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Abstract

In the last few years, there has been a surge of interest in learning representations of entities
and relations in knowledge graph (KG). However, the recent availability of temporal knowledge
graphs (TKGs) that contain time information for each fact created the need for reasoning over
time in such TKGs. In this regard, we present a new approach of TKG embedding, TeRo, which
defines the temporal evolution of entity embedding as a rotation from the initial time to the current
time in the complex vector space. Specially, for facts involving time intervals, each relation is
represented as a pair of dual complex embeddings to handle the beginning and the end of the
relation, respectively. We show our proposed model overcomes the limitations of the existing
KG embedding models and TKG embedding models and has the ability of learning and inferring
various relation patterns over time. Experimental results on four different TKGs show that TeRo
significantly outperforms existing state-of-the-art models for link prediction. In addition, we
analyze the effect of time granularity on link prediction over TKGs, which as far as we know has
not been investigated in previous literature.

1 Introduction

In recent years, a number of sizable Knowledge Graphs (KGs) have been constructed, including DBpe-
dia (Auer et al., 2007), YAGO (Suchanek et al., 2007), Nell (Carlson et al., 2010) and Freebase (Bollacker
et al., 2008). In these KGs, a fact is represented as a triple (s, r ,o), where s (subject) and o (object) are
entities (nodes), and r (relation) is the relation (edge) between them.

Several KG embedding (KGE) models are developed to perform learning and inference over these
KGs (Bordes et al., 2013; Yang et al., 2014; Trouillon et al., 2016; Sun et al., 2019; Zhang et al., 2019).
The most common learning task for these models is link prediction, which is to complete a fact with the
missing entity. For instance, one can use a KGE model to perform an object query like (Barack Obama,
visits, ?). In this case, there are several valid answers to this question, regardless of the time factor.
Obviously, the inclusion of time information can make this query more specific, e.g., (Barack Obama,
visits, ?, 2014-07-08).

Some temporal KGs (TKGs) including ICEWS (Lautenschlager et al., 2015), GDELT (Leetaru and
Schrodt, 2013), YAGO3 (Mahdisoltani et al., 2013) and Wikidata (Erxleben et al., 2014) store billions
of time-aware facts as quadruples (s, r ,o, t) where t is the time annotation, e.g., (Barack Obama, vis-
its, Ukraine, 2014-07-08). The availability of these TKGs that exhibits complex temporal dynamics
in addition to its multi-relational nature has created the need for approaches that can characterize and
reason over them. Traditional KGE models disregard time information, leading to an ineffectiveness of
performing link prediction on TKGs involving temporary relations (e.g., visits, live in, etc.).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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To tackle this problem, TKG embedding (TKGE) models encode time information in their embed-
dings. Such TKGE models (Trivedi et al., 2017; Leblay and Chekol, 2018; Garcı́a-Durán et al., 2018;
Ma et al., 2018; Dasgupta et al., 2018; Jin et al., 2019) were shown to have better performances on link
prediction over TKGs than traditional KGE models. However, most of the existing TKGE models are
the extensions of TransE (Bordes et al., 2013) and DistMult (Yang et al., 2014), and thus are not fully
expressive for some relation patterns (Sun et al., 2019).

In this paper, we propose a novel approach for TKGEs, TeRo, which defines the temporal evolution of
an entity embedding as a rotation from the initial time to the current time in the complex vector space. We
show the limitation of the existing TKGE models and the advantage of our proposed model on learning
various relation patterns over time.

Specially, for facts involving time intervals, each relation is represented as a pair of dual complex
embeddings which are used to handle the beginning and the end of the relation, respectively. In this way,
TeRo can adapt well to datasets where time annotations are represented in the various forms: time points,
beginning or end time, time intervals.

Most of previous TKGE-related works as far as we know use specific time granularities for various
TKGs. For example, the time granularity of the ICEWS datasets is fixed as 24 hours in (Dasgupta et
al., 2018; Xu et al., 2019). In this work, we adopt various time-division approaches for different TKG
datasets and investigate the effect of the length of the time steps on the performance of our model.

