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Abstract

In this work, we systematically investigate
how well current models of coherence can cap-
ture aspects of text implicated in discourse or-
ganisation. We devise two datasets of vari-
ous linguistic alterations that undermine coher-
ence and test model sensitivity to changes in
syntax and semantics. We furthermore probe
discourse embedding space and examine the
knowledge that is encoded in representations
of coherence. We hope this study shall pro-
vide further insight into how to frame the task
and improve models of coherence assessment
further. Finally, we make our datasets publicly
available as a resource for researchers to use to
test discourse coherence models.

1 Introduction

Coherence refers to the properties of a text that indi-
cate how meaningful (sub-)sentential constituents
are connected to convey document-level meaning.
Different theories have been proposed to describe
the properties that contribute to discourse coher-
ence and some have been integrated with computa-
tional models for empirical evaluation. A popular
approach is the entity-based model which hypoth-
esizes that coherence can be assessed in terms of
the distribution of and transitions between entities
in a text – by constructing an entity-grid (Egrid)
representation (Barzilay and Lapata, 2005, 2008),
building on Centering Theory (Grosz et al., 1995).
Subsequent work has adapted and further extended
Egrid representations (Filippova and Strube, 2007;
Burstein et al., 2010; Elsner and Charniak, 2011;
Guinaudeau and Strube, 2013). Other research
has focused on syntactic patterns that co-occur in
text (Louis and Nenkova, 2012) or semantic relat-
edness between sentences (Lapata and Barzilay,
2005; Soricut and Marcu, 2006; Somasundaran
et al., 2014) as key aspects of coherence modeling.
There have also been attempts to model coherence

by identifying rhetorical relations that connect tex-
tual units (Mann and Thompson, 1988; Lin et al.,
2011; Feng et al., 2014) or capturing topic shifts
via Hidden Markov Models (HMM, Barzilay and
Lee, 2004). Other work has combined approaches
to study whether they are complementary (Elsner
et al., 2007; Feng et al., 2014). More recently, neu-
ral networks have been used to model coherence.
Some models utilize structured representations of
text (e.g. Egrid representations, Tien Nguyen and
Joty, 2017; Joty et al., 2018) and others operate
on unstructured text, taking advantage of neural
models’ ability to learn useful representations for
the task (Li and Jurafsky, 2017; Logeswaran et al.,
2018; Farag and Yannakoudakis, 2019; Xu et al.,
2019; Moon et al., 2019).

Coherence has typically been assessed by a
model’s ability to rank a well-organized document
higher than its noisy counterparts created by cor-
rupting sentence order in the original document (bi-
nary discrimination task), and neural models have
achieved remarkable accuracy on this task. Recent
efforts have targeted additional tasks such as re-
covering the correct sentence order (Logeswaran
et al., 2018; Cui et al., 2018), evaluating on realis-
tic data (Lai and Tetreault, 2018; Farag and Yan-
nakoudakis, 2019) and focusing on open-domain
models of coherence (Li and Jurafsky, 2017; Xu
et al., 2019). However, less attention has been di-
rected to investigating and analyzing the properties
of coherence that current models can capture, nor
what knowledge is encoded in their representations
and how it might relate to aspects of coherence.

In this work, we systematically examine what
properties of discourse coherence current coher-
ence models can capture. We devise two datasets
that exhibit various kinds of incoherence and ana-
lyze model ability to capture syntactic and semantic
aspects of text implicated in discourse organisation.
We furthermore investigate a set of probing tasks to
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better understand the information that is encoded
in their representations and how it might relate to
aspects of coherence. We hope this study shall pro-
vide further insight into how to frame the task and
improve models of coherence assessment further.
Finally, we release our evaluation datasets as a re-
source for the community to use to test discourse
coherence models.1

