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Abstract

Knowledge graph embedding is an important task and it will benefit lots of downstream appli-
cations. Currently, deep neural networks based methods achieve state-of-the-art performance.
However, most of these existing methods are very complex and need much time for training
and inference. To address this issue, we propose a simple but effective atrous convolution
based knowledge graph embedding method. Compared with existing state-of-the-art methods,
our method has following main characteristics. First, it effectively increases feature interac-
tions by using atrous convolutions. Second, to address the original information forgotten issue
and vanishing/exploding gradient issue, it uses the residual learning method. Third, it has sim-
pler structure but much higher parameter efficiency. We evaluate our method on six benchmark
datasets with different evaluation metrics. Extensive experiments show that our model is very
effective. On these diverse datasets, it achieves better results than the compared state-of-the-
art methods on most of evaluation metrics. The source codes of our model could be found at
https://github.com/neukg/AcrE.

1 Introduction

Knowledge graph is a kind of valuable knowledge bases and it is important for many AI-related appli-
cations. Generally, a KG stores factual knowledge in the form of structural triplets like <h, r, t>, which
means there is a kind of r relation from h (head entity) to t (tail entity). Nowadays, great achievements
have been made in building large scale KGs. Usually a KG may contain millions of entities and billions
of relational facts. However, there are still two major difficulties that prohibit the availability of KGs.
First, although most existing KGs contain large amount of triplets, they are far from completeness. Sec-
ond, most existing KGs are stored in symbolic and logical formations while applications often involve
numerical computing in continuous spaces. To address these two issues, researchers proposed knowledge
graph embedding (KGE) methods that aim to learn a kind of embedding representations for a KG’s items
(entities and relations) by projecting these items into some continuous low-dimensional spaces. Gener-
ally, different kinds of KGE methods mainly differ in how to view the role of relations in the projected
spaces. For example, translation based methods (TransE (Bordes et al. , 2013), TransH (Wang et al. ,
2014), TransR (Lin et al. , 2015a), TransD (Ji et al. , 2015), et al.) view the relation in a triplet as a
translation operation from the head entity to the tail entity. Other KGE methods view relations as some
kind of combination operators that link head entities and tail entities. For example, HolE (Nickel et al. ,
2016) employs a circular correlation function as the combination operator in the project space. ComplEx
(Trouillon et al. , 2016) makes use of complex valued embeddings and takes the matrix decomposition
as the combination operator. RT (Wang et al. , 2019)uses Tucker decomposition for KGE. RotateE (Sun
et al. , 2019) use the rotation operation in the complex space as the combination operator. Experimental
results show these existing methods have strong feasibility and robustness in solving the mentioned two
issues.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/.
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Recently, deep neural networks (DNN) based KGE methods (Dettmers, 2018; Nguyen et al. , 2018;
Yao et al. , 2020; Vashishth et al. , 2020a; Vashishth et al. , 2020b) push the performance of KGE to a
soaring height. Compared with previous methods, this kind of methods can learn more effective embed-
dings mainly due to the powerful learning ability inherent in the DNN models. However, as pointed out
by Xu et al. (2020) that existing research did not make a proper trade-off between the model complexity
(the number of parameters) and the model expressiveness (the performance in capturing semantic infor-
mation). Thus deep convolutional neural networks (DCNN) based methods are achieving more and more
research attention due to their simple but effective structure. However, Chen et al. (2018) point out that
the DCNN based methods usually suffer from the reduced feature resolution issue that is caused by the
repeated combination of max-pooling and down-sampling(“striding”) performed at consecutive layers
of DCNNs. This will result in feature maps with significantly reduced spatial resolution when DCNN is
employed in a fully convolutional fashion.