To verify our approach, we compare the performance of our proposed models on link prediction and
time prediction tasks over four different TKGs with the state-of-the-art KGE models and the existing
TKGE models. The experimental results demonstrate that our proposed model outperforms other base-
line models significantly by inferring various relation patterns and encoding time information.

2 Related Work

KGE models can be roughly classified into distance-based models and semantic matching models.
Distance-based models measure the plausibility of a fact as the distance between the two entities,

usually after a translation or rotation carried out by the relation. A typical example of distance-based
models is TransE (Bordes et al., 2013). TransE exhibits deficiencies when learning 1-n relations. Thus,
various extensions of TransE (Wang et al., 2014; Ji et al., 2015; Lin et al., 2015; Nayyeri et al., 2019),
were proposed to tackle this problem. They use different mapping methods to project entities from entity
space to relation space. Specially, RotatE (Sun et al., 2019) defines each relation as a rotation from
the subject to the object. Nevertheless, these distance-based distance models are still unable to capture
reflexive relations which can hold, i.e. for a particular relation r each entity is related to itself via r. In
distance-based models, the values or the phases of vectors for all reflexive relations are enforced to be 0,
which does not allow to fully express the semantic characteristics of these relations.

Semantic matching models measure plausibility of facts by matching latent semantics of entities
and relations embodied in their embedding representations. A few examples of such models in-
clude RESCAL (Nickel et al., 2011), DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016),
QuatE (Zhang et al., 2019) and GeomE (Xu et al., 2020). RESCAL and DistMult cannot capture asym-
metric relations since the score of the triple (s, r, o) is always equal to the score of its symmetric triple
(o, r, s). ComplEx, QuatE and GeomE have been proven to be able to capture various relation patterns
for static KGs, but cannot model temporary relations in TKGs due to their ignorance of time information.

Recent research illustrated that the performances of KGE models can be further improved by incorpo-
rating time information in TKGs. Some TKGE models are extended from TransE, e.g., TTransE (Leblay
and Chekol, 2018), TA-TransE (Garcı́a-Durán et al., 2018), HyTE (Dasgupta et al., 2018) and ATiSE (Xu
et al., 2019). Another part of TKGE models are temporal extensions of DistMult, e.g., Know-
Evolve (Trivedi et al., 2017), TDistMult (Ma et al., 2018) and TA-DistMult (Garcı́a-Durán et al., 2018).
Similar to TransE and DistMult, these TKGE models have issues with capturing reflexive relations or
asymmetric relations. Specially, DE-SimplE (Goel et al., 2020) incorporates time information into di-
achronic entity embeddings and has capability of modeling various relation patterns. However, this
approach only focuses on event-based TKG datasets, and cannot model facts involving time intervals
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shaped like [2003-##-##, 2005-##-##].

3 A Novel TKGE Approach based on Temporal Rotation

Although various KGE models have been developed to learn multi-relational interactions between enti-
ties, all of them have problems with inferring temporary relations which are only valid for a certain time
point or a last for a certain time period. To illustrate this by example, assume we are given a quadruple
(Barack Obama, visits, France, 2014-02-12) as a training sample, where the relation visits is a temporary
relation. If we query (Barack Obama, visits, ?, 2014-07-08), a trained static KGE model probably returns
the incorrect answer France due to the validness of the triple Barack Obama, visits, France, while the
correct answer is Ukraine considering the given time constraint. On the other hand, most of the existing
TKGE models, which were extended from TransE (Bordes et al., 2013) and DistMult (Yang et al., 2014),
incorporate time information in the embedding space, but have limitations on learning transitive relations
or asymmetric relations as discussed in Section 2.

