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Abstract

We evaluate several biomedical contextual em-
beddings (based on BERT, ELMo, and Flair)
for the detection of medication entities such
as Drugs and Adverse Drug Events (ADE)
from Electronic Health Records (EHR) us-
ing the 2018 ADE and Medication Extraction
(Track 2) n2c2 data-set. We identify best prac-
tices for transfer learning, such as language-
model fine-tuning and scalar mix. Our transfer
learning models achieve strong performance
in the overall task (F1=92.91%) as well as
in ADE identification (F1=53.08%). Flair-
based embeddings out-perform in the identi-
fication of context-dependent entities such as
ADE. BERT-based embeddings out-perform in
recognizing clinical terminology such as Drug
and Form entities. ELMo-based embeddings
deliver competitive performance in all enti-
ties. We develop a sentence-augmentation
method for enhanced ADE identification ben-
efiting BERT-based and ELMo-based models
by up to 3.13% in F1 gains. Finally, we show
that a simple ensemble of these models out-
paces most current methods in ADE extraction
(F1=55.77%).

1 Introduction

Adverse Drug Events (ADE) arising from the med-
ical intervention of drugs account for 1.3 million
visits to the emergency department in the United
States alone (CDC, 2017). Randomized controlled
trials (RCTs), the primary mechanism for monitor-
ing and identifying ADEs, are hampered by insuffi-
cient sample sizes of clinical trials (Sultana et al.,
2013). Pharmacovigilance databases such as the
Food and Drug Administration’s Adverse Event
Reporting System (FAERS) strive to be authorita-
tive sources for Physicians; however, they require
regular manual data entry (Hoffman et al., 2014;
Chedid et al., 2018).

Electronic Health Records (EHRs) contain valu-
able information about patient medication his-
tory: drugs prescribed, reasons for administration,
dosages/strengths, and ADEs. Automated extrac-
tion of these medication entities by Natural Lan-
guage Processing (NLP) techniques can facilitate
wide-scale pharmacovigilance (Moore and Furberg,
2015; Liu et al., 2019a).

Incorporating such a predictive system within
the clinical note-taking interface may help the
Physician by alleviating the need to access external
clinical decision support applications (Chen et al.,
2016). For instance, if a physician notes down

’started on Dilantin for seizure prophylaxis for a
few days’, the text could be quickly parsed - high-
lighting ’Dilantin’ as a drug, ’seizure prophylaxis’
as the reason for administration, ’few days’ as the
duration, and warnings of ’eye discharge’, ’oral
sores’, etc. as potential ADEs. In the example
given, ’seizure prophylaxis’ and ’few days’ may
occur any where in the clinical text, but only in the
context of ’Dilantin’ they indicate reason / dura-
tion for administration. Besides, such ‘dynamic’
interfaces can aid medical students to learn from
their collective experiences.

Among medication entities, ADE and Reason are
challenging to disambiguate (Henry et al., 2020).
Frequently, the specific reason for drug administra-
tion may appear in a subsequent sentence (Dandala
et al., 2020). Besides, ADE data-sets include gold-
annotations for these entities, only if they are asso-
ciated with a drug. Doing so leads to a significant
reduction in the number of gold annotations (Wei
et al., 2020).

As part of our work in uniting clinical decision
support functions and note-taking interfaces, we
needed to develop a high-performing medication
extraction model using open-source NLP frame-
works. Following (Miller et al., 2019), we modeled
this as a named-entity recognition task (Uzuner
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S.No. Author Method Overall F1 ADE F1
1. Alibaba Inc. BiLSTM-CRF 94.18 58.73

(Henry et al., 2020) + ELMo embedding, Section Features
2. Dandala et al. (2020) BiLSTM-CRF 93.5 53.5

Custom-trained ELMo using MIMIC-III
Knowledge-embeddings from FAERS
Custom pre-processing

3. Wei et al. (2020) CRF + BiLSTM-CRF + Joint 93.45 52.95
3-model NER ensemble; joint-relation classifier

4. Ju et al. (2020) 4-layer tree-structured BiLSTM-CRF 92.55 27.90
Word, sub-word, and character embeddings
Three-groups of specialized features
Overlapping span handling

5. Kim and Meystre (2020) CRF+CRFext+SEARN+BiLSTM ensemble 92.66 27.11
Glove embeddings
Inputs from MedEx and external corpora
Stanford CoreNLP for tokenization