To address this issue, we propose an atrous convolution based KGE method which allows the model to
effectively enlarge the field of view of filters almost without increasing the number of parameters or the
amount of computations. To address the vanishing/exploding gradient issue inherent in the DNN based
learning frame and the original information forgotten issue when more convolutions used, we introduce
residual learning in the our method. We propose two learning structures to integrate different kinds of
convolutions together: one is a serial structure, and the other is a parallel structure. We evaluate our
method on six diverse benchmark datasets. Extensive experiments show that our method achieves better
result than the compared state-of-the-art baselines under most evaluation metrics on these datasets.

2 Related Work

Translation based KGE methods view the relation in a triplet as a translation operation from the head
entity to the tail entity. These methods usually define a score function (or energy function) that has a form
like ||h + r - t || to measure the plausibility of a triplet. During training, almost all of them minimize
a margin based ranking loss function over the training data. TransE (Bordes et al. , 2013) is a seminal
work in this branch. It directly takes the embedding space as a translation space. Formally, it tries to let h
+ r ≈ t if <h, r, t> holds. TransH (Wang et al. , 2014) models a relation as a hyperplane together with a
translation operation on it. TransR (Lin et al. , 2015a) models entities and relations in distinct spaces, i.e.,
the entity space and multiple relation spaces. TransD (Ji et al. , 2015) models each entity or relation by
two vectors. TranSparse (Ji et al. , 2016) mainly considers the heterogeneity property and the imbalance
property in KGs. PTransE (Lin et al. , 2015b) integrates relation paths into a TransE model. ITransF
(Xie et al. , 2017) uses a sparse attention mechanism to discover hidden concepts of relations and to
transfer knowledge through the sharing of concepts. Recently, researchers also employ the methods of
combining different distance functions together for KGE. For example, Sadeghi et al. (2019) proposed
a multi distance embedding (MDE) model, which consists of several distances as objectives.

Bilinear KGE models use different kinds of combination operators other than the translation. For ex-
ample, HolE (Nickel et al. , 2016) employs a circular correlation as the combination operator. ComplEx
(Trouillon et al. , 2016) makes use of complex valued embedding and takes matrix decomposition as the
combination operator. Similar to ComplEx, RotatE (Sun et al. , 2019) also use a complex space where
each relation is defined as a rotation from the source entity to the target entity. Xu and Li (2019) pro-
posed DihEdral for KG relation embedding. By leveraging the desired properties of dihedral group, their
method could support many kinds of relations like symmetry, inversion, etc. Wang et al. (2019) propose
the Relational Tucker3(RT) decomposition for multi-relational link prediction in knowledge graphs.

Other work, KG2E (He et al. , 2015) uses a density-based method to model the certainty of entities
and relations in a space of multi-dimensional Gaussian distributions. TransG (Xiao et al. , 2016) mainly
addresses the issue of multiple relation semantics.

Recently, researchers begin to explore the DNN based methods for KGE and achieve state-of-the-art
results. For example, ConvE (Dettmers, 2018) uses 2D convolution over embeddings and multiple lay-
ers of nonlinear features to model KGs. ConvKB (Nguyen et al. , 2018) also use convolutional neural
network for KGE. ConMask (Shi and Weniger, 2018)uses relationship-dependent content masking, fully
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Figure 1: (a): Structure of Serial AcrE; (b): Structure of Parallel AcrE.

convolutional neural networks, and semantic averaging to extract relationship-dependent embeddings
from the textual features of entities and relations in KGs. More recently, Guo et al. (2019) studied the
path-level KG embedding learning and proposed recurrent skipping networks(RSNs) to remedy the prob-
lems of using sequence models to learn relational paths. Yao et al. (2020) integrate BERT (Devlin et al.
, 2019) into the KGE model. Wang et al. (2020) propose CoKE which uses Transformer (Vaswani et al.
, 2017). Vashishth et al. (2020a) extend ConvE by increasing the interactions with feature permutation,
feature reshaping, and circular convolution.