2 Neural Coherence Models

We experiment with a number of existing and state-
of-the-art neural approaches to coherence assess-
ment, that have publicly available implementations,
and present details of the models below. Across all
the BERT-based models, we use bert-large-uncased
and layer 16 following Liu et al. (2019) and Hewitt
and Manning (2019).
Multi-task learning (MTL, Farag and Yan-
nakoudakis, 2019): The model applies a Bi-LSTM
on input GloVe word embeddings (Pennington
et al., 2014) followed by attention to build sentence
representations; then builds a second Bi-LSTM
with attention to compose a document vector. A
linear operation followed by a sigmoid function is
applied to the document representation to predict
an overall coherence score as the main objective.
Inspired by the Egrid approaches, the model is also
optimized to predict the grammatical roles of the
input words at the bottom layer of the network as
an auxiliary task.
MTL with BERT embeddings (MTLbert): We
replicate the previous MTL model but now use
BERT embeddings (Devlin et al., 2019) to initialize
the input words.
Single-task learning (STL, Farag and Yan-
nakoudakis, 2019): This model has the same ar-
chitecture as MTL but only performs the coherence
prediction task, excluding the grammatical role
auxiliary objective.
STL with BERT (STLbert): This is the same as
STL but uses BERT embeddings.
Local Coherence Discriminator with Language
modeling (LCDrnnlm, Xu et al., 2019): The model
generates sentence representations via an RNN lan-
guage model, where word embeddings are initial-
ized using GloVe. It then generates a representation
for two consecutive sentences via concatenating the
output of a set of linear transformations applied to
the two sentences: concatenation, element-wise dif-

1https://github.com/Youmna-H/
coherence-analysis

ference, element-wise product and absolute value
of element-wise difference. This representation is
fed to an MLP layer to predict a local coherence
score.2 The overall coherence of a document is the
average of its local scores.
LCD with BERT (LCDbert): We create a variant
of the LCDrnnlm model where instead of using an
RNN language model encoder, we encode each
sentence as the average BERT vectors of the words
it contains. Everything else remains the same.
Local Coherence (LC, Li and Jurafsky, 2017):
The model generates sentence vectors via an LSTM
over GloVe-initialized word embeddings; then a
window approach is applied over adjacent sen-
tences to get embeddings of groups of sentences
and predict local coherence scores. The final doc-
ument score is calculated by averaging its local
scores.
Egrid CNN (Egridcnn, Tien Nguyen and Joty,
2017): The model applies a CNN over Egrid repre-
sentations across groups of consecutive sentences;
the CNN slides multiple filters of weights to ex-
tract feature maps that represent high-level entity-
transition features, followed by a max pooling func-
tion to focus on the important features. Further-
more, additional entity-related features are inte-
grated such as salience, proper mentions and named
entity type.

3 Binary Discrimination Task

Binary discrimination is a typical approach to as-
sessing neural coherence models where a well-
organized document should be ranked higher than
its permuted counterparts created by corrupting
sentence order. Following previous work, we train
and test3 the coherence models on the WSJ4 and
evaluate them using Pairwise Ranking Accuracy
(PRA), which is calculated based on the fraction
of correct pairwise rankings between a coherent
document and its incoherent counterparts.

In Table 1, we present the performance of all co-
herence models. The high accuracy of the models
demonstrates their efficacy for the task of selecting
a maximally coherent sentence order from a set of
candidate permutations. We note that the LCD and

2Gold local scores ∈ {0, 1} represent whether a sequence
of two sentences is coherent (i.e. extracted from a coherent
document) or not (i.e. created via negative sampling).

3All models are run 5 times and the test predictions are
averaged across the runs.

4We use the same train and test splits as Tien Nguyen
and Joty (2017) and the same test set permuted counterparts
as Farag and Yannakoudakis (2019).

https://github.com/Youmna-H/coherence-analysis
https://github.com/Youmna-H/coherence-analysis


104

MTL MTLbert STL STLbert LCDrnnlm LCDbert LC Egridcnn
93.2 96.1 87.7 95.4 94.5 97.1 74.1 87.6

Table 1: PRA results of coherence models based on the binary discrimination task on the WSJ.

MTL BERT variants achieve a new state-of-the-art
on the WSJ. The remarkable accuracy on this task
may render this problem fully solved.

Herein, we seek to investigate how well these
models of coherence can capture aspects of text
implicated in discourse organisation. We devise a
set of datasets and systematically test model sus-
ceptibility to syntactic or semantic changes.

4 Cloze Coherence (CC) Dataset

We compile a large-scale dataset, to which we re-
fer as Cloze Coherence (CC), of coherent and in-
coherent examples, where the former are intact
well-written texts while the latter are the result of
applying syntactic or semantic perturbations to the
coherent ones.

4.1 Coherent examples
For the sake of specifically testing for coherence,
we avoid complex linguistic structures. Specif-
ically, we focus on coherent examples that con-
sist of two short sentences that are coreferential
and exhibit a rhetorical relation (such properties
can be manipulated to create incoherent counter-
parts). Furthermore, we focus on examples that
are self-contained, meaning that they do not refer-
ence or rely on an outer context to be interpreted.
We find that narrative texts are good candidates
to satisfy these criteria and therefore create our
coherent examples from the ROCStories Cloze
dataset5 (Mostafazadeh et al., 2016).