6. Dai et al. (2020) CRF + BiLSTM-CRF 91.9 38.75
Cascading BiLSTM architecture
Pre-trained domain-specific embeddings
Nested entity handling

7. Miller et al. (2019) BiLSTM-CRF 90* 27*
Flair embeddings (general purpose corpora)
Default features and hyper-parameters
*: 50 epoch run, final performance could be higher

8. Chen et al. (2020) BiLSTM-CRF 84.97 43.29
UMLS-based concept lookups
Specialized handling of temporal entities
Regular expressions and rules

Table 1: Relevant related work.

et al., 2011; Si et al., 2019) and experimented with
transfer learning using openly available biomedical
contextual embeddings. It is in this context,

1. We evaluate transfer learning models incorpo-
rating: BioBERT (Lee et al., 2020), Clinical-
BERT (Alsentzer et al., 2019), ELMo (Peters
et al., 2018) and Flair (Akbik et al., 2018) con-
textual embeddings pre-trained on PubMed
abstracts (Fiorini et al., 2018).

2. We evaluate embedding-specific methods to
maximize performance: language-model fine-
tuning, scalar mix, sub-word token aggrega-
tion.

3. Based on the performance of the transfer
learning models, we develop procedures
for enhanced ADE and Reason identifica-
tion. Sentence-augmentation at prediction-
time benefits ADE extraction by up to +3.13%
in F1 gains. It also facilitates a deeper under-
standing of the behavior of the embeddings.
Ensembling strategies help improve perfor-
mance of all three challenging enities: ADE,
Duration, and Reason with up to +2.63% in
F1 gains for ADE.

Our main intention was to get a transfer learn-
ing pipeline working with these embeddings and
therefore we did not perform any detailed hyper-
parameter optimization. Despite this, we were able
to achieve strong performance with all the embed-
dings. Standalone models achieved F1-scores of
53.08% in ADE extraction and 92.91% in the over-
all task with default features. A basic ensemble con-
structed from these standalone models achieved F1-
scores of 55.77% in ADE extraction and 92.82%
in the overall task confirming the viability of the
overall strategy.

2 Related Work

Classical research in this area focused on rule-
based systems (such as MedEx (Xu et al., 2010),
ADEPt (Iqbal et al., 2017)) and CRF-based
machine-learning leveraging hand-crafted features
(Aramaki et al., 2010; Chapman et al., 2019; Nik-
farjam et al., 2015).

The 2018 n2c2 Adverse Drug Events and Medi-
cation Extraction in EHR data-set (Buchan et al.)
and Medications and Adverse Drug Events from
Electronic Health Records (MADE 1.0) (Jagan-
natha et al., 2019) are instances of ClinicalNLP
shared-tasks focused on medication entity extrac-
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corpus notes Drug Strength Form Frequency Route Dosage Reason ADE Duration
training 303 16225 6691 6651 6281 5476 4221 3855 959 592
test 202 10575 4359 4230 4012 3513 2681 2545 625 378

Table 2: Dataset Characteristics.

tion. Most participants leveraged the BiLSTM-
CRF neural model in their work (Chalapathy et al.,
2016). We have listed the top performing methods
from the 2018 n2c2 ADE challenge in Table 1.

Dandala et al. (2020) custom-trained biomedical
ELMo embeddings using the MIMIC-III data-set
(Johnson et al., 2016); they also used a rich set of
sentence tokenization rules. Ju et al. (2020) lever-
aged a tree-architecture to detect overlapping spans
in addition to lexical and knowledge features (e.g.,
word shapes, Human Disease Ontology / MedDRA
side-effect database information).

Relationship association for medication entities
is complementary to our work and can be imple-
mented either jointly or in a pipeline. Such a joint
architecture utilizes the signals from the relations
task to filter out unwanted medication entities. Wei
et al. (2020) adopted such a joint-approach with
a three-classifier ensemble achieving 52.95% in
ADE extraction. Chen et al. (2020) also used a
joint-architecture supplemented by UMLS (Boden-
reider, 2004) concept lookups and unique modeling
of temporal entities.