To overcome the limitations of these existing KGE and TKGE models on learning and inferring over
TKGs, we propose a new TKGE model, TeRo, which defines the temporal evolution of an entity em-
bedding as a rotation in the complex vector space. Let E denote the set of entities, R denote the set of
relations, and T denote the set of time steps. Then a TKG is a collection of factual quadruples (s, r, o, t),
where s, o ∈ E are the subject and object entities, r ∈ R is the relation, t denotes the actual time when
the fact occurs. For any time t, we have a time step τ ∈ T representing this actual time. We map s,
r, o to their complex embeddings, i.e., s, r, o ∈ Ck; then we define the functional mapping induced by
each time step τ as an element-wise rotation from the time-independent entity embeddings s and o to the
time-specific entity embeddings st and ot. The mapping function is defined as follows:

st = s ◦ τ , ot = o ◦ τ (1)

where ◦ denotes the Hermitian dot product between complex vectors. Here, we constrain the modulus
of each element of τ ∈ Ck, i.e., τ j ∈ C, to be |τ j | = 1. By doing this, τ j is of the form eiθτ,j , which
corresponds to a counter-clockwise rotation by θτ,j radians around the origin of the complex plane, and
only affects the phases of the entity embeddings in the complex vector space. This idea is motivated by
Euler’s identity eiθ = cosθ + isinθ, which indicates that a unitary complex number can be regarded as
a rotation in the complex plane.

We regard the relation embedding r as translation from the time-specific subject embedding st to
the conjugate of the time-specific object embedding ot for a single quadruple (s, r, o, t)∈ Q+, where
r ∈ Rb ∪Re and Q+ denotes the set of all positive quadruples. The score function is defined as:

fTeRo(s, r, o, t) = ||st + r− ot|| (2)

For a fact (s, r, o, t) occurring in a certain time interval, i.e., t = [tb, te] where tb, te denote the beginning
time and the end time of the fact, we separate this fact into two quadruples, namely, (s, rb, o, tb) and (s,
re, o, te). Here, we extend the relation set R in a TKG which involves time intervals to a pair of dual
relation sets, Rb and Re. A relation rb ∈ Rb is used to handle the beginning of relation r, meanwhile a
relation re ∈ Re is used to handle the end of relation r. By doing this, we score a fact (s, r, o, [tr, te]) as
the mean value of scores of two quadruples, (s, rb, o, tb) and (s, re, o, te) which represent the beginning
and the end of this fact respectively.

fTeRo(s, r, o, [tb, te]) =
1

2
(||stb + rb − otb ||+ ||ste + re − ote ||) (3)

Specially, for a fact missing either the beginning time or the end time, e.g., (s, r, o, [tb, -]) or (s, r,
o, [-, te]), the score of this fact is equal to the score of the quadruple involving the known time, i.e.,
fTeRo(s, r, o, [tb,−]) = fTeRo(s, rb, o, tb), fTeRo(s, r, o, [−, te]) = fTeRo(s, re, o, te).

In this paper, we use the same loss function as the negative sampling loss proposed in (Sun et al.,
2019) for optimizing our model. This loss function has been proved to be very effective on optimizing
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some distance-based KGE models, e.g., TransE, RotatE (Sun et al., 2019) and ATiSE (Xu et al., 2019).

L(ξ) =− log σ(γ − fTeRo(ξ))−
η∑
i=1

1

η
log σ(fTeRo(ξ

′
i)− γ) (4)

where ξ ∈ Q+ is a positive training quadruple, ξ
′
i is the ith negative sample corresponding to ξ generated

by randomly corrupting the subject or the objects of ξ such as (s′, p, o, t) and (s, p, o′, t), σ(·) denotes
the sigmoid function, γ is a fixed margin and η is the ratio of negatives over positive training samples.

3.1 Learning Various Relation Patterns
Static KGE models and some existing TKGE models which are the temporal extensions of TransE or
DistMult have limitations on capturing some key relation patterns which are defined as follows.

Definition 1. A relation r is a temporary relation if ∃s, o, t1, t2 r(s, o, t1) ∧ ¬r(s, o, t2) holds True

Definition 2. A relation r is asymmetric if ∃s, o, t r(s, o, t) ∧ ¬r(o, s, t) holds True.

Definition 3. A relation r is a reflexive relation if ∃s, t r(s, s, t) holds True.