ROCStories Cloze contains short stories of 5
sentences manifesting a sequence of causal or tem-
poral events that have a shared protagonist. A story
usually starts by introducing a protagonist in the
first sentence, then subsequent sentences describe
events that happen to them in a logical / rhetori-
cally plausible manner. The dataset was designed
for commonsense reasoning by testing the ability
of machine learning models to select a plausible
ending for the story out of two alternative end-
ings. Here, our main aim is to challenge the models
and investigate whether they truly understand inter-
sentential relations and coherence-related features.
We specifically utilize the first two sentences in the

5https://www.cs.rochester.edu/nlp/
rocstories/

stories to compose the coherent examples in our
dataset.6

Selecting the first two sentences helps make the
examples self-contained since there is no preceding
context to refer to, and no cataphoric relations to
consequent sentences. Regarding rhetorical rela-
tions in these sentences, Mostafazadeh et al. (2016)
conducted a temporal analysis to investigate the
logical order of the events presented in a story,
demonstrating, among others, that the first and
second sentences in the stories are presented in
a commonsensical temporal manner with logical
links between them. In order to examine corefer-
ential relations between the two sentences in each
extracted pair, we gather a set of statistics. We
adopt a heuristic approach7 by simply counting the
number of second sentences that contain at least
one third person pronoun (either personal or pos-
sessive) and find that they constitute 80% of the
examples.8 Third person pronouns anaphorically
refers to preceding items in text, which could occur
in the same sentence or the previous one (i.e., the
first sentence). We, therefore, randomly select, and
manually inspect, 500 examples that contain third
person pronouns in their second sentence and find
that in 95% of them the referenced entity appears
in the first sentence. Furthermore, third person pro-
nouns are not the only coreferential relations in the
examples. For instance, we find that 90% of the
second sentences contain a personal or possessive
pronoun (whether it is first, second or third person),
which could also signal coreference, e.g., ‘I was
walking to school. Since I wasn’t looking at my
feet I stepped on a rock.’ There are also other coref-
erential devices such as: demonstrative references
(e.g., ‘this’ and ‘there’), ‘the’ + noun, proper names
or nominal substitutions (e.g., ‘one’ or ‘ones’) to
name a few (Halliday and Hasan., 1976), so the
true proportion of coreferential pairs will be higher.
Table 2 presents examples of different referential
relations in our dataset.

6We use NLTK for word tokenization; sentence boundaries
are already marked in the stories.

7We initially used the spaCy and Stanford coreference
resolution systems (Clark and Manning, 2016), but found their
performance unreliable for the purposes of this experiment
after manual inspection.

8If we exclude ‘it’ the percentage becomes 76%.

https://www.cs.rochester.edu/nlp/rocstories/
https://www.cs.rochester.edu/nlp/rocstories/
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Type of reference Example
Pronominal Reference Rich was a musician. He made a few hit songs.
Proper Name Dan’s parents were overweight. Dan was overweight as well.
Nominal Substitution My dog hates his treats. I decided to go buy some new ones.

Demonstrative Reference
My daughter wants to take her toddler to the Enchanted Village.
This is a puppet show featuring early 20th century figurines.

Table 2: Examples of first two sentences extracted from the ROCStories Cloze dataset with different referential
types (referring word underlined).

We use the same train/dev/test splits provided
with ROCStories Cloze but only keep the first two
sentences in each story. We exclude cases with
erroneous sentence boundaries,9 yielding 97, 903
examples for training, 1, 871 for development, and
1, 871 for testing, and a training vocabulary size
of 29, 596 tokens. Each instance in our dataset
contains two sentences that represent a coherent
pair.