Dai et al. (2020) cascaded classifiers sequentially
to widen the contextual information available for
ADE identification. This model also facilitates im-
proved identification when spans overlap. They
evaluated ten pre-trained embedding models: half
of them were based on MIMIC-III while the rest
were general-purpose. Kim and Meystre (2020)
uniquely leveraged SEARN (Daumé et al., 2009),
a search-based prediction algorithm for its prefer-
ence of precision over recall.

Our work is most similar to Miller et al. (2019);
they demonstrate that strong medication extraction
models can be constructed with minimal engineer-
ing using contextual embeddings. The main differ-
ences from above mentioned studies are the evalua-
tion of a broader array of contemporary biomedical
embeddings, detailed study of fine-tuning strate-
gies, and augmentation methods for ADE extrac-
tion.

3 Methods

3.1 Data and Pre-Processing
We use the 2018 n2c2 Adverse Drug Events and
Medication Extraction (Track 2) data-set for our
experiments. The data-set has a total of 505 clini-
cal notes with nine medication-entities, as shown
in Table 2. We convert these files into CoNLL
2000 BIO (Begin, Inside, Outside) format after
pre-processing: split sentences into words, normal-
ize numeric values, treat a subset of punctuation
characters as word-boundary markers.

3.2 Transfer Learning Model
We formulate the medication extraction task as a
standard NER task incorporating a single biomedi-
cal embedding from the list below:

1. BioBERT (BB) is a pre-trained version of
BERT using PubMed abstracts. We used the
Base version.

2. ClinicalBERT (CB) is also BERT-based,
trained on clinical notes corpora.

3. ELMo-PubMed (EP) is based on ELMo, pre-
trained on PubMed abstracts.

4. Flair-PubMed (FP) is a Flair contextual em-
bedding pre-trained on PubMed abstracts.

We also incorporated the Glove (Pennington
et al., 2014) classical word embedding as part of
our model after a brief evaluation (Section 4.2).
Our architectural formulation allows for experi-
menting with newer embeddings or combined em-
beddings with incremental effort.

3.3 Experimental Setup
We implement our models using the Flair open-
source framework (Akbik et al., 2019). Flair, based
on PyTorch, provides off-the-shelf BiLSTM+CRF
model, a pluggable architecture for adding embed-
dings and data-sets. We have retained default hyper-
parameters and training procedures (details in Ap-
pendix A). During parameter selection, we train for
50 epochs. Final models are trained for 150 epochs
or until convergence. We used the evaluation script
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provided as part of the data-set to appraise our mod-
els using the test-set. We report the ‘Relaxed F1’
score per prevailing practice.

4 Model Selection Procedures

In Transfer Learning, the linguistic-information
encoded by contextual embedding acts as a pri-
mary input to the downstream task layer (BiLSTM).
Fine-tuning is generally accepted to be beneficial.
However, it requires familiarity with the scripts /
associated frameworks specific to the embedding
and data-set adaptation.

4.1 BERT Embeddings
BERT models have close to a dozen layers (heads).
Understanding the linguistic information encoded
by these layers and their relative contribution to
downstream tasks is an active research area (Liu
et al., 2019b; Kovaleva et al., 2019). Flair uses the
last four layers of the BERT models to generate
embeddings by default.

1. Choice of Layers (4L vs All): The default set-
ting of the end four transformer layers leads
to sub-optimal performance (under-fitting) on
the training set (Table 3, Row 1). Rather than
choosing specific layers, we tried using all
layers. This option generates a vast number
of features (11 x 768), for the downstream
task (Bi-LSTM), and causes training to run
out-of-memory.

2. Scalar Mix (SM): As an alternate, we adopted
Scalar Mix (Peters et al., 2018), a pooling
mechanism on the layer-generated represen-
tations. Scalar Mix results in a reasonable
number of features (768) and performs opti-
mally (Row 2).

3. Mean-Pooling of sub-tokens (MP): BERT
models uniquely use word-piece tokenization
for out-of-vocabulary (OOV) words. Embed-
dings can be generated using first sub-token,
or first and last sub-tokens, or using an aggre-
gate (mean-pooling) of all sub-tokens. The
latter provides best performance (Row 3).

These settings deliver optimal performance for
the BERT-models.