As mentioned in Section 2, static KGE models can not model temporary relations, e.g., ’visits’, since
fSKGE(s, r, o, t1) ≡ fSKGE(s, r, o, t2). Temporal extensions of DistMult (denoted as T-DistMult) in-
cluding TDistMult, TA-DistMult and Know-Evolve can not model asymmetric relations, e.g., ’par-
entOf ’, since fT−DistMult(s, r, o, t) = 〈st, rt, ot〉 = fT−DistMult(o, r, s, t), where st, ot, rt are time-
specific entity/relation embeddings corresponding to different T-DistMult models. Temporal exten-
sions of TransE (denoted as T-TransE) including HyTE, TTransE, TA-TransE have difficulties of
modeling multiple reflexive relations, e.g., ’equalTo’ and ’subsetOf ’, since fT−TransE(s1, r1, s1, t) =
fT−TransE(s2, r2, s2, t) = 0⇒ r1 = r2 = 0.

Figure 1: (a) Illustration of TeRo with only one embedding dimension; (b) an example of modeling a
temporary relation; (c) an example of modeling an asymmetric relation; (d) an example of modeling a
reflexive relation.

By defining each time step as a rotation in the complex vector spaces, TeRo can capture all of the
above three relation patterns. Given an observed fact (s, r, o, t1) where st1 + r = ot1 :

• as shown in Figure 1(b), if r is a temporary relation, we can have st2 + r 6= ot2 for TeRo to make
r(s, o, t1) ∧ ¬r(s, o, t2) hold true.
• as shown in Figure 1(c), if r is an asymmteric relation, we can have ot1 + r 6= st1 for TeRo to make
r(s, o, t1) ∧ ¬r(o, s, t1) hold true.
• as shown in Figure 1(d), if r is a reflexive relation, we have Im(r) = 2Im(st1) for TeRo. Thus,

TeRo can represent multiple reflexive relations as different embeddings due to the conjugate opera-
tions of object embeddings.
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3.2 Complexity

In Table 1, we summarize the scoring functions and the space complexites of several state-of-the-art
TKGE approaches and our model as well as TransE. ne, nr, nτ and ntoken are numbers of entities,
relations, time steps and temporal tokens used in (Garcı́a-Durán et al., 2018); d is the dimensionality of
embeddings. Pt(·) denotes the temporal projection for embeddings (Dasgupta et al., 2018). LSTM(·)
denotes an LSTM neural network; [r; tseq] denotes the concatenation of the relation embedding and
the sequence of temporal tokens (Garcı́a-Durán et al., 2018). −→ and ←− denote the temporal part and
untemporal part of a time-specific diachronic entity embedding (Goel et al., 2020); r−1 denotes the
inverse relation embedding of r, i.e., (s, r, o, t) ↔ (o, r−1, s, t). DKL(·) denotes the KL divergence
between two Gaussian distributions; Ps,t,Po,t,Pr,t denote the Gaussian embeddings of s, r and o at
time t (Xu et al., 2019).

As shown in Table 1, the space complexity of TeRo and TransE will be close if nτ < ne. In practice,
we can achieve this condition by tuning the time granularity.

Model Scoring Function Space Complexity
TransE ||s + r− o|| O(ned+ nrd)
TTransE ||s + r + τ − o|| O(ned+ nrd+ nτd)
HyTE ||Pt(s) + Pt(r)− Pt(o)|| O(ned+ nrd+ nτd)
TA-TransE ||s + LSTM([r; tseq])− o|| O(ned+ nrd+ ntokend)
TA-DistMult 〈s, LSTM([r; tseq]), o〉 O(ned+ nrd+ ntokend)
DE-SimplE 1

2(〈
−→s t, r,←−o t〉+ 〈−→o t, r−1,←−s t〉) O(ned+ nrd)

ATiSE DKL(Ps,t −Po,t,Pr,t) O(ned+ nrd)

TeRo ||st + r− ot|| O(ned+ nrd+ nτd)

Table 1: Comparison of our models with several baseline models for space complexity.