4.2 Incoherent examples
To assess model susceptibility to syntactic or se-
mantic alterations, we construct incoherent exam-
ples by applying two different transformations to
each coherent pair resulting in two different sets of
data.
cloze swap We create incoherent examples by
swapping the two sentences in a coherent pair.
This mostly breaks the coreference relation be-
tween them and/or the rhetorical relation (e.g. tem-
poral or causal) by reversing the event sequence.
The dataset, referred to as cloze swap, is bal-
anced, i.e., the number of incoherent examples is
the same as the number of the coherent ones above.
The way cloze swap is created corrupts the syn-
tactic patterns that co-occur in coherent texts (e.g.
S → NP-SBJ VP | NP-SBJ → PRP) as demon-
strated by Louis and Nenkova (2012).
cloze rand Here we create incoherent examples by
keeping the first sentence of a coherent pair intact
and replacing the second with a randomly selected
second sentence from (the same split of) our set
of coherent examples. This dataset, referred to as
cloze rand, is also balanced (for each coher-
ent pair, we compose one incoherent counterpart),
and constitutes examples with changed semantics
but with the main syntactic pattern intact. As the
randomly-created pair may still be coherent, we
address this by: 1) constraining random selection
of the second sentence to not begin with the same

9The training stories are in CSV format (separating sen-
tences by comma delimiters) and we parse them using the
Python CSV parser. We exclude the stories where the parser
fails to detect 5 sentences.

word as the second sentence in the original pair,
or with the pronoun ‘he’ if the original starts with
‘she’, and vice-versa10 (we note 70% of the second
sentences in ROCStories Cloze start with a pro-
noun); 2) using human evaluation to further assess
the validity of this data and get an estimate of upper-
bound performance on the task. Specifically, we
randomly select 100 coherent sentence pairs from
our test split along with their own incoherent coun-
terparts and ask two annotators (who are not au-
thors of this paper), with high English proficiency
levels, to rank each set of coherent–incoherent ex-
amples based on which one they considered to be
more coherent and plausible. The average PRA of
the annotators is 94.5%.

Table 3 shows examples from cloze swap and
cloze rand. As our datasets are balanced (one in-
coherent counterpart per coherent pair), we have
a total number of 195, 806, 3, 742 and 3, 742 in-
stances in the train, dev, and test splits respectively
for each cloze dataset (cloze swap and cloze rand
have the same coherent examples, and the same
number of coherent and incoherent examples).

We note that the gold labels in this data are not
to be interpreted as (overall) binary indicators of
coherence. We rather use these to test model perfor-
mance using PRA, i.e. we only compare a coherent
pair with its own incoherent counterpart.

5 Controlled Linguistic Alterations
(CLA) Dataset

In order to further understand the properties of co-
herence that current coherence models capture, we
manually construct a dataset of controlled sets of
linguistic changes. We first identify a set of coher-
ent, well-written texts of two consecutive sentences
from business and financial articles in the BBC, the
Independent and Financial Times (this allows us to
stay in the same domain as the one used for training
the models – the WSJ). We focus on sentence pairs
where the subject of the first sentence is pronom-

10We do not find instances of ‘they’ as a third-person singu-
lar pronoun.
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Coherent example Incoherent example from cloze swap Incoherent example from cloze rand
Tyrese joined a new gym.The
membership allows him to work out
for a year.

The membership allows him to work
out for a year. Tyrese joined a new
gym.

Tyrese joined a new gym. As children
they hated being dressed alike.

Jasmine doesn’t know how to play the
guitar. She asked her dad to take her to
guitar class.

She asked her dad to take her to guitar
class. Jasmine doesn’t know how to
play the guitar.

Jasmine doesn’t know how to play the
guitar. May thought her milk was no
good.

I wanted to play an old game one day.
When I looked in the game’s case the
CD was missing.

When I looked in the game’s case the
CD was missing. I wanted to play an
old game one day.

I wanted to play an old game one day.
Jason pressed the buzzer since he knew
the answer.

Table 3: Examples of coherent and incoherent pairs from the cloze swap and cloze rand datasets.

Original
A government paper on Monday found UK and EU firms would be faced with a ”a significant new and ongoing administrative burden” in the event of a no-deal Brexit.
It found large firms importing and exporting at scale would need to fill in forms taking one hour 45 minutes on average and cost £28 per form for each load imported.

Swap
It found large firms importing and exporting at scale would need to fill in forms taking one hour 45 minutes on average and cost £28 per form for each load imported.
A government paper on Monday found UK and EU firms would be faced with a ”a significant new and ongoing administrative burden” in the event of a no-deal Brexit.

Random

1- A government paper on Monday found UK and EU firms would be faced with a ”a significant new and ongoing administrative burden” in the event of a no-deal Brexit.
She spent over a decade at Swiss investment bank UBS before joining the UK Treasury’s council of economic advisers in 1999.
2- Lady Vadera was born in Uganda and moved to the UK as a teenager.
It found large firms importing and exporting at scale would need to fill in forms taking one hour 45 minutes on average and cost £28 per form for each load imported.