Most recently, graph based neural network(GNN) methods are achieving more and more attentions.
Schlichtkrull et al. (2018) propose R-GCN, which is a graph based DNN model that uses neighboring
information of each entity. Bansal et al. (2019) propose A2N, an attention-based model based on graph
neighborhood. Shang et al. (2019) propose a weighted graph convolutional network based method that
mainly utilizes learnable relational specific scalar weights during GCN aggregation. Ye et al. (2019)
propose VR-GCN, which is an extention of graph convolutional networks for embedding both nodes and
relations. Shang et al. (2019) propose SACN that takes the benefit of both GCN and ConvE. Vashishth
et al. (2020b) propose CompGCN which jointly embeds both nodes and relations in a relational graph.

However, as pointed out by Xu et al. (2020) that most of these existing DNN-based or GNN-based
KGE methods are very complex and time-consuming, which prevents them be used in some on-line or
real-time application scenarios.

3 AcrE Model

We denote our model as AcrE (the abbreviation of Atrous Convolution and Residual Embedding). In this
study, we design two structures to integrate the standard convolution and atrous convolutions together.
One is a serial structure as shown in Figure 1 (a), and the other is a parallel structure as shown in Figure
1 (b). We will introduce them one by one in the following.

3.1 Serial AcrE Model
In the Serial AcrE model, the standard convolution and atrous convolutions are organized in a serial man-
ner. As shown in Figure 1 (a), the output of one convolution will be taken as the input of its subsequent
adjoining convolution. In this model, the embeddings of an entity and its relation are first reshaped into a
2-Dimension representation, then a standard convolution and several atrous convolutions are performed
serially. Next, the outputted embeddings of the last atrous convolution and the initial embeddings are
combined by a residual learning based method. The combined embeddings are flattened into a vector.
This vector is then used as features to get the probability distributions for the entity candidates.



1535

2D Embedding Representation For a triplet <h, r, t>, we denote h, r and t as their corresponding
embedding representations. ConvE points out that a 2-Dimension (2D for short) convolution operation
is better than a 1D-convolution operation because a 2D-convolution increases the expressiveness of a
CNN model through additional points of interaction between embeddings. Thus follow ConvE, we also
use a 2D convolution in our model. To this end, the embedding concatenation of an entity and its linked
relation is reshaped into a 2D embedding representation.

Specifically, we use τ to denote a 2D reshaping function and use e to denote the embedding of an
entity e. If e, r ∈ Rm, τ([e; r]) ∈ Rn1×n2 where 2×m = n1× n2. In this study, we use [e; r] to denote
the concatenation of e and r.
Standard Convolution based Learning After the 2D reshaping process, a standard convolution opera-
tion is performed with Equation 1.

Ci
0 = ωi

0 ? τ([e; r]) + bi
0 (1)

where ? denotes convolution operation, ωi
0 ∈ Rk×k is the i-th filter and bi

0 is the i-th bias vector.
Then the outputs of these filters are stacked to form the output of the standard convolution learning.

We denote the final output of this standard convolution learning as C0 , which could be simply written
as C0 =

[
C1

0 : C
2
0 : C

3
0 : ... : C

F
0

]
and F is the number of filters used.

It should be noted that we don’t perform a max-pooling operation that is often used in traditional CNN
models. This is because the input of our model is always an entity and a relation. Thus the length of
the convolution output is fixed. It is unnecessary to use a max-pooling to generate a new length-fixed
representation. Our in-house experiments show that there is no obvious performance difference between
with and without a max-pooling operation.
Atrous Convolution based Learning Atrous convolution, also called as dilated convolution, inserts
some holes (zeros) in the input during convolution. Given an input vector x with a filter vector w of
length K, the output vector y of an atrous convolution is computed with Equation 2.

yi =

K∑
k=1

xi+l×k × wk (2)

Here l (the atrous rate parameter) means the stride with which we sample the input. Obviously, the
standard convolution is a special case of the atrous convolution when l is set to 1.

Specifically, in the Serial AcrE model, an atrous convolution takes the output of its previous convolu-
tion as input, and output a new result with Equation 3.

