare our method with KG-BERT (Yao et al., 2019), and also provide a
comparison with several outstanding models: TransE (Bordes et al., 2013), DistMult (Yang et al., 2014),
ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al., 2018), and RotatE (Sun et al., 2019).

Experimental Settings We used pre-trained BERT-base as a shared layer and fine-tuned over the
multi-task setup for 3 epochs. We used mini-batch size of 32 and Adam optimizer (Kingma and Ba,
2014) with learning rate 2e-5. In relevance ranking, we set the margin λ on the validation set, and it
showed best results when λ = 0.1 .

Evaluation Settings We evaluate our method on the link prediction, where the model predicts the
head entity given ( , r, t) and tail entity given (h, r, ). To compare prior work, we follow the evaluation
protocol and filtered setting in Bordes et al. (2013). Let E be a entity set and T be a set of all triples
in train, valid, and test. Then, the set of test candidates U for predicting h in a given triple (h, r, t) is
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WN18RR FB15k-237
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

KG-BERT (Yao et al., 2019) 97 - - - 52.4 153 - - - 42.0
KG-BERT (our results) 108 21.9 9.5 24.3 49.7 145 23.7 14.4 26.0 42.7

LP + RP 112 30.2 17.7 35.3 56.0 138 26.2 16.9 28.9 44.7
LP + RR 97 27.7 13.0 34.1 57.6 143 24.7 15.4 27.2 43.4
LP + RP + RR 89 33.1 20.3 38.3 59.7 132 26.7 17.2 29.8 45.8

Table 2: Link prediction results on WN18RR and FB15k-237. The second row shows our results of
KG-BERT under the same implementation and hyperparameter settings as the original work.

KG-BERT Ours

rank entity score rank entity score

1 snorkel breather 4.128 1 breathing time 4.541
2 breath 4.119 2 rest 4.442
3 artificial respiration 4.118 3 relaxer 4.359
4 respirator 4.114 4 time out 4.333
5 relaxer 4.106 5 respirator 4.271
6 take a breath 3.991 6 breath 4.195

... ...
22 breathing time 3.804

Table 3: Example of results for the triple (take
a breather, derivationally related for, breathing
time) in WN18RR. Given (take a breather, deriva-
tionally related for, ), the answer is breathing
time.

WN18RR FB15k-237
MR Hits@10 MR Hits@10

TransE 2365 50.5 223 47.4
DistMult 3704 47.7 411 41.9
ComplEx 3921 48.3 508 43.4
ConvE 5277 48.0 246 49.1
RotatE 3340 57.1 177 53.3
KG-BERT 97 52.4 153 42.0

Ours 89 59.7 132 45.8

Table 4: Comparison with previous state-of-the-
art models. Results are taken from Yao et al.
(2019).

U = (h, r, t) ∪ {(h′, r, t)|h′ ∈ E ∧ (h′, r, t) /∈ T} and U for predicting t is U = (h, r, t) ∪ {(h, r, t′)|t′ ∈
E∧(h, r, t′) /∈ T}. After the model computes scores of all candidate triples, they are sorted in descending
order. The performances are evaluated in Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hits@1,
3, 10.

3.1 Main Results

Table 2 demonstrates how the proposed method improves performance over the baseline model on the
link prediction. The results show that multi-task learning with two tasks (LP + RP) and (LP + RR) could
improve over the baseline by a large margin maintaining low MR scores. When the model is trained on
three tasks (LP + RP + RR), we gain significant improvements, especially in Hits@1 and Hits@3 with
10.8 and 14.0, respectively. Table 3 shows an example of results in WN18RR. We observe that our model
can choose the correct answer “breathing time” as the first ranking among lexically similar words, while
the KG-BERT predicts “snorkel breather” and “breath” in top ranks. More examples are presented in
Appendix A.

In the FB15k-237 benchmark, the task becomes more challenging as the number of relations increases
up to 237, whereas the WN18RR contains only 11 relations. Thus, joint training with Relation Prediction
(RP) was more effective on the FB15k-237, and this is shown as results that the model outperformed the
baseline by 7, 2.5, 2.5, 2.9, and 2 absolute scores on MR, MRR, Hits@1, Hits@3, and Hits@10, respec-
tively. When the Relevance Ranking (RR) task is added, and the model is trained with three different
tasks, it achieves further improvements in all metrics with 13, 3, 2.8, 3.8, and 3.1 points, respectively.

A Comparison with previous models is presented in Table 4. Our model achieved state-of-the-art
performances in MR and hits@10 on the WN18RR. In the FB15k-237 dataset, the performance of our
model is lower than that of several models in Hits@10. Since FB15k-237 has more relations and a more
complex graph structure than WN18RR, we conjecture that pre-trained language models cannot capture
the complex structural information in knowledge graphs. Despite that, we achieved the best MR score
on FB15k-237.
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4 Related Work

A common approach for the knowledge graph completion is learning vector embeddings of the entities
and the relationships in KG (Bordes et al., 2013; Yang et al., 2014; Trouillon et al., 2016; Sun et al., 2019;
Dettmers et al., 2018). The most widely used method is TransE (Bordes et al., 2013), which models the
relationships as translations in low-dimensional vector space. Dettmers et al. (2018) and Nguyen et al.
(2018) proposed the embedding models using a convolutional neural network. Recent research has shown
that the relation in complex vector space can infer the connectivity patterns: symmetry/antisymmetry,
inversion, and composition (Sun et al., 2019). On the one hand, Yao et al. (2019) proposed KG-BERT
that uses pre-trained language models (PLM) with entity descriptions. It can capture the contextualized
meaning of entities and significantly improve mean ranks with rich linguistic information from PLM.