4 Experiments

4.1 Temporal Knowledge Graph Datasets

Common TKG benchmarks include GDELT (Goel et al., 2020), ICEWS14, ICEWS05-15, YAGO15k,
Wikidata11k (Garcı́a-Durán et al., 2018), YAGO11k and Wikidata12k (Dasgupta et al., 2018). In this
work, we choose ICEWS14, ICEWS05-15, YAGO11k and Wikidta12k as datasets for the following
reasons: 1. ICEWS14 and ICEWS05-15 are two well-established event-based datasets which are com-
monly used in previous literature (Garcı́a-Durán et al., 2018; Goel et al., 2020; Xu et al., 2019), these
two datasets are subsets of ICEWS (Lautenschlager et al., 2015) corresponding to facts in 2014 and
facts between 2005 and 2015, where all time annotations are time points; 2. YAGO15k, Wikidata11k,
YAGO11k and Wikidata12k are subsets of YAGO3 (Mahdisoltani et al., 2013) and Wikidata (Erxleben et
al., 2014) where a part of time annotations are time intervals. In YAGO15k and Wikidata11k, each time
interval only contains either beginning dates or end dates, shaped like ’occurSince 2003’ or ’occurUntill
2005’ and a part of facts in YAGO15k exclude time information. Thus we prefer to using YAGO11k
and Wikidata12k where each fact includes time information and time annotations are represented in the
various forms, i.e., time points like [2003-01-01, 2003-01-01], beginning or end time like [2003, ##],
and time intervals like [2003, 2005]. We list the statistics of the four datasets we use in Table 2.

Dataset #Entities #Relations Time Span #Training #Validation #Test
ICEWS14 6,869 230 2014 72,826 8,941 8,963
ICEWS05-15 10,094 251 2005-2015 368,962 46,275 46,092
YAGO11k 10,623 10 -453-2844 16,406 2,050 2,051
Wikidata12k 12,554 24 1479-2018 32,497 4,062 4,062

Table 2: Statistics of datasets.
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4.2 Time Granularity

In some recent work (Dasgupta et al., 2018; Xu et al., 2019), the time span of a TKG dataset was
splitted into a number of time steps. For ICEWS14 and ICEWS05-15, the time granularity was fixed
as 1 day. For YAGO11k and Wikidata12k, month and day information was dropped, and less frequent
year mentioned were clubbed into same time steps but years with high frequency formed individual time
steps in order to alleviate the effect of the long-tail property of time data. In other words, the lengths of
different time steps were different for the balance of numbers of triples in different time steps. However,
it has not been investigated whether the lengths of time steps affect the performances of TKGE models.

In this work, we test our model with different time units, denoted as u, in a range of {1, 2, 3, 7, 14, 30,
90 and 365} days for ICEWS datasets. Dasgupta et al. (2018) and Xu et al. (2019) applied a minimum
threshold of 300 triples per interval during construction for YAGO11k and Wikidata12k. We follow their
time-division approaches for these two datasets and test different minimum thresholds, denoted as thre,
in a range of {1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000}. The change of time granularity will
reconstruct the set of time steps T . For ICEWS14, when the time unit u is 1 day, we have totally 365
time steps and the date 2014-01-02 is represented by the second time step, i.e., τ1. If the time unit is
changed as 2 days, the total number of time steps will be 183 and the date 2014-01-02 will be denoted
as τ0. For YAGO11k, when the mini threshold thre = 1, we have 396 time steps since there are totally
396 different years existing as timestamps in YAGO11k. Years like -453, 100 and 2008 are all taken as
independent time steps. When thre for YAGO11k rises to 300, the number of time steps drops to 127
and years between -431 and 100 are clubbed into a same time step.

4.3 Evaluation Metrics

We evaluate our model by testing the performances of our model on link prediction task over TKGs un-
der the time-wise filtered setting defined in (Xu et al., 2019; Goel et al., 2020). This task is to complete a
time-wise fact with a missing entity. For a test quadruple (s, p, o, t), we first generate candidate quadru-
ples C = {(s, p, o′, t) : o′ ∈ E} ∪ {(s′, p, o, t) : s′ ∈ E} by replacing s or o with all possible entities.
Different from the time-unwise filtered setting (Bordes et al., 2013) which filters the triples appearing
either in the training, validation or test set from the candidate list , we only filter the quadruples ξ ∈ Q+

existing in the dataset. This ensures that the facts which do not appear at time t are still considered as
candidates for evaluating the given test quadruple. We obtain the final rank of the test quadruple among
filtered candidate quadruples C = {ξ : ξ ∈ C, ξ /∈ Q+} by sorting their scores.

