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Abstract

Functional Magnetic Resonance Imaging (fMRI) provides a means to investigate human con-
ceptual representation in cognitive and neuroscience studies, where researchers predict the fMRI
activations with elicited stimuli inputs. Previous work mainly uses a single source of features,
particularly linguistic features, to predict fMRI activations. However, relatively little work has
been done on investigating rich-source features for conceptual representation. In this paper, we
systematically compare the linguistic, visual as well as auditory input features in conceptual rep-
resentation, and further introduce associative conceptual features, which are obtained from Small
World of Words game, to predict fMRI activations. Our experimental results show that those
rich-source features can enhance performance in predicting the fMRI activations. Our analysis
indicates that information from rich sources is present in the conceptual representation of human
brains. In particular, the visual feature weights the most on conceptual representation, which is
consistent with the recent cognitive science study.

1 Introduction

How a simple concept is represented and organized by human brain has been of long research interest in
cognitive science and natural language processing (NLP) (Ishai et al., 1999; Martin, 2007; Fernandino
et al., 2016). The rise of brain imaging methods such as fMRI technology has now made it feasible to
investigate conceptual representation within human brain. In particular, fMRI is a technique that allows
for the visualization of neuron activity in brain regions, which has become an essential tool for analyzing
the neural correlates of brain activity in recent decades (Mitchell et al., 2004; Mitchell et al., 2008;
Pereira et al., 2009; Pereira et al., 2011; Just et al., 2010).

Neuroscientists have shown that distinct patterns of neural activation are associated with both encod-
ing and decoding the concepts of different semantic categories in brains. Mitchell et al. (2008) first
introduced the task of predicting fMRI activation and proposed a featured-based model which takes a
semantic representation of a single noun to predict the fMRI activation elicited by that noun. Subse-
quent studies (Pereira et al., 2018) introduced distributed based methods to build correlations between
distributed semantic representations and patterns of neural activation. However, previous work mostly
focuses on a single source of input features, e.g. count-based word vectors (Devereux et al., 2010; Mur-
phy et al., 2012; Pereira et al., 2013; Pereira et al., 2018) to explore the in brain encoding process, which
builds correlation between neural signals and distributed representation, and thus can be useful for better
understanding both the brain and the word representation. But there has been little work systematically
investigating the effect of different modalities on predicting fMRI activations.

We address this limitation by empirically investigating two forms of rich source features: multimodal
features and associative conceptual feature. First, we systematically compare input features that come
from linguistic, visual and auditory sources into fMRI activation encoding. To investigate the influence
of each source of information in the brain conceptual representation, we build and evaluate a multimodal
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Reference Stimuli Presentation mode Subj.
Mitchell et al. (2008) 60 concrete nouns Word, Image 9
Pereira et al. (2018) 180 words Word cloud, Sentence, Image 16

Table 1: fMRI datasets for language-brain encoding.

Categories Words
animal bear, cat, dog, horse, cow
vegetable lettuce, carrot, corn, tomato, celery
body part eye, arm, foot, leg, hand
man-made telephone, key, bell, watch, refrigerator
building igloo, barn, house, apartment, church
kitchen spoon, bottle, cup, knife, glass
vehicle truck, car, train, bicycle, airplane
clothing dress, skirt, coat, pants, shirt
furniture chair, dresser, desk, bed, table
build part door, chimney, closet, arch, window
insect fly, bee, butterfly, ant, beetle
tool hammer, chisel, screwdriver, saw, pliers

Table 2: 60 nouns, organized by categories (Mitchell et al., 2008).

conceptual representation model with different modal input features and their combinations. Second, we
investigate associative thinking of related concepts. We assume that associative thinking for concepts has
individual difference, and it is insufficient to reflect such differences via distributed semantics represen-
tation. To verify this assumption, we propose an associative conceptual embedding that predicts brain
activity by using associative conceptual words other than the concept presented to the subjects when
collecting the brain activity data.

Experiments of multi-sense representation show that not only linguistic features, but also visual and
auditory features, can be used to predict fMRI activations. It demonstrates that multimodal information
is present in the conceptual representation in human brains, and we also observe that the weights of vari-
ous modalities in brain conceptual representation are unequal. In particular, we find that performances of
visual feature grounded multimodal models are overall improved compared with unimodal models, while
the performances of auditory feature grounded models are not consistently improved. This observation
leads to a conclusion that the visual information weights the most in brain conceptual representations.
In addition, experiments of associative conceptual representation show that the associative conceptual
words, which though are distinct in distributed semantic vector space, are related in conceptual represen-
tation in human brains.