4.2 Impact of adding Glove
Akbik et al. (2018) show that paired use of classic
word embeddings (such as Glove) and contextual

S.No Method Reason ADE Overall
F1 F1 F1

ClinicalBERT
1. Default (4L) 62.87 11.83 91.50
2. All + SM 63.10 32.07 92.11
3. All + SM/MP 65.02 32.47 92.41
4. 3. w/o Glove 64.17 22.73 92.15

BioBERT (Base)
5. 4L + SM/MP 63.27 39.73 92.11
6. All + SM/MP 64.04 43.07 92.20
7. 6. w/o Glove 64.65 43.74 92.17

Table 3: BERT Parameter Selection (50 epochs)

Embedding Standalone +Glove F1 ∆

ClinicalBERT 92.15 92.41 +0.26
BioBERT 92.17 92.20 +0.03
ELMo-PubMed 92.31 92.23 -0.08
Flair-PubMed 92.39 92.92 +0.53

Table 4: Impact of adding Glove (50 epochs)

embeddings enhance NER task performance. Table
4 shows the impact of adding Glove. For the CB
model, the noticeable gains were Reason (+1.00
F1) and ADE (+9.00 F1). For the FP model, ADE
reduction (-2.00 F1) was offset by gains in Reason
(+1.00 F1), Duration (+0.50 F1), and Drug (+0.40
F1). The EP model did not show any meaningful
difference. We used the paired method for the rest
of our experiments.

4.3 Flair Embedding Fine-Tuning

Language-model fine-tuning aims to improve the
performance of Flair-PubMed contextual embed-
dings on speciality corpora. We performed fine-
tuning for 10 epochs using the 4391 clinical notes
from the i2b2/n2c2 data-sets. While all entities
exhibited gains, the prominent gainers are shown
in Table 5. We used this fine-tuned model for the
rest of our experiments.

Entity Prior F1 Post F1 F1 ∆

Drug 94.26 94.77 +0.51
Duration 83.85 85.09 +1.24
Route 94.80 95.40 +1.08
ADE 40.92 47.00 +6.08
Reason 65.33 68.46 +3.13
Overall (micro) 92.22 92.92 +0.70

Table 5: Flair-PubMed fine-tuning (50 epochs)
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Entity BB-Pr BB-Re BB-F1 CB-Pr CB-Re CB-F1
Drug 95.24 94.64 94.942 95.78 94.24 95.001
Strength 97.94 97.95 97.852 97.30 97.99 97.64
Duration 88.86 80.16 84.28 90.32 81.48 85.671
Route 95.59 94.93 95.26 95.69 94.79 95.24
Form 96.83 94.70 95.762 97.20 94.75 95.961
ADE 64.55 39.04 48.65 58.79 31.04 40.63
Dosage 93.05 93.92 93.482 93.19 93.47 93.33
Reason 77.00 59.06 66.84 80.71 57.52 67.172
Frequency 96.84 97.06 96.95 97.52 96.96 97.241
Overall 94.32 91.342 92.81 94.851 90.93 92.85

Table 6: BB and CB Models

5 Discussion

Tables 6 and 7 show the overall performance of
the various models. The prefixes (BB, CB, EP,
FP) shows the contextual embedding used; and
the suffix (Pr, Re, F1) shows the Precision, Recall,
F1 metrics. The two highest F1 score for each
entity are indicated via subscripts. The three most
challenging entities are underlined. Table 8 shows
the proportion of overlap between two entities. We
use TP / (TP+FN) where TP is the number of ‘Gold’
entities identified correctly and FN is the number
of mispredictions (‘Pred’). Smaller values indicate
higher overlap.

5.1 Error Analysis

1. Drug: BERT-models out-perform in the recog-
nition of entities that are predominantly part
of the clinical lexicon (e.g., Drug and Form)
with CB model out-performing in both. We
think that clinical note pre-training contributes
to this out-performance. BERT-based mod-
els seem to misclassify Drug entities when
special characters are involved. Consider
the three sentences: ‘CONTRAINDICA-
TIONS FOR IV CONTRAST‘, ’C-SPINE
WITHOUT CONTRAST‘, ’C-SPINE W/O
CONTRAST’. ‘CONTRAST‘1 is a gold
Drug annotation. FP/EP models identify
‘CONTRAST’ in all the three sentences.
BERT-models get the first and second one
correctly while ignoring the last. Approx-
imately 17 out of 31 references to ‘CON-
TRAST’ in the test-set are without special
characters and hence recognized correctly by
all models. The remaining ones are abbrevia-
tions such as ‘W/O’, ‘WW/O’, or terms such
as ‘NON-CONTRAST’. These are ignored by
the BERT models.