Ct = ωt ?Ct−1 + bt (3)

where Ct−1 is the output of previous convolution operation, ωt and bt are the filter and bias vector
respectively in the i-th convolution.
Feature Vector Generation In the Serial AcrE model, different kinds of convolutions are performed one
by one. Each convolution will extract some interaction features from the output of its previous convolu-
tion. Thus the mined features would “forget” more and more original input information as convolutions
performed. However, the original information is the foundation of all mined features, so “forget” them
will increase the risk that the mined features are actually irrelevant to what are needed. We call this
phenomenon as original information forgotten issue. Besides, there is an inherent vanishing/exploding
gradient issue in the deep networks. Here we use the residual learning method (He et al. , 2016) to
add original input information back so as to address both issues. Then the result of residual learning is
flattened into a feature vector. Specifically, the whole process is defined with Equation 4.

o = Flatten(ReLU(CT + τ([e; r]))) (4)

where CT is the output of last atrous convolution, and T is the number of atrous convolutions.
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Score Function With the generated feature vector o, we define the following function to compute a score
to measure the degree of an entity candidate t can form a correct triplet with the input <h,r>.

ψ(h, r, t) = (oW + b) t> (5)

where W is a transformation matrix and b is a bias vector. Then a sigmoid function is used to get the
probability distribution over all candidate entities.

p (t|h, r) = sigmoid(ψ(h, r, t)) (6)

3.2 Parallel AcrE Model
In the Parallel AcrE model, the standard convolution and atrous convolutions are organized in a parallel
manner. As shown in Figure 1 (b), different kinds of convolutions are performed simultaneously, then
their results are combined and flattened into a vector. Similar to the Serial AcrE model, this vector is
used as features to get the probability distributions for the entity candidates.

Compared with the Serial AcrE model, most of the components in the Parallel AcrE model have the
same definitions except for the results integration and feature vector generation. We will introduce these
two differences in the following part.
Results Integration Different from the serial structure, there will be multi results generated by different
convolution operations. Accordingly, we need to integrate these results together. This process can be
defined with following Equation 7.

C = C0 ⊕C1 ⊕ ...⊕CT (7)

where C0 is the result of standard convolution and Ci is the result of the i-th atrous convolution, and
⊕ means a result integration operation. There are different kinds of integration methods. In this study,
we explore two widely used methods for this. One is an element-add operation based method, the other
is a concatenation operation based method.
Feature Vector Generation As shown in Figure 1, the final output of the whole convolution learning is
followed by a transformation operation. Then the results are flattened into the feature vector. Specially,
the process can be written with Equation 8, where W1 is the transformation matrix.

c = Flatten(W1Relu(C+ τ([e; r]))) (8)

3.3 Training
Different from other KGE methods that often use a max-margin loss function for training, most neural
networks based KGE methods (like ProjE, ConvE, etc.) often use the following two kinds of ranking loss
functions. One is a kind of binary cross-entropy loss that the ranking scores are calculated independently
(pointwise ranking method), and the other is a kind of softmax regression loss that considers the ranking
scores collectively (listwise ranking method). Both ProjE and ConvE show that the latter one achieves
better experimental results. In AcrE, we define a same listwise loss function as used in ConvE.

L = − 1

N

N∑
i=1

[ti log p (ti|h, r) + (1− ti) log (1− p (ti|h, r))] (9)

where t is a label vector whose elements are ones for relationships that exist and zero otherwise, and N
is the number of entities in a KG. This loss function takes one (h,r) pair and scores it against all entities
simultaneously. Thus our model is very fast for both training and inference.