2 Related Work

Previous studies on conceptual representation mainly focus on correlation between words and corre-
sponding fMRI activations, including feature based methods and distributed representation based meth-
ods. Seminal work of Mitchell et al. (2008) pioneered the use of corpus-derived word representations to
predict brain activation data associated with the meaning of nouns. This feature based method selected
25 verbs (i.e., ‘see’, ‘say’, ‘taste’.), and calculated the co-occurrence frequency of the noun with each of
25 verbs. In this regard, a noun word is encoded into 25 sensor-motor features. Subsequent work includ-
ing Jelodar et al. (2010) used WordNet (Miller, 1995) to compute the values of the features. Obviously,
such feature based methods are constrained by corpora, and only focus on linguistic unimodal.

Pereira et al. (2013) proposed a distributed semantics based method using features learnt form
Wikipeida to predict neural activations for unseen concepts. Since then, various studies have shown
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Figure 1: Compute multimodal embeddings.

that distributed semantic representations have correlations with brain concept representation (Devereux
et al., 2010; Murphy et al., 2012; Pereira et al., 2013; Pereira et al., 2018; Bulat et al., 2017). However,
though these methods outperform the feature based methods, they still ignore the fact that the informa-
tion in the real world comes as different modalities. In contrast to their work, we investigate the human
conceptual representation mechanism via evaluating the effects of multimodal features rather than only
unimodal linguistic feature.

More closely related to our work, Bulat et al. (2017) presented a systematic evaluation and com-
parison of unimodal and multimodal semantic models in their ability to predict patterns of conceptual
representation in the human brain. However, they only focused on the model level, contrasting unimodal
representations and multimodal representations that involve linguistic and visual signals, but not the ef-
fect of each modality. While little previous work studied the influence of each source of information in
the brain conceptual representation, our study is more extensive by evaluating multiple modalities data
and their combinations. To our knowledge, we are the first to report auditory data in exploring human
conceptual representations. More vitally, we explore their importance in concrete noun representations.
Different from all work above, we are also the first to introduce associative conceptual words as input
features to human conceptual representation.

3 Task: Predicting the fMRI Activation

The task is to predict the corresponding fMRI activations with elicited stimuli. The encoder operates by
predicting fMRI activation given feature vectors. Each dimension (voxel) of fMRI activation is predicted
by using a separate ridge regression estimator. More formally, given the matrix X and the matrix Z, we
learn regression coefficients b and b0 that minimize

‖Xb+ b0 − z‖2 + α‖b‖2 (1)

for each column of z of Z matrix. X is the semantic matrix, the dimension is the number of words
(training set) by the dimension of semantic vector (300 for GloVe); and Z is the corresponding fMRI
activation matrix, the dimension is the number of fMRI activation by the imaging dimension (amount of
selected voxel, 500 for Mitchell et al. (2008) dataset and 5000 for Pereira et al. (2018) dataset).

We investigate three types of multi-sense inputs, namely, linguistic, visual and auditory sources. And
further we use associative conceptual input, namely, the associative conceptual words which is obtained
from Small World of Word game. In the next two sections, we will introduce how to obtain multi-sense
representations and associative conceptual representations.

4 Multi-Sense Representations

Following Bruni et al. (2014) and Kiela and Bottou (2014), we construct multimodal semantic represen-
tation vector, Vm, by concatenating the linguistic, visual and auditory representations as shown in Figure
1:

Vm = Vlinguistic‖Vvisual‖Vauditory, (2)

where ‖ is the concatenation operator.
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4.1 Linguistic Representations

The linguistic representation can be a dense vector that represents a word associated with a concept.
Distributed word representations have been applied to statistical language modeling with considerable
success (Bengio et al., 2003). This idea has enabled a substantial amount of progress in a wide range
of NLP task, and was also shown useful for brain conceptual representation (Devereux et al., 2010;
Murphy et al., 2012). The approach is based on the distributional hypothesis (Firth, 1957; Harris, 1954)
which assumes that words with similar contexts tend to have similar semantic meaning. The intuition
underlying the model is ratios of word-word co-occurrence probabilities have the potential for encoding
some form of meaning. GloVe (Pennington et al., 2014) provides multiple versions of pre-trained word
embeddings. In this paper, we use a 300-dimensional version of GloVe, which trained on a corpus
consisting of Wikipedia 2014 and Gigaword 5.