Two commonly used evaluation metrics are used here, i.e., Mean Reciprocal Rank and Hits@k. The
Mean Reciprocal Rank (MRR) is the means of the reciprocal values of all computed ranks. And the
fraction of test quadruples ranking in the top k is called Hits@k.

4.4 Baselines

We compare our approach with several state-of-the-art KGE approaches and existing TKGE approaches,
including TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), ComplEx-N3 (Lacroix et al., 2018),
RotatE (Sun et al., 2019), QuatE (Zhang et al., 2019), TTransE (Leblay and Chekol, 2018), TA-TransE,
TA-DistMult (Garcı́a-Durán et al., 2018), DE-SimplE (Goel et al., 2020) and ATiSE (Xu et al., 2019).
The results of most baselines are taken from some recent work (Goel et al., 2020; Xu et al., 2019) which
used the same evaluation protocol as ours. DE-SimplE which mainly focuses on event-based datasets,
cannot model time intervals or time annotations missing moth and day information which are common in
YAGO and Wikidata. Thus its result on YAGO11k and Wikidata12k are unobtainable. Since the original
source code of TA-TransE and TA-DistMult (Garcı́a-Durán et al., 2018) is not released, we reimplement
these models according to the implementation details reported in the original paper, in order to obtain
their results on YAGO11k and Wikidata12k.

4.5 Experimental Setup

We implement our proposed model in PyTorch. The code is available at https://github.com/
soledad921/ATISE.
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We select the optimal hyperparameters by early validation stopping according to MRR on the valida-
tion set. We restrict the iterations to 5000. Following the setup used in (Xu et al., 2019), the batch size
b = 512 is kept for all datasets, the embedding dimensionality k is tuned in {100, 200, 300, 400, 500},
the ratio of negative over positive training samples η is tuned in {1, 3, 5, 10} and the margin γ is tuned in
{1, 2, 3, 5, 10, 20, · · · , 120}. Regarding optimizer, we choose Adagrad for TeRo and tune the learning
rate r in a range of {1, 0.3, 0.1, 0.03, 0.01}. Specially, the time granularity parameters u and thre are
also regraded as hyperparameters for TeRo as mentioned in Section 4.2.

The default configuration for TeRo is as follows: d = 500, η = 10. Below, we only list the non-
default parameters: lr = 0.1, γ = 110, u = 1 on ICEWS14; lr = 0.1, γ = 120, u = 2 on ICEWS05-15;
lr = 0.1, γ = 50, thre = 100 on YAGO11k; lr = 0.3, γ = 20, thre = 300 on Wikidata12k.

5 Results and Analysis

5.1 Comparative Study

Datasets ICEWS14 ICEWS05-15
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE* .280 .094 - .637 .294 .090 - .663

DistMult* .439 .323 - .672 .456 .337 - .691
ComplEx-N3† .467 .347 .527 .716 .481 .362 .535 .729

RotatE† .418 .291 .478 .690 .304 .164 .355 .595
QuatE2 † .471 .353 .530 .712 .482 .370 .529 .727
TTransE� .255 .074 - .601 .271 .084 - .616

HyTE� .297 .108 .416 .655 .316 .116 .445 .681
TA-TransE* .275 .095 - .625 .299 .096 - .668

TA-DistMult* .477 .363 - .686 .474 .346 - .728
DE-SimplE� .526 .418 .592 .725 .513 .392 .578 .748

ATiSE† .550 .436 .629 .750 .519 .378 .606 .794
TeRo .562 .468 .621 .732 .586 .469 .668 .795

Table 3: Link prediction results on ICEWS14 and ICEWS05-15. *: results are taken from (Garcı́a-Durán
et al., 2018). �: results are taken from (Goel et al., 2020). †: results are taken from (Xu et al., 2019).
Dashes: results are unobtainable. The best results among all models are written bold.