Lexical
Substitution

The paper found large firms importing and exporting at scale would need to fill in forms taking one hour 45 minutes on average and cost £28 per form for
each load imported.
A government paper on Monday found UK and EU firms would be faced with a ”a significant new and ongoing administrative burden” in the event of a no-deal Brexit.

Prefix
Insertion

More Specifically, it found large firms importing and exporting at scale would need to fill in forms taking one hour 45 minutes on average and cost £28 per form
for each load imported.
A government paper on Monday found UK and EU firms would be faced with a ”a significant new and ongoing administrative burden” in the event of a no-deal Brexit.

Lexical
Perturbations

A government paper on Monday found UK and EU firms would be faced with a ”a significant new and ongoing administrative burden” in the event of a no-deal Brexit.
It found large firms importing and exporting at scale would need to fill in cups taking one hour 45 minutes on average and cost £28 per cup for each load imported.

Corrupt
Pronoun

A government paper on Monday found UK and EU firms would be faced with a ”a significant new and ongoing administrative burden” in the event of a no-deal Brexit.
He found large firms importing and exporting at scale would need to fill in forms taking one hour 45 minutes on average and cost £28 per form for each load imported.

Table 4: Examples from our manually constructed CLA dataset. For ‘Random’ we create two incoherent instances:
one where the first sentence is unchanged and the second is randomly selected (1-); and another where the first
sentence is randomly selected and the second is kept intact (2-).

inalized in the second, and the second sentence
begins with this pronoun. We select the examples
so that they are self-contained and do not refer-
ence an outer context. We then manually create
incoherent counterparts by modifying the coherent
examples in a constrained way in order to system-
atically examine model performance. Specifically,
we apply the following sets of perturbations to our
set of coherent sentence pairs, examples of which
are presented in Table 4.
Swap. We simply swap the two sentences.
Random. We keep the first sentence intact and
select a second sentence randomly from our set
of coherent examples. We constrain the selection
so that the subject pronoun is different from the
subject pronoun in the original sentence.11 We
also create another random pair with the same con-
straint but now changing the first sentence. Thus
each original coherent example has two incoherent
counterparts.
Lexical Substitution. We swap the two sentences
in a coherent pair but replace the subject pronoun
in the second sentence with the + a general noun
that substitutes the subject in the first sentence (e.g.

11We also take into account that some subjects could be
referred to by ‘he’, ‘she’ or ‘they’ and thus factor that into the
selection.

the company, the woman, etc.).
Prefix Insertion. We analyze the WSJ training
data and find that the average number of times the
first sentence in a document starts with a pronoun
is 0.02 (and never with ‘he’ or ‘she’) which is sig-
nificantly less than the average number of times
a sentence starts with a pronoun (regardless of its
position) which is 0.07. This difference is not main-
tained in the randomly ordered documents in the
WSJ training set and so this might give a signal to
the models to detect that a swapped pair that starts
with a pronoun is less coherent. To see if such
positional information plays a role in model predic-
tion, we insert a phrase, before the subject pronoun
after swapping the sentences, that doesn’t change
the propositional content (e.g. ‘More specifically’,
‘However’, etc.). We can then observe whether this
insertion will change the prediction of the model.
Lexical Perturbation. We investigate the robust-
ness of the models to minor lexical changes that re-
sult in incoherent meaning, by replacing one word
in either of the two sentences (if the word is re-
peated, we change that too). We choose a replace-
ment word from the training vocabulary of the WSJ
with the same part-of-speech tag. For example, in
Table 4 ‘form’ is replaced with ‘cup’ and ‘forms’
with ‘cups’.
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Corrupt Pronoun. We replace the subject pro-
noun in the second sentence with another pronoun
that cannot reference anything in the first sentence.
With this method, we test whether the models are
capable of resolving coreferences or just rely on
syntactic patterns.

Our dataset contains a total of 240 examples of
coherent and incoherent pairs of sentences (30 co-
herent examples and 210 incoherent counterparts).
Our constrained set of modifications ensures that
all coherent examples are more coherent than any
of the incoherent counterparts in the data.

