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Abstract

Speech disfluencies have been hypothesized to occur before words that are less predictable and
therefore more cognitively demanding. In this paper, we revisit this hypothesis by using Ope-
nAI’s GPT-2 to calculate predictability of words as language model perplexity. Using the Switch-
board corpus, we find that 51% of disfluencies occur at the highest, second highest, or within one
token of the highest perplexity, and this distribution is not random. We also show that disfluen-
cies precede words with significantly higher perplexity than fluent contexts. Based on our results,
we offer new evidence that disfluencies are more likely to occur before less predictable words.

1 Introduction

Speech disfluencies occur naturally in spontaneous speech. Disfluencies such as filled pauses (‘uh’,
‘um’), repetitions (‘about about eight months ago’), and repairs (‘about eight days I mean months ago’)
are estimated to occur in 6% of words in spoken English (Kasl and Mahl, 1965; Tree, 1995). In 1954,
Lounsbury (1954) hypothesized a relationship between disfluencies and the likelihood of the next word.
He proposed that speakers have habitual ways of speaking, and the more unexpected a word given the
context, the greater the likelihood of a disfluency. Lounsbury did not test this hypothesis, saying that
calculating the probability of every word in every context was, at the time, “an impossible task” (Louns-
bury, 1954). Since then, several studies have found that disfluencies occur before less predictable words
(Tannenbaum et al., 1965; Beattie and Butterworth, 1979; Siu and Ostendorf, 1996; Arnold et al., 2007).

In this short paper, we revisit Lounsbury (1954)’s hypothesis with newer NLP technology. Using
OpenAI’s GPT-2 (Radford et al., 2019), a neural language model, we calculate the predictability of
words in disfluent sentences using language model perplexity. On the Switchboard corpus (Godfrey et
al., 1992), a large-scale spoken language dataset, we find that 22% of disfluencies precede the word
with the highest perplexity (i.e. the lowest probability), 51% of disfluencies occur either at the highest,
second highest, or within one token of the highest perplexity, and this distribution is not random. We
also find that words preceded by a disfluency have significantly higher perplexity than words in fluent
contexts. Based on these findings, we offer new evidence of a relationship between disfluencies and less
predictable words and conclude with suggested applications in NLP.

2 Related Works

Cognitive load has often been studied as a factor that affects disfluencies (Corley and Stewart, 2008).
Disfluencies are found more often before longer sentences (Shriberg, 1994), in new or unfamiliar con-
texts (Barr, 2001; Merlo and Mansur, 2004), and when speakers are performing more challenging tasks
(Oviatt, 1995). Lounsbury (1954) suggested that the likelihood of a word also affects disfluencies. Early
studies evaluating disfluencies and the probability of a word used the Shannon guessing technique (Shan-
non, 1951) or the Cloze procedure (Taylor, 1953). In these techniques, a spoken text was transcribed and
given to judges with missing words. In the Shannon guessing technique, judges guessed each word given
the preceding context. In the Cloze procedure, every nth word was deleted, so judges had both left and

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



93

right context. The probability of a word was based on how many judges could correctly guess it. With
the Shannon guessing technique, Goldman-Eisler (1958) found that words preceding a silent pause had
lower probability than words without a pause. Using the Cloze procedure, studies found that disfluen-
cies occurred before words with lower probability than fluent contexts (Tannenbaum et al., 1965; Cook,
1969). Beattie and Butterworth (1979) compared word frequency and contextual probability and found
that disfluencies were more likely to occur before words with lower contextual probability, even when
word frequency was held constant.

With the release of larger-scale datasets, contextual probability no longer needed to be hand-annotated
but could be calculated in a large enough corpus. The probability of a word given its previous word was
estimated by counting the number of times both words occurred together divided by the number of times
the first word occurred. This could be extended to the first n words in an n-gram language model. Using
large corpora and n-gram language models, studies again found that disfluencies occur before words with
significantly lower probability (Shriberg and Stolcke, 1996), probability varies for different disfluency
types and positions (Siu and Ostendorf, 1996), and disfluencies tend to be longer before lower probability
words (Harmon and Kapatsinski, 2015).

In related psychology works, eye-tracking studies have shown that listeners are primed to anticipate
low frequency words when hearing a disfluency (Arnold et al., 2007; Watanabe et al., 2008) and speakers
are more likely to hesitate before low frequency words (Hartsuiker and Notebaert, 2009; De Jong, 2016).
Many psychology studies, however, focus more on word frequency rather than contextual probability.