4 Experiments and Analyses

4.1 Experiment Settings
Datasets We evaluate our method on six widely used benchmark datasets. The first two are WN18
(Bordes et al. , 2014) and FB15k (Bordes et al. , 2014). The second two are WN18RR and FB15k-237
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Dataset #R #E
#Triplet

Train Valid Test

DB100K 470 99,604 597,572 50,000 50,000
WN18 18 40,943 141,442 5,000 5,000
FB15k 1,345 14,951 483,142 50,000 59,071
WN18RR 11 40,943 86,835 3,034 3,134
FB15k-237 237 14,541 272,115 17,535 20,446
Kinship 25 104 8,544 1,068 1,074

Table 1: Dataset statistics.

Model MRR H@1 H@3 H@10

TransE(Bordes et al. , 2013) 0.111 1.6 16.4 27
DistMult(Yang et al. , 2015) 0.233 11.5 30.1 44.8
HolE(Nickel et al. , 2016) 0.26 18.2 30.9 41.1
ComplEx(Trouillon et al. , 2016) 0.242 12.6 31.2 44
Analogy(Liu et al. , 2017) 0.252 14.2 32.3 42.7
RUGE(Guo et al. , 2018) 0.246 12.9 32.5 43.3
ComplEx-NNE+AER(Ding et al. , 2018) 0.306 24.4 33.4 41.8
Sys-SEEK(Xu et al. , 2020) 0.306 22.5 34.3 46.2
SEEK(Xu et al. , 2020) 0.338 26.8 37 46.7

AcrE (Serial) 0.399 30.4 45.3 57.0
AcrE (Parallel) 0.413 31.4 47.2 58.8

Table 2: Experimental results on DB100k. All the compared results are taken from Xu et al. (2020).

(Dettmers, 2018), which are two variant datasets for WN18 and FB15k to avoid test leakage. The rest
two are Alyawarra Kinship (Lin et al. , 2018) and DB100K (Ding et al. , 2018), both are new datasets
proposed in recent years. Some statistics of these six datasets are shown in Table 1.
Evaluation Task We use link prediction, one of the most frequently used benchmark evaluation tasks
for KGE methods, to evaluate our model. Link prediction is to predict the missing h or t for a correct
triplet <h, r, t>, i.e., predict t given <h, r> or predict h given <r, t>. Rather than requiring one best
answer, this task emphasizes more on ranking a set of candidate entities from the KG. Hits@k and MRR
are often used as the evaluation metrics.

In experiments, all the parameters, including initial embeddings, transformation matrices, and bias
vectors, are randomly initialized. Hyper-parameters are selected by a grid search on the validation set.
All the results are reported when 3 atrous convolutions used for both learning structures.

4.2 Experimental Results

Overall Results Table 2 and 3 show the experimental results on different datasets under different eval-
uation metrics. It should be noted that not all models report their results on all these six datasets, so
the compared baselines on different datasets are different in these two tables. In subsequent part, all
the experimental results for the compared baselines are taken from some latest published papers or their
original papers. From these results we can draw following two conclusions.

First, our model is very robust and it significantly outperforms the compared state-of-the-art results
under all the evaluation metrics on all datasets except for WN18RR. Especially on DB100K, FB15k, and
Kinship, both AcrE (Serial) and AcrE (Parallem) outperform the compared baselines by a large margin
under almost all the evaluation metrics. As for WN18RR, our model still achieves very competitive
results. Especially when compared with other DCNN-based KGE methods like ConvE and ConvKB, we
can see that both the Serial and the Parallel models perform much better.
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FB15K WN18
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE(Bordes et al. , 2013) 0.463 29.7 57.8 74.9 0.495 11.3 88.8 94.3
HolE(Nickel et al. , 2016) 0.524 40.2 61.3 73.9 93.8 93.0 94.5 94.9
ComplEx(Trouillon et al. , 2016) 0.692 59.9 75.9 84.0 0.941 93.6 94.5 94.7
SimplE(Kazemi et al. , 2018) 0.727 66.0 77.3 83.8 0.942 93.9 94.4 94.7
D4-Gumbel(Xu and Li, 2019) 0.728 64.8 78.2 86.4 0.728 64.8 78.2 86.4
D4-STE(Xu and Li, 2019) 0.733 64.1 80.3 87.7 0.733 64.1 80.3 87.7
ConvE(Dettmers, 2018) 0.657 55.8 72.3 83.1 0.942 93.5 94.7 95.5
R-GCN(Schlichtkrull et al. , 2018) 0.696 60.1 76.0 84.2 0.696 60.1 76.0 84.2
RotatE(Sun et al. , 2019) 0.797 74.6 83.0 88.4 0.949 94.4 95.2 95.9
RSNs(Guo et al. , 2019) 0.78 72.2 - 87.3 0.94 92.2 - 95.3