6 Experiments

Table 5 (top) presents the PRA performance of the
models trained on the WSJ (Section 3) when they
are evaluated on the test sets of the CC datasets
(rows ‘cloze swap’ and ‘cloze rand’). We find that,
overall, models are good at detecting syntactic al-
terations (cloze swap; PRA ranging from 69.3 to
84.6) even though the test data is from a domain dif-
ferent than the training one. However, most models
perform poorly on semantic alterations (cloze rand;
PRA ranging from 48.5 to 54.5), the only exception
being LCDbert that achieves a PRA of 71. Specif-
ically, models that use RNN-based sentence en-
coders (the first six models), even when initialised
with BERT, or apply a CNN to capture entity tran-
sitions fall short in capturing semantic changes
despite the fact that cloze rand is from the same do-
main as cloze swap. In contrast, LCDbert is more
capable of detecting semantic changes where the
model builds sentence representations by averaging
BERT vectors then applies a set of linear transfor-
mations to increase its expressive power, surpass-
ing its RNN-based counterpart (LCD rnnlm) with
16.5% on cloze rand. Additionally, across models,
we observe that the use of contextualized (BERT)
embeddings consistently improves performance on
both cloze tasks, although performance on seman-
tic alterations remains close to random.

We investigate domain shift effects and fine-tune
the WSJ-trained models on each of the cloze swap
and cloze rand training sets (Section 4) and re-
evaluate performance on the respective test sets.
Specifically, we use an MLP layer over the models’
pre-prediction representation, followed by sigmoid
non-linearity. The models are optimized using the
mean squared error between the gold labels (0 or 1)
and the predicted scores.12 In this setup, only the

12We use Adam (Kingma and Ba, 2015), batch size 64,

MLP layer is fine-tuned and not the whole coher-
ence model which allows us to create a fast efficient
evaluation framework that can be applied as a fur-
ther examination step after coherence models are
developed and tuned on their respective datasets,
instead of training the models from scratch. The
results of the fine-tuned models are presented in Ta-
ble 5 (CC; rows ‘fine-tuned’). Although we can see
that there is some domain effect, we nevertheless
find that the results confirm our earlier observa-
tion: performance on semantic alterations is, over-
all, poor, in contrast to syntactic ones (cloze swap).

In Table 5 (bottom), we can observe model per-
formance (PRA) on our constrained set of manu-
ally devised examples (CLA). Again, we observe
a similar result: across RNN-based models, per-
formance is particularly low on random examples,
which suggests that they struggle to detect topi-
cal or rhetorical shifts and unresolved references
if the main syntactic pattern is maintained. The
exception is LCD bert which is again the best per-
forming model (PRA 78.3).

We furthermore observe that now Egridcnn is the
second best model on CLA Random (PRA 71.6).
A sparser entity grid where entities in the two sen-
tences are different allows the model to detect such
cases (e.g. in the example in Table 4, ‘firms’ is
mentioned in the two sentences, while in the two
random examples, it is only mentioned in one).
However, its substantial difference in PRA on CLA
Random compared to cloze rand (53.4) suggests
that the lower performance observed in the latter is
due to domain shift effects, something which we
do not observe (to the same extent) with LCDbert.
Regarding the CLA Swap results, we can again
confirm models’ capability of detecting corrupted
syntactic constructions. We furthermore observe
that they are able to maintain good performance in
the cases where a prefix is inserted (‘Prefix Inser-
tion’) or the subject pronoun is substituted with a
lexical item (‘Lexical Substitution’). This suggests
that they can capture the relevant syntactic patterns
and do not rely solely on positional features.

Performance is overall low on lexical perturba-
tions and corrupt pronouns which suggests that the
models are not sensitive to minor lexical changes
even if they result in implausible meaning and
they also struggle to resolve pronominal references.

L2 regularization, and a learnable penalty rate (search space
{0.00001, 0.0001, 0.001, 0.01}). We use early stopping and
stop training if PRA does not improve on the dev set over 5
epochs (max epochs 200). MLP hidden unit size is 100.