4.2 Visual Representations

Visual representation is used to represent an image associated with a concept in a dense vector. Our
approach to constructing the visual representations component is to utilize a collection of images associ-
ated with words representing a particular concept. For example, given a stimulus ‘carrot’, the associated
images are a collection of ‘carrot’ images that we retrieve from the dataset. In our implementation, we
use Deep Residual Network (ResNet) (He et al., 2016) to produce the image feature map.

ResNet is widely used in image recognition as it is a deep neural network with many convolution
layers stack together and can extract rich image features. The network is pre-trained on ImageNet (Deng
et al., 2009), one of the largest image databases. Then, we chop the last layer of the network and use the
remaining part as the feature extractor to compute the 2048-dimensional feature vector for each image.
To represent a particular concept, we extract the image features of all images belong to that concept.
Then, we directly compute the average of all image features as the visual representation.

4.3 Auditory Representations

Auditory representation is a dense vector used to present the acoustic properties of a concept. For ex-
ample, given the concept ‘key’, correlated sounds are keys hitting or rubbing together; and for ‘hand’,
correlated sounds can be applause. For the auditory representations, we retrieve 3 to 100 audios from
Freesound (Font et al., 2013) for each concept. To generate the auditory representation for each noun, we
first obtain Mel-scale Frequency Cepstral Coefficients (MFCCs) (O’Shaughnessy, 1987) features of each
audio and then quantize the features into a bag of audio words (BoAW) (Foote, 1997) representations.
MFCCs are commonly used as features in speech recognition, information retrieval, and music analysis.
After obtaining a BoAW set, we take the mean of each BoAW as the auditory representation. In this
paper, we use MMFeat (Kiela, 2016) to generate 300-dimensional auditory representations. The code is
available at https://github.com/douwekiela/mmfeat.

5 Associative Conceptual Representation

Associative conceptual representation is a dense vector obtained from the associative conceptual words
that are produced by humans in a game scene, and it is used to presented human’s associative thinking
related a concept. To investigate that whether associative thinking can be reflected in the fMRI activation,
we fuse the word vectors linearly and use it as our associative conceptual representations. The linear
fusion is represented as:

Vm = Vstimuli‖Vassociate, (3)

where ‖ is the concatenation operator.

6 Experiments

We apply three sources of features to predict fMRI activations with unimodal model and multimodal
models, and compare their performances. Further, we compare the performances of models with irrele-
vant words and associative conceptual words as inputs respectively.
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Linguistic Visual Auditory L+V1 L+A2 V+A3 L+V+A4

W/I B/W W/I B/W W/I B/W W/I B/W W/I B/W W/I B/W W/I B/W
P1 0.49 0.91 0.61 0.95 0.68 0.76 0.58 0.95 0.62 0.87 0.63 0.92 0.64 0.92
P2 0.47 0.75 0.60 0.81 0.55 0.67 0.52 0.80 0.54 0.70 0.54 0.77 0.52 0.78
P3 0.68 0.85 0.57 0.83 0.57 0.66 0.61 0.85 0.59 0.78 0.62 0.83 0.63 0.84
P4 0.55 0.89 0.57 0.92 0.51 0.71 0.57 0.92 0.51 0.85 0.58 0.91 0.55 0.92
P5 0.58 0.79 0.58 0.80 0.53 0.64 0.61 0.81 0.48 0.75 0.54 0.79 0.58 0.80
P6 0.55 0.77 0.59 0.80 0.53 0.65 0.55 0.80 0.57 0.77 0.62 0.79 0.60 0.78
P7 0.57 0.75 0.54 0.81 0.68 0.73 0.53 0.81 0.68 0.80 0.64 0.83 0.61 0.83
P8 0.61 0.76 0.52 0.67 0.54 0.63 0.56 0.69 0.62 0.70 0.55 0.68 0.61 0.70
P9 0.57 0.83 0.57 0.83 0.59 0.69 0.60 0.84 0.53 0.79 0.57 0.84 0.57 0.85
Mean 0.56 0.81 0.57 0.82 0.58 0.68 0.57 0.83 0.57 0.78 0.59 0.82 0.59 0.82
1 LINGUISTIC+VISUAL 2 LINGUISTIC+AUDITORY 3 VISUAL+AUDITORY 4 LINGUISTIC+VISUAL+AUDITORY
W/I WITHIN CATEGORY B/W BETWEEN CATEGORY