AcrE(Serial) 0.791 72.7 83.8 89.6 0.950 94.6 95.3 95.9
AcrE(Parallel) 0.815 76.4 85.2 89.8 0.948 94.3 95.2 95.7

FB15K-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

ConvE(Dettmers, 2018) 0.312 22.5 34.1 49.7 0.43 40 44 52
ConvKB(Nguyen et al. , 2018) 0.243 15.5 37.1 42.1 0.249 5.7 41.7 52.4
R-GCN(Schlichtkrull et al. , 2018) 0.164 10 18.1 30 0.123 8 13.7 20.7
RotatE(Sun et al. , 2019) 0.338 24.1 37.5 53.3 0.476 42.8 49.2 57.1
D4-STE(Xu and Li, 2019) 0.320 23.0 35.3 50.2 0.480 45.2 49.1 53.6
SACN(Shang et al. , 2019) 0.35 26.0 39.0 54.0 0.47 43.0 48.0 54.0
HypER(Balazevic et al. , 2019b) 0.341 25.2 37.6 52.0 0.465 43.6 47.7 52.2
ConvR(Jiang et al. , 2019) 0.350 26.1 38.5 52.8 0.475 44.3 48.9 53.7
VR-GCN(Ye et al. , 2019) 0.248 15.9 27.2 43.2 - - - -
RSNs (Guo et al. , 2019) 0.280 20.2 - 45.3 - - - -
DK-STE (Xu and Li, 2019) 0.320 23.0 35.3 50.2 0.480 45.2 49.1 53.6
CompGCN(Vashishth et al. , 2020b) 0.355 26.4 39.0 53.5 0.479 44.3 49.4 54.6

AcrE(Serial) 0.352 26.0 38.8 53.7 0.463 42.9 47.8 53.4
AcrE(Parallel) 0.358 26.6 39.3 54.5 0.459 42.2 47.3 53.2

Kinship

MRR H@1 H@3 H@10

ComplEx(Trouillon et al. , 2016) 0.823 73.3 89.9 97.1
ConvE(Dettmers, 2018) 0.833 73.8 91.7 98.1
ConvKB(Nguyen et al. , 2018) 0.614 43.6 75.5 95.3
R-GCN(Schlichtkrull et al. , 2018) 0.109 3 8.8 23.9
SimplE(Kazemi et al. , 2018) 0.752 62.6 85.4 97.2
RotatE(Sun et al. , 2019) 0.843 76.0 91.9 97.8
HAKE(Zhang et al. , 2020) 0.852 76.9 92.8 98.0
InteractE(Vashishth et al. , 2020a) 0.777 66.4 87.0 95.9
CompGCN(Vashishth et al. , 2020b) 0.778 66.7 86.8 96.7
CoKE(Wang et al. , 2020) 0.793 69.3 87.8 95.4

AcrE(Serial) 0.864 78.7 93.1 98.7
AcrE(Parallel) 0.864 78.5 93.9 98.4

Table 3: Experimental results on the rest five benchmark datasets.
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Predict Head Predict Tail