108

Dataset # comparisons
Models

MTL MTLbert STL STLbert LC LCDrnnlm LCDbert Egridcnn

CC

cloze swap 1,871 69.3 73.5 74.2 75.3 70.7 74.5 75.4 84.6
fine-tuned 1,871 88.8 88.5 83.5 84.7 76.3 88.4 96.7 88.1
cloze rand 1,871 51.3 53.3 48.5 52.5 50.5 54.5 71.0 53.4
fine-tuned 1,871 65.7 54.2 53.7 56.1 51.3 65.2 94.8 68.8

CLA

Swap 30 90.0 93.3 83.3 90.0 80.0 93.3 86.6 83.3
Random 60 56.6 45.0 50.0 51.6 51.6 61.6 78.3 71.6

Lexical Substitution 30 83.3 93.3 80.0 90.0 86.6 83.3 86.6 76.6
Prefix Insertion 30 83.3 96.6 76.6 90.0 76.6 86.6 93.3 80.0

Lexical Perturbations 30 56.6 46.6 46.6 63.3 50.0 53.3 80.0 53.3
Corrupt Pronoun 30 70.0 53.3 63.3 63.3 53.3 60.0 76.6 56.6

All data 210 70.9 67.6 64.2 71.4 64.2 71.4 82.8 70.4
All data (TPRA) 6,300 69.9 71.3 61.8 71.6 66.0 69.1 72.2 65.8

Table 5: PRA performance on the CLA (bottom) and CC datasets (top; ‘fine-tuned’ shows results for models tuned
on the respective cloze training sets).

Task
Models

Human
MTL MTLbert STL STLbert LC LCDrnnlm LCDbert Best from Conneau et al. (2018)

SubjNum 64.9 75.4 62.2 71.5 52.7 71.2 88.0 95.1 (Seq2Tree) 88.0
ObjNum 64.5 72.1 61.1 70.7 54.5 65.0 86.5 95.1 (Seq2Tree) 86.5
CoordInv 58.5 63.4 53.0 63.7 53.0 56.6 78.4 76.2 (NMT En-De) 85.0

CorruptAgr 53.2 69.7 57.7 68.6 52.2 64.2 94.3 - -

Table 6: Classification accuracy on probing tasks. ‘Human’ shows the human upper bound on the task.

However, the exception is LCDbert (with PRA 80
on lexical perturbations and 76.6 on corrupt pro-
noun) suggesting a better ability at capturing se-
mantics and resolving references.

Across all six CLA datasets (‘All data’; Table
5), we find that, overall, LCDbert is the top per-
forming model (average PRA). The ‘All data’ row
reports the result of comparing a coherent exam-
ple against its incoherent counterparts across the
different alterations (i.e., in Table 4, the original
example is compared against all the examples in
the table and this is applied to all the original ex-
amples in the dataset). If we furthermore compare
all the coherent examples against the incoherent
ones in the whole dataset (rather than against their
own incoherent counterparts), we find that a sim-
ilar performance pattern is maintained (row ‘All
data (TPRA)’, i.e., all data Total Pairwise Ranking
Accuracy).

7 Probing Coherence Embedding Space

Inspired by previous work (Conneau et al., 2018),
and to better understand the information that is
encoded in the representations of coherence mod-
els, we investigate probing tasks that can capture
coherence-related features.

We experiment with the following set of
sentence-level tasks that are relevant to discourse
coherence: 1) the subject number (SubjNum) task
that detects the number of the subject of the main

clause; 2) the object number (ObjNum) task that
detects the number of the direct object of the main
clause; 3) the coordination inversion (CoordInv)
task that contains sentences consisting of two coor-
dinate clauses, where the two clauses are inverted
in half of the sentences and kept intact in the other
half (the task is to detect whether a sentence is
modified or not); 4) the corrupt agreement (Cor-
ruptAgr) task where sentences are corrupted by
inverting the verb number (the task is to identify
corrupted sentences).

Tasks 1, 2 and 4 align with Centering theory as
they probe for subject and object relevant informa-
tion; the theory suggests that subject and object
roles are indicators of entity salience. On the other
hand, task 3 tests whether the models can capture
intra-sentential coherence. For these tasks, we use
the datasets from Conneau et al. (2018) (tasks 1,2
and 3) and Linzen et al. (2016) (task 4).
Probing model We adopt the SentEval frame-
work of Conneau et al. (2018). Our probing model
consists of an MLP layer over model sentence rep-
resentations, followed by sigmoid non-linearity.
We use the same training parameters as Conneau
et al. (2018).13

Results Table 6 presents the results.14 Overall,
we observe that models are better at detecting Sub-

13https://github.com/facebookresearch/
SentEval

14Egridcnn is based on entity transitions across sentences
and therefore we cannot probe sentence representations.

https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
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jNum, and ObjNum (accuracy of at least 61% for
all models except LC which is the odd one out)
compared to CorruptAgr and CoordInv, with the
last two being particularly challenging for most
models (minimum accuracy of 53% excluding LC).
For SubjNum and ObjNum the models can find
hints in words other than the target word (as the ma-
jority of nouns in a sentence tend to have the same
number, with 75.9% of SubjNum test sentences
and 78.7% of ObjNum ones containing nouns of
the same number in the same sentence (Conneau
et al., 2018)). On the other hand, CorruptAgr exam-
ples are longer and with more syntactic variations
and require the models to detect the dependency be-
tween verbs and their subjects. CoordInv is also a
difficult task for the models particularly since they
are pre-trained on the WSJ to focus on the order of
sentences, not clauses.