1‘contrast dye’ is given to a patient to accentuate structures
in the CT Scan (Cedars-Sinai)

Entity EP-Pr EP-Re EP-F1 FP-Pr FP-Re FP-F1
Drug 94.70 93.93 94.31 94.79 94.71 94.75
Strength 97.54 97.68 97.61 97.92 98.01 97.971
Duration 89.37 82.28 85.671 88.67 82.80 85.652
Route 96.01 94.62 95.312 95.89 94.88 95.381
Form 97.23 94.31 95.752 96.84 94.33 95.57
ADE 65.00 41.60 50.732 65.12 44.80 53.081
Dosage 93.71 93.36 93.541 93.11 93.32 93.22
Reason 79.21 58.23 67.12 78.30 60.98 68.571
Frequency 97.61 96.64 97.122 96.71 97.48 97.10
Overall 94.492 90.93 92.68 94.21 91.641 92.91

Table 7: EP and FP Models

Gold Pred BB CB EP FP
ADE Reason 81.8% 79.2% 86.08% 83.82%
Reason ADE 97.32% 96.6% 97.97% 97.09%
A/R Drug 98.8% 98.48% 98.60% 99.19%
Form Route 98.49% 98.51% 98.41% 98.37%
Route Form 98.43% 98.57% 98.66% 98.43%
Dosage Strength 99.01% 98.30% 98.61% 98.61%
Dosage Frequency 99.21% 99.84% 99.87% 99.36%
Duration Frequency 96.80% 96.55% 96.58% 96.01%

Table 8: Confusion Matrix

2. Duration: Having the fewest entities (378),
Duration gets mislabeled maximally with Fre-
quency and to a lesser degree with Dosage.
Henry et al. (2020)’s observation that col-
loquial language use is a leading contribu-
tor to the confusion also implies the under-
lying context-sensitivity. In ‘CLOBETASOL
... x up to 2 weeks per month’, ‘2 weeks per
month’ gets incorrectly tagged as Frequency.
In Section 5.3 we show that ensembling FP
model with any one of the other models deliv-
ers best overall Duration performance.

3. Form and Route: Unusual Routes (’take one
tab under your tongue’) were naturally ig-
nored by all models. Commonly, the method
of drug administration is used to describe the
drug form also. In ‘Heparin 5,000 unit/mL
Solution Sig: One (1) Injection TID (3 times
a day)’, ‘Injection’ refers to the former and
hence a Route while in ‘EGD with epinephrine
injection and BICAP cautery’, it refers to the
drug Form. Likewise, ‘infusion’ generates dis-
agreement. BERT-models generally do well.

4. Dosages and Strength: Dosages were
mislabeled most commonly for Strengths
(’iron 0.5 ml per day’) by all models fol-
lowed by Frequency. In ‘levophed @ 12
mcg/min’, the FP model identifies ‘mcg/min’
as ‘Strength’ (correctly) while other models
identify ‘mcg/min’ as ‘Frequency’.
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Entity BB CB EP FP
Drug 29 (0.27%) 21 (0.2%) 27 (0.26%) 55 (0.52%)
Strength 4 (0.09%) 10 (0.24%) 2 (0.05%) 12 (0.28%)
Duration 2 (0.53%) 1 (0.26%) 2 (0.53%) 6 (1.59%)
Route 11 (0.31%) 5 (0.14%) 5 (0.14%) 9 (0.26%)
Form 5 (0.11%) 6 (0.14%) 7 (0.16%) 6 (0.14%)
ADE 11 (1.76%) 12 (1.92%) 24 (3.84%) 46 (7.36%)
Dosage 14 (0.52%) 20 (0.75%) 16 (0.6%) 16 (0.6%)
Reason 45 (1.77%) 29 (1.14%) 38 (1.49%) 95 (3.73%)
Frequency 3 (0.07%) 6 (0.15%) 2 (0.05%) 9 (0.22%)

Table 9: Unique Counts (Count / Total)

5. Each model uniquely detects several enti-
ties not detected by other models (Table 9).
Consider the two sentences that occur next
to each other in a clinical note: ‘could af-
fect your Coumadin??????/warfarin dosage.’
‘Coumadin (Warfarin) and diet:’. The former
contains ’?’ and ’/’ inter-mixed with the enti-
ties. All models detect the entities in the sec-
ond sentence. However, for the first sentence,
the FP model identifies a single Drug entity
Coumadin??????/warfarin while the others ig-
nore it altogether.