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
ConvE(Dettmers, 2018) 0.211 13.2 23.1 36.8 0.416 32.3 45.7 60.1
SACN(Shang et al. , 2019) 0.241 15.8 26.0 40.9 0.446 35.2 49.0 63.1
RotatE(Sun et al. , 2019) 0.239 14.9 26.5 42.4 0.432 32.9 47.7 63.9
InteractE(Vashishth et al. , 2020a) 0.258 17.0 28.3 43.7 0.454 35.8 49.8 64.4
AcrE (Serial) 0.254 16.6 27.9 43.4 0.451 35.3 49.7 64.2
AcrE (Parallel) 0.261 17.3 28.6 44.2 0.455 35.8 49.9 64.7

Table 4: Head and Tail Predictions on FB15k-237. All the compared results are the best results we can
achieve by running the source codes provided by the original papers.

Model
Prediction Head (Hits@10) Prediction Tail (Hits@10)

1-to-1 1-to-n n-to-1 m-to-n 1-to-1 1-to-n n-to-1 m-to-n

TransE(Bodes et al., 2013) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH(Wang et al., 2014) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransD(Ji et al.,2015) 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2
CTransR(Lin et al., 2015a) 81.5 89 34.7 71.2 80.8 38.6 90.1 73.8
KG2E(He et al., 2015) 92.3 94.6 66 69.6 92.6 67.9 94.4 73.4
TranSparse(Ji et al., 2016) 87.5 95.9 44.4 81.2 87.6 57 94.5 83.7
STransE(Nguyen et al., 2016) 82.8 94.2 50.4 80.1 82.4 56.9 93.4 83.1
TransG( Xiao et al., 2016) 93.0 96 62.5 86.8 92.8 68.1 94.5 88.8
ComplEx(Trouillon et al. , 2016) 93.9 96.9 69.2 89.3 93.8 82.3 95.2 91.0
Jointly(Xu et al., 2017) 83.8 95.1 21.1 47.9 83 30.8 94.7 53.1
RotatE(Sun et al. , 2019) 92.9 96.7 60.2 89.3 92.3 71.3 96.1 92.2

AcrE(Serial) 91.0 96.9 70.5 89.1 90.7 85.2 95.9 92.2
AcrE(Parallel) 92.5 97.0 69.5 89.5 92.1 84.0 96.1 92.7

Table 5: Predictions by Categories on FB15k. The compared results are taken from their original papers.

Second, AcrE (Parallel) performs better than AcrE (Serial) in most cases. We think this is mainly due
to the reason that the Serial structure based method suffers more from the original information forgotten
issue than the Parallel structure based method.
Detailed Results We conduct following two kinds of detailed experiments to further demonstrate the
performance of our model. One is Head and Tail Prediction, and the other is Prediction by Categories.

In the first kind of detailed experiments, we compare the performance of our model with several
representative state-of-the-art baselines on FB15k-237 for predicting missing head entities and predicting
missing tail entities. The results are summarized into Table 4, from which we can see that our model
outperforms the compared baselines again under all the evaluation metrics.

In the second kind of detailed experiments, we compare the performance of our model with several
representative state-of-the-art baselines on FB15k for predicting by different categories. The results are
shown in Table 5. We can see that ArcE does much better than other compared baselines on almost all
types of relations except the 1-to-1 relations. This merit is much important for real application scenarios
where the complexer relations often take up large proportions. For example, in FB15k, one of the largest
available KGs, the triplets of 1-to-1 are about 1.4%, 1-to-n are about 8.9%, n-to-1 are about 14.6%, and
m-to-n are about 75.1%.
Ablation Results Table 6 shows the ablation experiments of our model on FB15k and FB15k-237. We
can see that there is a large different between the performance of “with/without” residual learning in
most cases. As analyzed above, the more serial convolutions used, the more original information would
be forgotten. While a residual learning adds the original information back. Accordingly, the mentioned



1540

FB15K FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

AcrE(Serial) 0.791 72.7 83.8 89.6 0.352 26.0 38.8 53.7
-Residual 0.776 70.6 82.8 89.1 0.351 25.8 38.6 53.7
AcrE(Parallel) 0.815 76.4 85.2 89.8 0.358 26.6 39.3 54.5
-Residual 0.804 74.6 84.9 89.7 0.355 26.1 39.0 54.1

AcrE (Parallel) add 0.803 74.4 84.6 89.7 0.356 26.5 38.9 54.1
con 0.815 76.4 85.2 89.8 0.358 26.6 39.3 54.5

Table 6: Ablation experiments on FB15k and FB15k-237. “add” and “con” refer to the element-add and
concatenation integration methods respectively.