Across all tasks, we find that LCDbert achieves
the best performance, outperforming all other ap-
proaches. We note, however, that LCDbert does not
fine-tune its sentence representations during coher-
ence training in the WSJ but they are rather fixed
and based on the average of BERT-based word
embeddings (Section 2). This means the probing
model fine-tunes averaged BERT-based word em-
beddings rather than actual sentence parameters
from the LCD coherence model. Therefore, the
level of performance observed is not representative
of the maximum performance coherence models
can achieve on these tasks.15 We surmise that the
comparatively lower performance observed with
MTLbert and STLbert (whose sentence representa-
tions are fine-tuned during coherence training) is
due to their coherence training objective. The mod-
els are optimized on the binary discrimination task,
i.e. learning to rank a well-organized document
higher than its permuted counterparts. This is an
overly simplistic approach to coherence modeling
that may be making models (and their representa-
tions) more susceptible to losing useful linguistic
information. Having said that, though, MTLbert,
that has direct training signal with respect to the
words’ grammatical roles, is able to alleviate this
issue to an extent and is the next best performing
model on SubjNum, ObjNum and CorruptAgr.

Across tasks, LC is the odd one out, and the
worst performing model. This can be explained
partly by its comparatively lower performance on

15Nevertheless, we observe that LCDbert outperforms the
best reported result on CoordInv by Conneau et al. (2018).

the simpler binary discrimination task (Table 1) and
partly by the simplicity of the approach: LC uti-
lizes no attention mechanism as the MTL and STL
family of models do, nor has expressive enough
transformations as LCDrnnlm does.

8 Discussion

Our evaluation experiments on two coherence
datasets reveal that RNN- or EGrid-based coher-
ence models are able to detect syntactic alterations
that undermine coherence, but are less effecient
at detecting semantic ones even after fine-tuning
on the latter. We furthermore find that they par-
ticularly struggle with recognizing minor lexical
changes even if they result in implausible mean-
ing and resolving pronominal references. On the
other hand, these models are particularly good at
detecting cases where a prefix is inserted or the
subject pronoun is substituted with a lexical item,
suggesting that they are capable of capturing the
relevant syntactic patterns and do not solely rely on
positional features. We find that the best perform-
ing model overall is LCDbert which does not use an
RNN sentence encoder but rather builds sentence
representations by averaging BERT embeddings
then utilizes a number of linear transformations
over adjacent sentences to facilitate learning richer
representations.

Our probing experiments reveal that models are
better at encoding information regarding subject
and object number followed by verb number (Cor-
ruptAgr). These probing tasks align with Centering
theory as they probe for subject and object rele-
vant information. The task that tests for knowledge
on coordination inversion is the lowest performing
one overall, suggesting that there is little capacity
at capturing information related to intra-sentential
coherence. Excluding LCDbert, MTLbert is the
best performing model; nevertheless, there is still
scope for substantial improvement across all prob-
ing tasks and particularly on CoordInv and Corrup-
tAgr.

9 Conclusion

We systematically studied how well current mod-
els of coherence can capture aspects of text im-
plicated in discourse organisation. We devised
datasets of various kinds of incoherence and exam-
ined model susceptibility to syntactic and semantic
alterations. Our results demonstrate the models are
robust with respect to corrupted syntactic patterns,
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prefix insertions and lexical substitutions. However,
they fall short in capturing rhetorical and seman-
tic corruptions, lexical perturbations and corrupt
pronouns. We furthermore find that discourse em-
bedding space encodes subject and object relevant
information; however, there is scope for substan-
tial improvement in terms of encoding linguistic
properties relevant to discourse coherence. Exper-
iments on coordination inversion further suggest
that current models have little capacity at encoding
information related to intra-sentential coherence.

We hope this study shall provide further insight
into how to frame the task of coherence model-
ing and improve model performance further. Fi-
nally, we make our datasets publicly available for
researchers to use to test coherence models.
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