Datasets YAGO11k Wikidata12k
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE† .100 .015 .138 .244 .178 .100 .192 .339

DistMult† .158 .107 .161 .268 .222 .119 .238 .460
ComplEx-N3† .167 .106 .154 .282 .233 .123 .253 .436

RotatE† .167 .103 .167 .305 .221 .116 .236 .461
QuatE2 † .164 .107 .148 .270 .230 .125 .243 .416
TTransE† .108 .020 .150 .251 .172 .096 .184 .329

HyTE† .105 .015 .143 .272 .180 .098 .197 .333
TA-TransE .127 .027 .160 .326 .178 .030 .267 .429

TA-DistMult .161 .103 .171 .292 .218 .122 .232 .447
ATiSE† .170 .110 .171 .288 .280 .175 .317 .481
TeRo .187 .121 .197 .319 .299 .198 .329 .507

Table 4: Link prediction results on YAGO11k and Wikidata12k. †: results are taken from (Xu et al.,
2019). The best results among all models are written bold.

Table 3 and 4 list all link prediction results of our proposed model and baseline models on four datasets.
TeRo surpassed all baseline embedding models regarding all metrics on all datasets except that the ATiSE
got the better Hits@3 and Hits@10 than TeRo on ICEWS14. Compared to ATiSE, TeRo achieved the
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improvement of 1.2 MRR points, 6.7 MRR points, 1.7 MRR points and 1.9 MRR points on ICEWS14,
ICEWS05-15, YAGO11k and Wikidata12k respectively.

5.2 Ablation Study

In this work, we analyze the effect of the change of the time granularity on the performance of our
model. As mentioned in Section 4.2, we adopt two different time-division approaches for event-based
datasets, i.e., ICEWS datasets, and time-wise KGs involving time intervals, i.e., YAGO11k as well as
Wikidata12k. For ICEWS14 and ICEWS05-15, we use time steps with fixed length since the the dis-
tribution of numbers of facts in ICEWS datasets over time are relatively uniform as shown in Figure 2.
The time granularities of ICEWS datasets are equal to the lengths of time units u . On the other hand,
the time distributions of numbers of facts in YAGO15k and Wikidata12k are long-tailed. Thus we divide
the time steps in YAGO15k and Wikidata12k by setting a mini threshold for the numbers of facts in each
time step. Time granularities of these two datasets can be changed by setting different thresholds thre.

Figure 2: Time distribution of numbers of facts.

Figure 3: Results of TeRo with different time granularities on ICEWS14 and Wikidata12k.

In ICEWS14, time distribution is relatively uniform and thus representing time with a small time
granularity can provide more abundant time information. As shown in Figure 3, TeRo with small time
granularities, e.g., 1 day, 2 days and 3 days, had better performance on ICEWS14 compared to TeRo
with big time granularities regarding MRR and Hits@3. Likewise, the optimal time unit for TeRo on
ICEWS05-15 was proven by our experiments to be 2 days. For Wikidata12k, using a very small time
granularity was non-optimal due to the long-tail property of time data. On the other hand, using an overly
big time granularity resulted in the invalid incorporation of time information. Figure 3 demonstrates the
low performances of TeRo with big time granularities. More concretely, when time unit u was 1 year,
all of time annotations in ICEWS14 were represented by a uniform time embedding, which meant this
time embedding was temporally unmeaningful. Table 5 demonstrates a few examples of link prediction
results on ICEWS14 of TeRo models with time units u of two days and one year.

As shown in Table 5, in many cases, TeRo with u = 1 predicated correctly, meanwhile TeRo with
u = 365 gave the wrong predictions. We notice that these predictions of TeRo with u = 365 in Table 5
would be valid if we disregarded the time constraint. For instance, (Colombia, Host a visit, John F. Kelly)
happened on 2014-03-27, (UN Security Council, Criticize or denounce, Armed Band (South Sudan)) was
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Link Prediction TeRo with u = 1 day TeRo with u = 365 days
Colombia, Host a vist, ?, 2014-06-04 Kyung-wha Kang John F. Kelly
Head of Government (China), visits, ?, 2014-07-04 South Korea Serbia
UN Security Council, Criticize or denounce, ?, 2014-08-10 North Korea Armed Band (South Sudan)
South Korea, Host a vist, ?, 2014-06-20 Kim Jong-Un National Security Advisor (Japan)
Police (Australia), Accuse, ?, 2014-10-22 Criminal (Australia) Citizen (Australia)