Table 3: Accuracies of within and between-category examples for all participants (Pi). Within-category
refers to stimuli coming from the same category (e.g. bear and cat come from the category of the animal)
whereas between-category refers to stimuli coming from different categories.

(a) Mean ± SE accuracy of
participants

(b) Mean ± SE accuracy of
within-category

(c) Mean ± SE accuracy of
between-category

Figure 2: Mean ± SE accuracies of participants for all modals of data, using results in Table 3.

6.1 Datasets

6.1.1 fMRI Datasets

In this paper, we use the fMRI activation datasets of Mitchell et al. (2008) and Pereira et al. (2018). The
summary of the datasets is shown in Table 1.

Mitchell et al. (2008)’s fMRI activation dataset was collected from nine right-handed subjects (5
females and 4 males between 18 and 32 years old). Each time, every subject was presented with noun
labels and line drawings of 60 concrete objects from 12 semantic categories with 5 exemplars per cat-
egory and the corresponding fMRI activation was recorded. The 60 concrete nouns and categories are
shown in Table 2. Each exemplar was presented six times with randomly permutation and each exemplar
was presented 3 seconds followed by a 7 seconds rest period. During the exemplar presenting, subjects
were required to think about the proprieties of it freely. For example, for the concept ‘dog’, the propri-
eties might be ‘pet’, ‘fluffy’, and ‘labrador retrievers’. It is not required to obtain consistency properties
across subjects. Given an exemplar, the fMRI activation of each subject was recorded during the present-
ing each of the six times. In this paper, we create one representative fMRI activation for each exemplar
by averaging six scans.

Pereira et al. (2018)’s fMRI activation dataset was collected from 16 subjects. Similarly to Mitchell
et al. (2008), subjects were asked to think about the properties when they were presented with stimulus
in form of words, pictures and sentences. But the exemplar words of Pereira et al. (2018) cover a broader
semantic vector space and are more distinct in vector space. First, they applied 300-dimensional GloVe
(Pennington et al., 2014) to obtain semantic vectors for all words in a vocabulary size of approximately
30,000 words (Brysbaert et al., 2013). They then utilized spectral clustering (Luxburg, 2007) to group
the vectors into 180 regions, and hand-selected 180 representative words for each regions.
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Categories Linguistic Visual Auditory L-V1 L-A2 V-A3 L-V-A4

man-made 27 24 27 26 25 26 27
building 38 31 38 31 33 32 30
build part 56 64 40 62 48 62 61
tool 44 56 40 62 44 46 50
furniture 36 47 50 47 40 44 45
animal 22 34 36 35 32 36 33
kitchen 16 17 19 12 13 12 11
vehicle 50 40 37 42 44 37 34
insect 38 34 38 34 42 33 36
vegetable 32 33 49 30 48 42 37
body part 58 30 48 33 50 28 32
clothing 44 52 39 51 44 45 47
1 LINGUISTIC+VISUAL 2 LINGUISTIC+AUDITORY 3 VISUAL+AUDITORY 4 LINGUISTIC+VISUAL+AUDITORY

MOST ERROR LEAST ERROR

Table 4: Selected within-category error statistics.

6.1.2 Multi-Sense Dataset

We obtain linguistic features from the GloVe (Pennington et al., 2014), which is trained on Wikipedia
2014 and Gigaword 5. For visual features, We retrieve 300 to 1500 images for each concept noun from
ImageNet, except human body word: ‘hand’, ‘foot’, ‘arm’, ‘leg’ and ‘eye’, which are not included in
the ImageNet. Thus, we retrieve these images from Google Image (Afifi, 2017). The retrieved images
from ImageNet and Google are combined together as the image dataset for visual feature extraction.
For auditory features, we use the Freesound dataset (Font et al., 2013), which is a huge collaborative
database of audio snippets, samples, recordings, and bleeps.