Multi-task learning has gained popularity over a decade in natural language processing (Collobert and
Weston, 2008; Luong et al., 2015; Hashimoto et al., 2017; Liu et al., 2019b) of various tasks. It aims to
regularize deep learning models from overfitting by sharing parameters of different tasks while jointly
training them. With the advent of powerful PLMs such as BERT (Devlin et al., 2018) and XLNet (Yang
et al., 2019), a multi-task learning scheme is applied by sharing pre-trained parameters of these models
when training different tasks simultaneously.

5 Conclusion and Future Work

We propose an effective multi-task learning method for knowledge graph completion by combining re-
lation prediction and relevance ranking tasks with link prediction. Experimental results demonstrate that
our method outperforms previous strong baselines, and we largely improve MRR and Hits@k compared
to the previous KG-BERT model.

In the future, we plan to investigate how to combine pre-trained language models and graph embed-
ding methods to fully utilize the prior linguistic information of pre-trained models and graph structural
information.
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Appendix A Examples of the results in Link Prediction

E1. Given (take a breather, derivationally related form, ), the answer is breathing time

TransE RotatE KG-BERT Ours

rank entity score rank entity score rank entity score rank entity score
1 take a breather 5.9748 1 respiratory 0.0338 1 snorkel breather 4.1283 1 breathing time 4.5419
2 rest 4.0482 2 respirator -0.2770 2 breath 4.1192 2 rest 4.4420
3 pause 1.2906 3 caesura -0.4172 3 artificial respiration 4.1181 3 relaxer 4.3598
4 rest 0.3586 4 blackout -0.4752 4 respirator 4.1147 4 time out 4.3331
5 respire 0.2834 5 intake -0.6387 5 relaxer 4.1060 5 respirator 4.2710
6 rest 0.2108 6 time out -0.7105 6 take a breath 3.9910 6 breath 4.1959

... ... ... ...
9 breathing time 11 breathing time 22 breathing time

E2. Given ( , hypernym, piece of music), the answer is andante

TransE RotatE KG-BERT Ours

rank entity score rank entity score rank entity score rank entity score
1 piece of music 2.8572 1 piece of music 1.4983 1 composition 4.1524 1 sonata 3.9856
2 melodize 0.9326 2 andante 0.6013 2 piece of music 4.1427 2 piece of music 3.9836
3 soloist 0.8523 3 music 0.3708 3 finale 4.1155 3 andante 3.9605
4 realize 0.7959 4 tune -0.0011 4 theme 4.1149 4 harmonization 3.9135
5 write 0.7664 5 serenade -0.1049 5 andante 4.1021 5 composition 3.9127
6 score 0.6901 6 tucket -0.1136 6 recapitulation 4.0845 6 finale 3.7482
7 andante 0.6199 7 strain -0.1219 7 sonata 4.0736 7 fragment 3.7108

E3. Given (systems software, hypernym, ), the answer is programme

TransE RotatE KG-BERT Ours

rank entity score rank entity score rank entity score rank entity score
1 systems software 2.8572 1 systems software -9.8255 1 systems software 4.1226 1 programme 4.1257
2 influence -9.7353 2 location -10.0784 2 programme 4.1201 2 utility program 4.0341
3 concert -9.7715 3 horse -10.1251 3 applications programme 4.1146 3 programme 4.0108
4 tap -9.7720 4 learned profession -10.1345 4 utility program 4.1045 4 software system 3.9995
5 fellow traveller -9.7767 5 chemistry -10.1458 5 compiling program 4.1024 5 programming 3.9647

6 landing -9.7976 6 officiate -10.1596 6
object-oriented
programming language

4.0856 6 systems software 3.8621

... ...
8235 programme 16452 programme

Table 5: Examples of results in Link Prediction.

For the example 1, the entity breathing time appears only once in the training set. Thus, the methods using
only graph structure information, such as TransE and RotatE, cannot predict well on the given triple. Our
model provides the correct answer, while KG-BERT predicts snorkel breather and breath as top scores
due to the lexical similarity by breath. In example 2, the entity piece of music has lots of relationships
with other entities; thus, most models show low performance on that example. Lastly, the example 3
shows that how the pre-trained language model (PLM) improves Mean Rank significantly. KG-BERT
and our model give a high score for the answer programme using preliminary linguistic information from
PLM, but the results of TransE and RotatE are extremely low.

Appendix B Computing Infrastructure

We ran all experiments on a single NVIDIA Titan RTX (24GB) with CUDA 10.1 version.

Appendix C Implementation

The source code of the paper is available at https://github.com/bosung/MTL-KGC.