3 Method

To calculate the probability of a word, we use OpenAI’s GPT-2 (Radford et al., 2019), a large-scale
neural language model that has achieved state-of-the-art results on various NLP tasks. GPT-2 uses a
transformer-based architecture with 1.5 billion parameters and is trained on 8M documents. To our
knowledge, we are the first to evaluate the relationship between disfluencies and contextual probability
with a language model of this scale. To calculate probability, we use the perplexity returned by GPT-
2. Perplexity is the inverse probability of a sequence normalized by the number of words. Due to the
inverse, the lower the probability of a sequence, the higher the perplexity. The perplexity of a sequence
of words W is calculated with the joint probabilities P of each word w using the formula:

Perplexity(W ) = P (w1, w2..wN )−1/N

We use the implementation of GPT-2 available from HuggingFace (Wolf et al., 2019). Since GPT-2 is
trained on written text and we experiment with spoken language, we fine-tune our GPT-2 model with
the objective of predicting the next word given the previous words on 150K examples from Switchboard
(Godfrey et al., 1992) for 2 epochs. This prevents our language model from predicting high perplexities
for phrases that are common in spoken language but not in written language (e.g. “bye bye”).

4 Dataset

For our experiemnts, we use the Switchboard corpus (Godfrey et al., 1992), which was built by asking
volunteers to speak to each other on the telephone about a topic assigned by a computer operator. We
use the version released by Zayats et al. (2019)1. We modify this dataset by including ‘uh’ and ‘um’ as
disfluencies, which are included in the transcriptions but not labeled as disfluencies. From this dataset,
we use 150K examples to fine-tune our GPT-2 model. We hold out 10,000 disfluent sentences from the
model for our experiments. We filter this held-out disfluent set by: 1) Removing sentences that are fewer
than 5 words or longer than 15 words long (excluding disfluencies), as these are often incomplete (e.g.
“oh uh”) or run-on sentences, 2) Removing sentences where the disfluency is the first or last word of the
sentence since our experiments require left and right context to measure perplexity, and 3) Removing
sentences with non-consecutive disfluencies. This is done for simplicity and because a majority (70%)
of sentences contain consecutive disfluencies. Statistics about our disfluent set are shown in Table 1.
1https://github.com/vickyzayats/switchboard_corrected_reannotated



94

Count 10,000
Word Count (excl disfl) 9.5 (±3.0)
Word Count (incl disfl) 12.1 (±3.6)
Disfluency Length 2.6 (±1.8)
Disfluency Position 3.3 (±2.8)

Table 1: Statistics on the set of 10,000 dis-
fluent utterances from Switchboard used
in our experiments. Values are reported
as means (± standard deviation)

Sequence Perplexity
i’d be 80.63
i’d be very 63.12
i’d be very very 68.47
i’d be very very careful 70.90
———–DISFL———–
i’d be very very careful checking 167.04
i’d be very very careful checking them 120.38
i’d be very very careful checking them out 76.44

Table 2: An example of perplexity calculated for the con-
secutive substrings of: “i’d be very very careful {and uh you
know} checking them out”.

5 Experiments

For each utterance in our disfluent set, we create a fluent version by removing the disfluencies. Using
the fluent versions, we calculate the perplexity of each substring starting with the first two tokens of the
sentence and adding one token at a time until the sentence is complete. An example is shown in Table 2.
We expect the word following the disfluency to be the most unpredictable, so in our example, we would
expect highest perplexity at the word “checking”.

First, we evaluate how often disfluencies occur at the most unpredictable word. Given the list of per-
plexities for each sentence, we measure how often the maximum perplexity occurs at the word following
the disfluency. We find that only 22% of disfluencies occur before the highest perplexity. We next cal-
culate two more lenient measures of highest perplexity. We measure both how many disfluencies occur
before the second highest perplexity and how many occur within one token of the highest perplexity. We
find that 15% of disfluencies occur before the second highest perplexity, and 23% occur within one token
of the highest perplexity. Taken together, 51% of disfluencies occur either before the highest perplexity,
the second highest perplexity, or within one token of the highest perplexity.