6.1.3 Associative Word Dataset

In this paper, we use Small World of Words (SWW) (De Deyne et al., 2018) as the word association data
source. SWW is a mental dictionary or lexicon in the major languages of the world. It collects associative
words by inviting participants globally to play an online game of word associations1. The game is
simple and easy to play: given a list of 18 cue words, participants are asked to give first three words
that come to mind. It counts and demonstrates the human level word associations. For example, top ten
forward associations of the cue word ‘machine’ are ‘robot’, ‘computer’, ‘engine’, ‘metal’, ‘gun’, ‘work’,
‘car’, ‘washing’, ‘factory’, ‘sewing’; and top ten backward associations of it are ‘slot’, ‘fax’, ‘pinball’,
‘mechanism’, ‘sewing’, ‘washing’, ‘xerox’, ‘contraption’, ‘cog’, ‘copier’. Here, forward association
refers to the words will come to mind when participants see the cue word ‘machine’; and backward
association refers to the word ‘machine’ will come to mind when participants view other cue words. And
their rankings indicate the average order of the word that participants think of in the SWW game.

In our paper, we use 60 concrete words from Mitchell et al. (2008) and choose 175 words from Pereira
et al. (2018) (we discard 5 words: ‘argumentatively’, ‘deliberately’, ‘emotionally’, ‘tried’, ‘willingly’,
which do not present in the associative words data source) as the cue words.

6.2 Training

As mentioned in Section Task: Predicting the fMRI Activation, the task is to predict the fMRI acti-
vations. Following Mitchell et al. (2008), we train the encoder consisting of several estimators (500 for
Mitchell et al. (2008) and 5000 for Pereira et al. (2018)). Each estimator predicts a fMRI activation value
of a specific position in the brain. The estimator is trained by ridge regression where the loss function is
the linear least squares function and is regularized by the L2-norm (Eq. 1). The regularization strength
α is chosen by cross-validation.

1https://smallworldofwords.org/en
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6.3 Evaluation

We evaluate each encoder’s performance by following the strategy of Mitchell et al. (2008) and Pereira et
al. (2018). For each possible pair of fMRI activation, we compute the cosine similarity between predicted
and actual one. If the predicted fMRI activation is more similar to its actual one than the alternative, we
deem the classification correct. For the data of Mitchell et al. (2008), each encoder is trained on 58 words
and tested on the 2 left out words. The training and testing procedure iterates 1770 times. For the data
of Pereira et al. (2018), each encoder is trained within a cross-validation procedure. In each fold, the
parameters are learned from 165 word vectors, and predicted fMRI activation from the 10 left out words.
The overall classification accuracy is the fraction of correct pairs. The match score S is calculated as:

S(p1 = i1, p2 = i2) = cosine(p1, i1) + cosine(p2, i2). (4)

6.4 Results and Discussion

6.4.1 Uni- and Multi- Modal in fMRI Prediction
The cross-validated prediction accuracies are presented in Table 3. The expected accuracy of matching
the left-out words and images is 0.5 if the model was randomly matching. All learned models predict
unseen words significantly above the chance level.

In terms of unimodal prediction, VISUAL based model overall outperforms others, which verifies the
picture superiority effect — human brain is extremely sensitive to the symbolic modality of presenta-
tion. VISUAL and LINGUISTIC significantly outperform AUDITORY based model, with the mean between
category accuracy drops from approximately 0.8 to 0.68.

In terms of multimodal prediction, adding visual features improves performance as LINGUIS-
TIC+VISUAL outperforms LINGUISTIC, VISUAL+AUDITORY outperforms AUDITORY and LINGUIS-
TIC+VISUAL+AUDITORY outperforms LINGUISTIC+AUDITORY. These results provide a new proof for
the interactive model of brain in behaviour measures which holds that structural and semantic informa-
tion interact immediately during comprehension at any point in time, and weaken the serial model which
proposes that semantic aspects only come into play at later stage and do not allow overlap with previ-
ous stages. We also notice that AUDITORY weakens model’s prediction ability except for P6 and P7.
Together with the finding in unimodal experiments that auditory based model performs less significantly
than the linguistic and visual based model, the result suggests that visual properties contribute the most
in conceptual representation in conceptual representations of nouns in the human brain, while acoustic
properties contribute less. The results from P6 and P7 also suggest there are individual differences in
the effects of different modality data on conceptual representations in the brain.