6. ADE and Reason: FP model out-performed
in ADE recognition (F1=53.08%) followed
by the EP model (F1=50.73%). Although
the top three models (FP, EP, BB) differ only
marginally in Precision (0.6%) they exhibit
significant divergence in Recall (+5.76%).
There are three significant factors:

Mislabeling between ADE and Reason:
CB model generates the highest number of
mislabels (low recall) while EP does the best
as shown in Table 8.

Mislabeling of ADE/Reason with Drug:
In ‘Heme/onc was consulted regarding hemol-
ysis and anticoagulation. ... Given her multi-
ple indications for anticoagulation, decision
was made to begin coumadin ...’, the first ref-
erence to ‘anticoagulation’ is a Drug gold an-
notation (‘blood thinners’) while the latter is
a Reason (‘medical indication’). This exam-
ple demonstrates the need for good contextual
disambiguation. BB/FP models identify cor-
rectly. The EP model, ignores the former, and
incorrectly identifies the latter as Drug. The
CB model fails to identify both entities.

Incomplete word context: Often a Drug
entity is needed to successfully infer the pres-
ence of an ADE or a Reason entity. However,

S. No Method Precision Recall F1
ClinicalBERT (CB)

1. Per-Sentence 58.79 31.04 40.63
2. 1. ∪ Look-ahead-1 46.13 40.00 42.84
3. 2. ∪ Paragraph 45.44 40.64 42.91

BioBERT (BB)
1. Per-Sentence 64.55 39.04 48.65
2. 1. ∪ Look-ahead-1 54.31 49.44 51.76
3. 2. ∪ Paragraph 53.60 50.08 51.78

ELMo-PubMed (EP)
1. Per-Sentence 65.00 41.60 50.73
2. 1. ∪ Look-ahead-1 54.19 50.72 52.40
3. 2. ∪ Paragraph 53.86 51.36 52.58

Flair-PubMed (FP)
1. Per-Sentence 65.12 44.80 53.08
2. 1. ∪ Lookahead-1 52.82 50.88 51.83
3. 2. ∪ Paragraph 52.38 52.80 52.59

Table 10: ADE augmentation (150 epochs)

Reason (True Positive)
1. - Hypothyroid. Continued Synthroid
2. ... admitted ... due to H1N1 influenza A.
... 6 days of Tamiflu and Levaquin ...
Reason (False Positive)
3. You were ... right foot cellulitis and osteomyelitis.
You were started on antibiotics.
ADE (True Positive)
4. ... developed AMS and decreased respiratory rate.
... thought to be secondary to methadone overdose ...
ADE (False Positive)
5. His AMS was due to pain ... He had significant
altered mental status after one day when he appeared
more somnolent after a dose of Morphine 2mg IV.

Table 11: Augmentation TP / FP Examples

it may occur in a subsequent sentence creat-
ing a challenge for the model. To verify this
hypothesis, we evaluated model behavior by
combining a sentence with one or more of its
subsequent sentences. This is discussed in the
next section.

5.2 Prediction-time Sentence Augmentation
We evaluated model behavior by combining a sen-
tence with one or more of its subsequent sentences.
For example, the ‘Look-ahead-1 strategy’, pairs
a sentence with the one immediately following it.
We progressively increased the pairing length up to
a paragraph. Table 10 shows the ADE performance
resulting from this augmentation strategy. Table
11 lists several examples (Drug entities are marked
bold when they occur in the subsequent sentence).

1. Reason: ‘Hypothyroid’ is detected by aug-
mentation due to the co-occurrence of ‘Syn-
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Ensemble ADE F1 Reason F1 Overall F1
FP+BB 55.21 69.28 92.80
FP+CB 54.73 69.37 92.86
FP+EP 55.77 69.60 92.82

Table 12: Ensembles

throid’. In Ex. 3, ‘osteomyelitis’ is tagged by
augmentation due to the co-occurrence of ‘an-
tibiotics’. However, interestingly, both are un-
annotated despite a prior-occurrence of ‘an-
tibiotics’ carrying a Drug annotation.