The histogram in Figure 1 shows the distribution of disfluencies by rank in terms of perplexity (i.e.
disfluencies at 1 occur at the highest perplexity, 2 at the second highest perplexity, etc.). This figure
shows that disfluencies occur most often at the highest perplexity and trend downward for lower ranks.
The histogram in Figure 2 shows the disfluency distribution by distance from the highest perplexity
(i.e. disfluencies at 0 are at the highest perplexity, disfluencies at 1 are 1 token away from the highest
perplexity, etc.). Here we see that disfluencies occur most often between 0 to 1 tokens from the highest
perplexity and this also trends downward as distance increases. Finally, the graph in Figure 3 plots by
number of words how often a disfluency occurs at the maximum perplexity compared to how often we
would expect it given random chance. The error bars are calculated as a binomial proportion confidence
interval based on the number of examples at that word length. For example, for all 5-word sentences,
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Figure 1: The distribution of
disfluencies by rank in terms of
highest perplexity
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Figure 2: The distribution of
disfluencies by distance from
the highest perplexity
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Figure 3: The occurrence of
disfluencies at max perplexity
compared to random chance
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Figure 4: A histogram of the
distribution of perplexities

10 2 10 1 100

Perplexity (log scale)

10 1

100

101

De
ns

ity
 (l

og
 sc

al
e)

No Disfluency
Disfluency

Figure 5: A log-log plot of the
distribution of perplexities

No Disfl Disfl

Mean 0.11 0.17
Median 0.07 0.10
Q1 0.04 0.05
Q3 0.13 0.21
IQR 0.09 0.16

Table 3: Statistics on the distri-
bution of perplexities

there are 4 possible words the disfluency could occur before (no disfluencies occur before the first word).
Given random chance, we would expect a disfluency at the highest perplexity 25% of the time, but we
see it closer to 30%, showing that our results are likely not a result of random chance.

Is there a bias that causes this pattern? 41% of utterances in our dataset have a disfluency at the second
word, and disfluencies are known to occur more often near the beginning of the sentence (Shriberg,
1994). 46% of our highest perplexities are also at the second word. To test if we have just identified
a sentence-initial bias, we run our calculations excluding examples where the disfluency or maximum
perplexity is at the second word. In this filtered dataset, we find that 18% of disfluencies occur before
the maximum perplexity, and 41% occur before the highest, second highest, or within one token of the
highest perplexity. While these numbers are lower than on the full dataset, they still show the same
pattern. This suggests that our results are not just due to a bias, and may suggest that this pattern in
perplexity is related to higher planning demands at the beginning of a sentence.

Finally, we measure if disfluencies occur at higher points of statistical uncertainty compared to fluent
contexts. To calculate this, we normalize the perplexities of each sentence by dividing by the sum of
all perplexities in the sentence. We compare the distribution of perplexities with no disfluency against
perplexities with a disfluency. The results are shown in Figures 4 and 5 and Table 3. The histogram
in Figure 4 shows that the distribution of disfluent perplexities is flatter at the head and heavier in the
tail, which is reflected by a higher median and third quartile in Table 3. The log-log plot in Figure
5 also shows more disfluencies at higher perplexities. After a perplexity of 0.2, disfluent and fluent
perplexities diverge into two different lines, showing they follow two different distributions. The linear
relationships only hold for one order of magnitude, and so they don’t fully result in a power law. To
calculate significance, we run both an independent t-test and a two-sided Mann-Whitney rank test, to
account for the non-normal distribution. Both of these tests show significance with p-values <0.01.
Based on these results, we find that disfluencies occur before words with significantly higher perplexity
than fluent contexts.

6 Conclusion

In this paper, we provide new evidence using a large-scale neural language model that disfluencies occur
more often before less predictable words. We consider this relationship between perplexity and disfluen-
cies useful for applications in NLP and see the following areas as promising future directions:

• Most NLP tasks optimize to return predictions with low perplexity. However, given that disfluencies
occur with higher perplexity, does preferring higher perplexity words following a disfluency give us
better performance in speech or entity recognition tasks?

• Spoken language understanding tasks often need to detect disfluencies (e.g. ‘a’ vs. ‘uh’; is a
repetition part of the entity). Can we use perplexity as a signal to determine if a token is a disfluency?

• Disfluencies are uncommon, so disfluency training data is often augmented with synthetic disfluen-
cies (Dong et al., 2019; Bach and Huang, 2019). Can we use perplexity to guide synthetic disfluency
generation, and would that be more natural or useful than disfluencies inserted at random?
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