Kiela and Clark (2015) indicate that multimodal representations enriched by auditory information per-
form well on relatedness and similarity on words that have auditory associations such as instruments. We
explore if the fMRI activation can be predicted by sound features, which is generated by using the objects
which do not have obvious acoustic properties such as hand, foot, etc. Although the prediction accuracy
is lower when using auditory features than using linguistic and visual features, it is significantly above
the chance level. The results suggest that acoustic properties play a less important role but are ubiquitous
in cognitive processes. We may need to consider the sound factors in the conceptual representation in
general.

Figure 2 shows the individual mean SE±accuracy and mean SE±accuracy of within-category and
between category. From Figure 2, we can see that individual performances vary in prediction and also,
the result of between category prediction is better than within category prediction. We assume that this
is because the features are much different between a category but more similar within a category, which
makes predictions within category more demanding. For example, for linguistic feature, ‘dog’ has a
very similar context with ‘cat’, such as play, eat, but a very different context from ‘machine’, of which
the context might be artificial, fix. Previous research has suggested that brain may rely on enhanced
perceptual processing in order to compensate for inefficient higher level semantic processing, thus the
phenomena of high within-category error rate and low between category error rate reflects the sensory
compensation mechanism of brain in language processing.
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Stimuli Forward Association Word
1 2 3 4 5

s-random 0.80 0.73 0.73 0.74 0.74 0.74
s-linear 0.80 0.79 0.78 0.79 0.80

(a) Mean accuracy on Mitchell et al. (2008) dataset.

Stimuli Forward Association Word
1 2 3 4 5

s-random 0.73 0.67 0.68 0.68 0.67 0.68
s-linear 0.71 0.71 0.71 0.71 0.71

(b) Mean accuracy on Pereira et al. (2018) dataset.

Table 5: Mean FORWARD fMRI activation prediction accuracy on Mitchell et al. (2008) and Pereira et
al. (2018) dataset.

Stimuli Backward Association Word
1 2 3 4 5

s-random 0.80 0.74 0.74 0.74 0.74 0.74
s-linear 0.77 0.78 0.80 0.79 0.78

(a) Mean accuracy on Mitchell et al. (2008) dataset.

Stimuli Backward Association Word
1 2 3 4 5

s-random 0.73 0.68 0.68 0.69 0.69 0.68
s-linear 0.71 0.71 0.71 0.71 0.71

(b) Mean accuracy on Pereira et al. (2018) dataset.

Table 6: Mean BACKWARD fMRI activation prediction accuracy on Mitchell et al. (2008) and Pereira
et al. (2018) dataset.

Table 4 shows the within category error, and we observe that Auditory features reduce the error of
some categories, for example, for body part, VISUAL+AUDITORY outperforms simply VISUAL, and for
building part, LINGUISTIC+AUDITORY outperforms simply LINGUISTIC. It reflects that the brain does
trigger auditory senses during the rapid visual analysis and the activation of semantic knowledge, and
also supports behavioural neuroscientists on that semantic processes can strongly affect generation of
auditory imagery.

6.4.2 Associated Concept in fMRI Prediction
We choose the top 5 forward associate words and 5 backward words in our experiments. The concept
of ’associate’ and associative word dataset are introduced in section 6.1.3. For example, for the word
‘invention’, the associative words that people most likely to think of are ‘new’, ‘light bulb’, ‘idea’,
‘innovation’, ‘creation’, ‘patent’, ‘Edison’, ‘Einstein’, ‘science’, ‘scientist’, ‘clever’, ‘smart’, ‘creative’,
‘create’, ‘Genius’. We use the word ‘invention’, its associative words and their combinations to predict
the fMRI activation separately.

Table 5a and Table 5b are the prediction accuracy that we use stimuli and forward associative words as
the input on both datasets. Tables 6a and 6b are the prediction accuracy that we use stimuli and backward
associative words as input. s-random means using linear combination of stimuli and irrelevant word,
which is randomly chosen. s-linear means using linear combination of stimuli and one correspondent
associate word. It is important to note that, the irrelevant word is randomly chosen, and it is not associa-
tive to the stimuli. For example, for the stimuli ‘invention’, we may choose the word ‘washing’, which
is not in the associative word pool of ‘invention’, as the irrelevant word. Figure 3 is the comparison of
using various word association, where the original data is extracted from Table 5a, Table 5b, Table 6a
and Table 6b.