Table 5: Examples of link prediction results on ICEWS14. The correct predictions are written bold.

true on 2014-08-07. As mentioned in Section 3, Host a visit and Criticize or denounce are temporary re-
lations. The above results prove that using a reasonable time granularity is helpful for TeRo to effectively
incorporate time information. And the inclusion of time information enables TeRo to capture temporary
relations and improve its performance on link prediction over TKGs.

5.3 Efficiency Study

TeRo has the same space complextiy as TTransE (Leblay and Chekol, 2018) and HyTE (Dasgupta et al.,
2018). Since we constrained the numbers of time steps of the four TKG datasets by tuning time granular-
ities (183 time steps in ICEWS14, 1339 time steps in ICEWS05-15, 127 time steps in YAGO11k and 82
time steps in Wikidata12k), the numbers of time steps are much less than the numbers of entities in these
datasets, which means that the space complexity of TeRo is close to the space complexity of TransE (Bor-
des et al., 2013) as mentioned in Section 3.2. Regarding the concrete memory consumption, the recent
state-of-the-art TKGE models, ATiSE (Xu et al., 2019) and DE-SimplE (Goel et al., 2020) have 1.8 times
and 2.2 times as large memory size as TeRo on ICEWS14 with the same embedding dimensionality. The
training processes of TeRo with 500-dimensional embeddings on ICEWS14, ICEWS05-15, YAGO11k
and Wikidata12k take 4.3 seconds, 25.9 seconds, 1.9 seconds and 4.1 seconds per epoch on a single
GeForce RTX 2080 device, respectivly.

Figure 4: Visualization of the absolute difference vectors between rb and re for relations deadIn and
isMarriedTo (reshaped into 25×20 matrices): (a) |Re(rb−re)|/|Re(rb)| for relation deadIn; (b) |Im(rb−
re)|/|Im(rb)| for relation deadIn; (c) |Re(rb − re)|/|Re(rb)| for relation isMarriedTo; (d) |Im(rb −
re)|/|Im(rb)| for relation isMarriedTo.

It is also noteworthy that representing each relation as a pair of dual complex embeddings is helpful to
save training time on TKGs involving time intervals. Given a fact (s, r, o, [tb, te]), some TKGE models,
e.g., HyTE and ATiSE, discretize this fact into several quadruples involving continuous time points, i.e.,
[(s, r, o, tb), (s, r, o, tb + 1), · · · , (s, r, o, te)]. When thre = 300, each fact lasts for averagely around
15 and 8 time steps in YAGO11k and Wikidata12k. In other words, such method that discretizes facts
involving time intervals expands the sizes of both datasets by 15 and 8 times. In our model, we propose
a more efficient method to handle time intervals by using two different quadruples, (s, rb, o, tb) and (s,
re, o, tb) to represent the beginning and the end of each fact. In this way, we only expand the sizes of
datasets as less than twice as their original sizes.

For relations r in YAGO11k, we analyze the similarities between the embeddings rb and re. As shown
in Figure 4, for short-term relations, e.g., deadIn, the real parts of rb and re, as well as their imaginary
parts, have high similarities since rb and re always happen at the same time and have the same semantics.
By contrast, for long-term relations, e.g., isMarriedTo, the real parts of rb and re show their semantic
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similarities and the imaginary parts capture their temporal dissimilarities.

6 Conclusion

In this work, we introduce TeRo, a new TKGE model which represents entities or relations as single or
dual complex embeddings and temporal changes as rotations of entity embeddings in the complex vector
space. Our model is advantageous with its capability in modelling several key relation patterns and han-
dling time annotations in various forms. Experimental results show that TeRo remarkably outperforms
the existing state-of-the-art KGE models and TKGE models on link prediction over four well-established
TKG datasets. Specially, we adopt two different time-division approaches for various datasets and inves-
tigate the effect of the time granularity on the performance of our model.
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