Models ParaNum (Millions)
ConvE(Dettmers, 2018) ≈ 4.96
RotatE(Sun et al. , 2019) ≈ 29.32
SACN(Shang et al. , 2019) ≈ 9.63
InteractE(Vashishth et al. , 2020a) ≈ 10.7
CompGCN(Vashishth et al. , 2020b) ≈ 9.45
HAKE(Zhang et al. , 2020) ≈ 29.79
CoKE(Wang et al. , 2020) ≈ 10.19
AcrE (Serial) ≈ 5.61
AcrE(Parallel) ≈ 6.22

Table 7: Parameter efficiency on FB15k-237 (“ParaNum” refers to the number of parameters).

issue is alleviated greatly. Since AcrE (Serial) forgets more original information than AcrE (Parallel), it
achieves more performance gains from residual learning.

From Table 6 we can also observe that the integration method plays important role in AcrE (Parallel).
Usually, the concatenation based integration method is superior to an element-add based integration
method in most cases. Here we do not use some complexer integration methods like gate control based
methods for we do not want to make the model too complex.

Besides, the atrous rate and the number of atrous convolutions used also affect the performance. Here
we do not report the performance under different settings of these two hyper-parameters due to space
limitation. In fact, both of these two parameters are easily selected due to their small search spaces.
Parameter efficiency We also compare the parameter efficiency between our model and some state-
of-the-art models on FB15k-237. For each method, we report the number of parameters associated
with the optimal configuration that leads to the performance shown in Table 3. The comparision results
are shown in Table 7, from which we can see that the number of parameters in AcrE is close with
ConvE, but is far less than that in other compared baselines. This is in line with our expectation: using
atrous convolutions would not increase the parameters greatly. These results show that our model is
more parameter efficient, it achieves substantially better results with fewer parameters. Note that AcrE
(Parallel) has more parameters than AcrE (Serial) because it has an extra transformation operation after
the result integration.

Here we do not quantitatively compare the runtime of different models for it is difficult to provide
a fair evaluation environment: coding tricks, hyper-parameter settings (like batch-size, learning rate),
parallelization, lot of non-model factors affect the runtime. However, AcrE can be viewed as a variant of
ConvE. Theoretically, it has the same time complexity as ConvE that has been proven to be faster than
most existing state-of-the-art methods. Taking FB15k-237 as an example, when using a Titan XP GPU
server, it takes about 220 and 100 seconds per epoch during training for AcrE (Serial) and AcrE (Parallel)
respectively. As for inference, it only takes 14 and 6 seconds for AcrE (Serial) and AcrE (Parallel)
respectively to finish the whole test set evaluation. While some latest GNN or DNN based methods often
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takes many hours even several days to complete the same work under the same experiment settings.

5 Conclusions

In this paper, we propose AcrE, a simple but effective DNN-based KGE model. We make comprehen-
sive comparisons between AcrE and many state-of-the-art baselines on sis diverse benchmark datasets.
Extensive experimental results show that AcrE is very effective and it achieves better results than the
compared baselines under most evaluation metrics on six benchmark datasets. The main contributions
of our method are summarized as follows. First, to our best knowledge, this is the first work that uses
different kinds of convolutions for the KGE task. Second, we propose two simple but effective learning
structures to integrate different kinds of convolutions together. Third, the proposed model has much
better parameter efficiency than the compared baselines.
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