Compared with (a), (b) in Figure 3, the prediction accuracy in (c), (d) is the average of 175 words.
Thus, the lines in (c), (d) are more smooth. However, though the results in (a), (b) vary, they can
still show the overall trend. Further, compared with using forward associative words (results from (a),
(c)), using backward associative words has an equivalent performance, which means both forward and
backward associative thinkings can reflect the associative conceptual representation.

We observe that all models with associative conceptual features outperform above the chance level on
both datasets. Compared with using only stimuli or associate word (bottom blue line in Figure 3), we
also find that the model can better predict fMRI activation by using their linear combination (top yellow
line in Figure 3). Particularly, by using stimuli and their associative words, the model has the best ability
to predict fMRI activations (top yellow line in Figure 3). We also observe that after added the irrelevant
word, the model’s performance decreases. These results show that even though both associative words
and irrelevant words are not directly associated with the stimuli words and are distinct from the stimuli
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(a) 60 concrete noun forward (b) 60 concrete noun backward

(c) 175 words forward (d) 175 words backward

Figure 3: Comparison of various word association features. The top yellow line is corresponding to the
results of s-linear, the below blue line is the result of s-random. For the point (x, y) in bottom blue line
or top yellow line, x means using only the x − th ranked associative word, or using linear combination
of stimuli word and x − th ranked associative word to predict the result. The rank tag of an associative
word here means the average order of the word that participants think of in the SWW game.

words in distributed semantic representation in vector space, the associative words share some significant
commonality with stimuli words in human conceptual representations while irrelevant words do not. It
demonstrates that associative words serve as a complement to the stimuli words and accord with the brain
activity, but the irrelevant words are noise to the conceptual representation.

In addition, there is a clear trend that the prediction accuracy decreases as the associative word rank
decreases (bottom blue line in Figure 3). This result suggests that, given a stimuli, the higher ranked
associate word can better reflect associative thinking related to a concept, and the subsequent associa-
tive words are less related. In other words, the rank of associative words can reflect the its weight of
associative thinking in conceptual representations.

7 Conclusion and Future Work

We explored conceptual representation in human brains by evaluating the effect of multimodal data
in predicting fMRI activation, observing a clear advantage in predicting brain activation for visually
grounded models. This finding consistent with the neurological evidence that the word comprehension
first involves activation of shallow language-based conceptual representation , which is then comple-
mented by deeper simulation of visual properties of the concept (Louwerse and Hutchinson, 2012).

From the associative thinking perspective, we find that though the associative words might be far away
in the distributed semantic vector space, we could still use them to better predict fMRI activation. We
carried out more thorough and extensive work compare to the work of Bulat et al. (2017). The findings
also support the hypotheses that the linguistic, conceptual and perceptual systems interplay in the hu-
man brain (Barsalou, 2008). The fMRI datasets used in our study are generated by presenting subjects
with written words together with pictures. In other words, the fMRI representations are the participants’
reactions to linguistic and visual input - but not acoustic. To further study human brain response repre-
sentations to the acoustic stimuli, we plan to collect fMRI when presenting acoustic concepts.
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D. O’Shaughnessy. 1987. Speech communication: human and machine. Addison-Wesley series in electrical
engineering: digital signal processing. Universities Press (India) Pvt. Limited.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word repre-
sentation. In EMNLP (EMNLP), pages 1532–1543.

Francisco Pereira, Tom M. Mitchell, and Matthew Botvinick. 2009. Machine learning classifiers and fmri: A
tutorial overview. NeuroImage, 45 1 Suppl:S199–209.

Francisco Pereira, Greg Detre, and Matthew Botvinick. 2011. Generating text from functional brain images.
Frontiers in Human Neuroscience, 5:72.

Francisco Pereira, Matthew Botvinick, and Greg Detre. 2013. Using wikipedia to learn semantic feature represen-
tations of concrete concepts in neuroimaging experiments. Artif. Intell., 194:240–252, January.

Francisco Pereira, Bin Lou, Brianna Pritchett, Samuel Ritter, Samuel J Gershman, Nancy Kanwisher, Matthew
Botvinick, and Evelina Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activa-
tion. Nature communications, 9(1):963.