2. ADE: ‘overdose’ is identified correctly at
sentence-level (Ex. 4). The remaining ones,
namely, ‘AMS’ and ‘decreased respiratory
rate’ are identified by augmentation.

3. In Ex. 5, altered mental status is identified
at sentence-level but is un-annotated (despite
‘somnolent’ indicating the state of ‘feeling
drowsy’). ‘AMS’ is recognized by augmenta-
tion but is un-annotated probably because of
its diagnostic nature.

The ‘Look-ahead-1‘ strategy is the most effec-
tive: ADE F1 scores increase by +3.11%, +2.21%,
+1.67% for the BB, CB, EP models despite a re-
duction in Precision. Recall gains for the FP model
are offset by a higher reduction in Precision. For
Reason entity, all models benefit by augmentation,
with the gains ranging between 0.51% to 1.23%.
This exercise basically shows that inter-sentence
word context impacts ADE and Reason identifica-
tion and is beneficial when the underlying model is
unable to contextualize effectively.

5.3 Model Ensembles

We briefly evaluated model ensembling strategies
for enhanced ADE performance. We generate pre-
dictions on the underlying models. We combine
non-conflicting entities. In the case of a conflict, we
prioritize ADE predictions; otherwise, we choose
the entity using the confidence score. Table 12
shows three ensemble models based on their ‘Over-
all F1’ scores. Table 13 shows the entity-wise per-
formance for the FP+EP ensemble model (selected
based on the highest ADE F1 score). The ensemble
model delivers the best performance in all three
challenging entities: ADE, Duration, and Reason
validating the feasibility of the strategy.

Entity Precision Recall F1 F1 ∆

Drug 93.18 95.88 94.51 -0.24
Strength 97.56 98.30 97.93 -0.14
Duration 86.54 86.77 86.66 +1.01
Route 95.12 95.36 95.24 -0.14
Form 96.50 94.98 95.73 +0.16
ADE 58.90 52.96 55.77 +2.69
Dosage 92.26 94.67 93.45 +0.23
Reason 74.25 65.50 69.60 +1.03
Frequency 96.27 97.86 97.06 -0.04
Overall 92.74 92.89 92.82 -0.10

Table 13: FP+EP Ensemble

6 Limitations and Future Work

There are a few limitations in this study that we
plan to address in future works:

1. We did not fine-tune BERT and ELMo-based
embedding models. Doing so may alter the
performance profile of these models. Hence,
an apples-to-apples comparison between the
models is not recommended.

2. Adoption of better tokenization methods (e.g.,
clinical text processing tools), and handling
special-cases (such as abbreviations) may fur-
ther enhance model robustness.

3. We also did not do an exhaustive survey of
the available embeddings. There may be other
more effective embeddings.

7 Conclusion

In this study, we presented strong performing trans-
fer learning models for the extraction of medi-
cation entities using several biomedical contex-
tual embeddings. Our experiments shed light on
the strengths of the various embeddings: Flair-
PubMed embedding out-performs in ADE extrac-
tion. BioBERT and ClinicalBERT embeddings out-
perform in recognition of Drug and Form medica-
tion entities. ELMo-PubMed embedding delivers
competitive performance in all medication entities.
We showed that sentence-augmentation and ensem-
bling are viable strategies to enhance ADE per-
formance. Our approach is free of hand-generated
features and built using off-the-shelf neural models,
default hyper-parameters, and training procedures.
These factors decrease the development effort. A
detailed analysis of embedding-specific factors con-
tributing to mis-classification and inclusion of fine-
tuning procedures are part of our ongoing work.
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A Appendices

A.1 List of Hyper Parameters
1. LSTM: Single-Layer, Bi-Directional, 256 hid-

den states.

2. Locked dropout: 0.5.

3. Word dropout: 0.05.

4. SGD optimizer with initial learning rate: 0.1,
annealing rate of 0.5, and patience of 3.

5. Batch Size: 16. For BERT experiments, we
used a batch size of 8 to avoid GPU out-of-
memory issues.

6. We train with both training and development
data-set (train with dev=True).

7. All experiments were conducted on Google
Colab GPU + High-RAM configuration.


